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Abstract The theory of designing block ciphers is mature, having seen significant

progress since the early 1990s for over two decades, especially during the AES devel-

opment effort. Nevertheless, interesting directions exist, in particular in the study of

the provable security of block ciphers along similar veins as public-key primitives, i.e.

the notion of pseudorandomness (PRP) and indistinguishability (IND). Furthermore,

recent cryptanalytic progress has shown that block ciphers well designed against known

cryptanalysis techniques including related-key attacks (RKA) may turn out to be less

secure against related-key attacks than expected. The notion of provable security of

block ciphers against related-key attacks was initiated by Bellare and Kohno, and sub-

sequently treated by Lucks. Concrete block cipher constructions were proposed therein

with provable security guarantees. In this paper, we are interested in the security no-

tions for RKA-secure block ciphers.
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In the first part of the paper, we show that secure tweakable permutation families in

the sense of strong pseudorandom permutation (SPRP) can be transformed into secure

permutation families in the sense of SPRP against some classes of related-key attacks

(SPRP-RKA). This fact allows us to construct a secure SPRP-RKA cipher which is

faster than the Bellare-Kohno PRP-RKA cipher. We also show that function families of

a certain form secure in the sense of a pseudorandom function (PRF) can be transformed

into secure permutation families in the sense of PRP against some classes of related-key

attacks (PRP-RKA). We can exploit it to get various constructions secure against some

classes of related-key attacks from known MAC algorithms. Furthermore, we discuss

how the key recovery (KR) security of the Bellare-Kohno PRP-RKA, the Lucks PRP-

RKA and our SPRP-RKA ciphers relates to existing types of attacks on block ciphers

like meet-in-the-middle and slide attacks.

In the second part of the paper, we define other security notions for RKA-secure

block ciphers, namely in the sense of indistinguishability and non-malleability, and show

the relations between these security notions. In particular, we show that secure tweak-

able permutation families in the sense of indistinguishability (resp. non-malleability)

can be transformed into RKA-secure permutation families in the sense of indistinguisha-

bility (resp. non-malleability).

Keywords Pseudorandom · Related-Key Attacks · PRP · SPRP-RKA

Mathematics Subject Classification (2000) 94A60

1 Introduction

The design and analysis of block ciphers is an established field of study which has seen

significant progress especially for the past 2 decades. While numerous cryptanalytic

results and techniques have been discovered, what remains on an interesting direction

to explore is the theoretical study of provable security for block ciphers. Some work

in this direction includes those initiated by Luby and Rackoff [28] which treated the

pseudorandomness of Feistel cipher constructions, and by Vaudenay [36] which consid-

ered some form of provable security against known types of block cipher attacks like

differential and linear cryptanalysis.

In 1992 and 1993, Knudsen [25] and Biham [4] independently introduced a crypt-

analytic technique which exploits related keys in a differential attack. This so-called

related-key attack (RKA) has widely been used to evaluate the security of block ciphers

[4,18–20,26]. The related-key differential attack has also been extended into various

cryptanalytic techniques such as a related-key differential-linear attack [15], a related-

key impossible differential attack [18], a related-key boomerang and rectangle attacks

[5,22]. Related-key attacks are well-known to be powerful tools to analyze block ci-

phers: up to now, the best known attacks (in terms of the number of attacked rounds)

against AES [24], KASUMI [6], IDEA [7], SHACAL-1 [8] and GOST [26] are all related-

key attacks. Furthermore, related-key attacks can be used to evaluate the security of

message authentication codes and block cipher based enciphering modes (refer to [3]

for an example).

Related-key attacks allow an adversary to obtain plaintext and ciphertext pairs by

using different but related keys which are unknown to the adversary. Such attacks are

commonly exploited to mount a key-recovery attack on the block cipher, i.e. retrieve

some or all portions of the related keys by using collected plaintext and ciphertext pairs;
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the success or failure of these attacks is determined by whether or not the adversary

can distinguish the underlying cipher from a random permutation family with the same

key space and plaintext/ciphertext space as those of the underlying cipher (sometimes

we refer to a permutation family as a cipher). Hence, from a theoretical point of

view, the distinguishing ability of the most powerful related-key adversary determines

the security of the underlying cipher against related-key attacks. More precisely, if a

cipher E (resp. E, E−1) and a randomly chosen permutation family G (resp. G, G−1)

are indistinguishable under related-key attack models, we then say that E is secure

in the sense of a pseudorandom permutation (PRP) (resp. a strong pseudorandom

permutation (SPRP)) against related-key attacks (RKA); simply, we say that E is a

secure PRP-RKA (resp. SPRP-RKA) cipher.

Compared to cryptanalytic results on related-key attacks there are few theoretical

results on them. In 2003, Bellare and Kohno [3] first initiated a theoretical investigation

of security against related-key attacks. They defined a general model of related-key

attacks, i.e., classes of related-key attacks which are specified by an associated set of

key transformations, together with some security notions for these attacks including

PRP-RKA, SPRP-RKA and PRF-RKA. They also clarified what classes of these attacks

do or do not allow to achieve security against them (note that for any normal ciphers

there exist classes of related-key attacks against which they are always insecure: for

instance, if a ciphertext generated from a plaintext P and a key K is equal to that

generated from the same plaintext and its related key K′ = K|a where a is a bit-string

whose bits are all 0 except for the i-th position and | is the bitwise-or, then the i-th

bit of the key should be 1 with a high probability [3] – if the i-th bit of the key K is 0,

then K 6= K′). They also gave a construction of secure PRP-RKA cipher. In [29] Lucks

proposed another construction of secure PRP-RKA cipher that has a better security

bound than that of [3].

The first goal of this paper is to construct various provably secure ciphers against

some classes of related-key attacks from constructions which are already known to be

provably secure. The second goal of this paper is to study how existing block-cipher

cryptanalysis techniques relate to the key recovery (KR) security of these concrete PRP-

RKA secure ciphers. The third goal of the paper is to define various security notions of

RKA-secure block ciphers and to show the relationships among these security notions.

In this paper, more precisely, we show that secure tweakable permutation families

in the sense of SPRP can be transformed into secure permutation families in the sense

of SPRP-RKA (with respect to some classes of related-key attacks); and furthermore

that secure function families of a certain form in the sense of PRF can be transformed

into secure permutation families in the sense of PRP-RKA (with respect to some classes

of related-key attacks). This enables us to construct various SPRP-RKA or PRP-RKA

ciphers from known design methods. We then discuss how1 the KR security of the

Bellare-Kohno PRP-RKA, the Lucks PRP-RKA and our SPRP-RKA ciphers relates to

existing types of attacks on block ciphers, e.g., meet-in-the-middles and slide attacks.

Furthermore, we define other security notions for related-key attacks, indistinguisha-

bility and non-malleability, and look into the relations between these RKA security

notions. At the end of this paper, we show that secure tweakable permutation families

in the sense of indistinguishability (resp. non-malleability) can be transformed to se-

cure permutation families in the sense of indistinguishability (resp. non-malleability)

against some classes of related-key attacks.

1 An extended abstract of this latter work appeared in [35].
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This paper is organized as follows: Section 2 provides some notation and security

notions for related-key attacks and key recovery attacks. In Section 3 and Section 4,

we observe that various secure permutation families against some classes of related-key

attacks can be constructed from schemes which are already known to be secure in the

sense of PRF. Section 5 describes several key recovery attacks on existing PRP-RKA

secure ciphers and relates the corresponding success probability with the security bound

derived from a generic attacker. Section 6 defines various security notions for related-

key attacks and shows the relationships among these security notions and Section 7

concludes the paper.

2 Preliminaries

In this section, we present some notation and definitions of security notions which are

used throughout the paper. We adopt the notation of [3].

2.1 Notation

– s
$← S : the operation of selecting s uniformly at random from the set S

– F : K×D → R : a family of functions from D to R indexed by keys K, i.e., FK(·)
is a function from D to R for each key K ∈ K

– E : K × D → D : a family of permutations on D indexed by K, i.e., EK(·) is a

permutation on D for each key K ∈ K
– Ẽ : K × T × D → D : a family of permutations on D indexed by K × T , i.e.,

ẼK(T, ·) is a permutation on D for each key K ∈ K and tweak T ∈ T (note that

T is an independent second input which is public information rather than a nonce

or initialization vector, but the intent is similar [27].)

– Perm(D) : the set of all permutations on D
– Perm(K,D) : the set of all families of permutations with domain D and keys K
– Rand(D,R) : the set of all functions from D to R
– Rand(K,D,R) : the set of all families of functions with domain D, range R and

keys K

In this paper, we call F a function family. We also call E and Ẽ a permutation family

and a tweakable permutation family, respectively. According to the above notation,

G
$← Perm(K,D) represents the selection of a random permutation family, i.e., for

each key K ∈ K, GK(·) is a permutation randomly chosen from Perm(D). Furthermore,

G
$← Rand(K,D,R) represents the selection of a random function family, i.e., for each

key K ∈ K, GK(·) is a function randomly chosen from Rand(D,R).

2.2 Definitions of Security Notions

Many security notions have been introduced for function and permutation families; in

these notions, an adversary A can black-box access to one or more oracle(s). While the

computational power of A is unlimited, the total number of oracle calls is limited to

a certain number. For each query of A the oracle gives an answer to A. After making

a limited number of queries to the oracle(s) adaptively, A outputs a bit. Sections 3,
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4 and 5 consider the following security notions in the sense of pseudorandomness and

key-recovery. Some other security notions will be introduced in Section 6 in the sense

of indistinguishability and non-malleability. In this paper, for any adversary A, we say

the advantage is negligible if it vanishes faster than the inverse of any polynomial [2].

Definition 1 (PRF) [2] Let F : K × D → R be a function family and A be an

adversary. Then the prf-advantage of A is defined by

Advprf
F (A) = Pr[K

$← K : AFK(·) = 1]− Pr[g
$← Rand(D,R) : Ag(·) = 1].

AO(·) means A with an oracle O(·), which returns O(M) for the adversary’s query M .

Thus F is a secure PRF if Advprf
F (A) is negligible for any A.

Definition 2 (SPRP) [31] Let E : K×D → D be a permutation family and A be an

adversary. Then the sprp-advantage of A is defined by

Advsprp
E (A) = Pr[K

$← K : AEK(·),E−1
K (·) = 1]− Pr[g

$← Perm(D) : Ag(·),g−1(·) = 1].

AO(·),O−1(·) means A with two oracles O(·),O−1(·); for an adversary’s query of M

(resp. C) to the first (resp. second) oracle it returns O(M) (resp. O−1(C)). Thus E is

a secure SPRP if Advsprp
E (A) is negligible for any A.

Definition 3 (TWEAK-SPRP) [13] Let Ẽ : K × T × D → D be a tweakable permu-

tation family and A be an adversary. Then the tweak-sprp-advantage of A is defined

by

Advtweak-sprp

Ẽ
(A) = Pr[K

$← K : AẼK(·,·),Ẽ−1
K (·,·) = 1]

− Pr[G̃
$← Perm(T ,D) : AG̃(·,·),G̃−1(·,·) = 1].

AÕ(·,·),Õ−1(·,·) means A with two oracles Õ(·, ·), Õ−1(·, ·); for an adversary’s query

of (T, M) (resp. (T, C)) to the first (resp. second) oracle it returns Õ(T, M) (resp.

Õ−1(T, C)). Thus Ẽ is a secure TWEAK-SPRP if Advtweak−sprp

Ẽ
(A) is negligible for

any A.

Definition 4 (SPRP-RKA) [3] Let E : K × D → D be a permutation family and Φ

be a set of functions over K. Let A be an adversary that is restricted to queries of the

form (φ, x) in which φ ∈ Φ and x ∈ D. Then the sprp-rka advantage of A is defined by

Advsprp-rka
Φ,E (A) = Pr[K

$← K : AERK(·,K)(·),E−1
RK(·,K)(·) = 1]

−Pr[K
$← K; G

$← Perm(K,D) : AGRK(·,K)(·),G−1
RK(·,K)(·) = 1].

AORK(·)(·),O−1
RK(·)(·) means A with two oracles ORK(·)(·),O−1

RK(·)(·); for an adversary’s

query of (φ, M) (resp. (φ, C)) to the first (resp. second) oracle it returns Oφ(K)(M)

(resp. O−1
φ(K)

(C)).2 Thus E is a secure SPRP-RKA if Advsprp-rka
Φ,E (A) is negligible for

any A.

2 Note that RK(·, K) has a single parameter which is for the query φ where φ ∈ Φ (it follows
that a related key φ(K) is applied in ERK(·,K)(·), i.e., Eφ(K)(·)).
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The PRP, TWEAK-PRP and PRP-RKA security notions are defined by removing

the decryption oracle in Definitions 2, 3 and 4, respectively.

For security against key recovery, a KR adversary A is given a list L of p pairs of

plaintext/ciphertext

L =
{〈P1, C1〉, . . . , 〈Pp, Cp〉

}

where Ci = EK(Pi) for 1 ≤ i ≤ p. Depending on the assumed adversarial ability, the

list L could be known plaintext/ciphertext or chosen plaintext/ciphertext pairs, where

in the latter kind, the plaintexts in L are chosen to have specific differences between

them [9]. L is typically formed by an oracle implementing EK(·) taking plaintexts as

input and outputting the corresponding ciphertexts.

The goal of A is to find a key K̂ that is consistent with L, that is, a key such that,

for all 〈Pi, Ci〉 ∈ L, E
K̂

(Pi) = Ci.

Definition 5 (KR) [16] Let ConsE(L) denote the set of all keys consistent with L,

where L as previously defined above is a list of p pairs of plaintext/ciphertext accessible

to the adversary. The advantage of KR adversary A is then given by:

Advkr
E (A) = Pr

[
K

$← K;L ← {〈Pi, EK(Pi)〉
}

: AL = K̂ ∈ ConsE(L)
]

.

E is KR-secure if Advkr
E (A) is negligible for any A.

This can be extended to include RKA [38]:

Advkr-rka
Φ,E (A) = Pr

[
K

$← K;L ← {〈Pi, EK(Pi)〉
}

:

AL,ERK(·,K)(·) = K̂ ∈ ConsE(L)
]

.

3 Construction of Secure SPRP-RKA Families from Secure Tweakable SPRP
Families

Bellare and Kohno propose a construction method of secure PRP-RKA family (Proposi-

tion 9.1 of [3]). In their security proof there are two ways to complete it: one is a direct

proof which was concretely described in [3], and the other one is an indirect proof, i.e.,

it is based on the relationship between tweakable PRP families and PRP-RKA families

(the second proof was sketched in [3]). In a formal statement, we can naturally extend

this proof sketch into the SPRP security notion.

Theorem 1 (TWEAK-SPRP→SPRP-RKA) Let Ẽ : K × T × D → D be a tweakable

permutation family and let E : K × T × D → D be a permutation family defined as

EK||T (M) = ẼK(T, M) where K is a secret key in K, T is either a tweak value in T
of Ẽ or a secret key in T of E, and M is a message in D. If Ẽ is a secure tweakable

SPRP, then E is a secure SPRP with respect to Φ-restricted RKAs3 if each function φ

in Φ is a partial transformation4 for which there exists a function φ′ : T → T such

3 Φ-restricted RKAs are defined as related-key attacks which perform under the restriction
Φ when choosing a related key.

4 A partial transformation is to transform some part of instances while the rest part remains
unchanged.
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that φ(K, T ) = (K, φ′(T )). Formally, given an SPRP-RKA adversary A attacking E,

we can construct a TWEAK-SPRP adversary BA attacking Ẽ such that

Advsprp-rka
Φ,E (A) ≤ Advtweak-sprp

Ẽ
(BA)

and BA takes the same amount of time and makes the same number of oracle queries

as A.

Using the above Theorem 1 and Theorem 2 of [27] (an excerpt of this is given in

Appendix A), we can construct a secure SPRP-RKA family. See Proposition 1 for the

details, where a set H of functions with domain T and range D is said to be ε-almost

2-xor universal (ε-AXU2) if Prh[h(x)⊕ h(y) = z] ≤ ε for all x, y, z [27].

Proposition 1 (An SPRP-RKA Construction) Let E : K × D → D be a per-

mutation family, let H : T → D be an ε-AXU2 family with ε ≥ 1/|D| and let

E′ : (K × T × H) × D → D be another permutation family defined as E′K,T,h(M) =

EK(M ⊕ h(T )) ⊕ h(T ) where (K, T, h) is a secret key in K × T × H, and M is a

message in D. If E is a secure SPRP and H is ε-AXU2 where ε is negligible, then

E′ is a secure SPRP with respect to Φ-restricted RKAs when each function φ in Φ

is a partial transformation for which there exists a function φ′ : T → T such that

φ(K, T, h) = (K, φ′(T ), h). Formally, given an SPRP-RKA adversary A attacking E′

that queries its oracles with at most q queries, we can construct an SPRP adversary

BA attacking E such that

Advsprp-rka
Φ,E′ (A) ≤ Advsprp

E (BA) + 3εq2

and BA takes the same amount of time and makes the same number of oracle queries

as A.

Note that the ε-AXU2 family H and its domain T are parts of the key space of E′.
A practical impact of Proposition 1 is that if one does not want to lose much time for

rekeying, then the rekeying process can apply T to generate its related key T ′ without

a loss of security for the cipher. Figure 1 compares the construction of Proposition

1 (which we denote here as Construction C) with the previous ones. Constructions

A (the Bellare-Kohno cipher) and B (the Lucks cipher) call the underlying ciphers

twice, while Construction C requires a single call to the underlying cipher and another

single call to the h function which is normally faster than the underlying cipher. Note

that Constructions B and C can store the key generation parts EK1(K2) and h(T )

respectively before the message M is applied, and thus until these key generation parts

are refreshed with other keys, they both require a single call to the underlying cipher.

As the h function is normally faster than the E cipher, Construction C is expected to

be not slower than the both of Constructions B and C. See Sect. 5 for the concrete

RKA security bounds of Constructions A and B.

Theorem 1 can be also exploited to construct various RKA-secure permutation

families from tweakable enciphering modes which are already known to be secure. The

security of tweakable enciphering modes CMC [13], EME [14], EME∗ [12] is based on

the security of the underlying block ciphers. In CMC, EME, EME∗, if the tweaks of

CMC, EME, EME∗ are modified into parts of keys, then the modified enciphering

modes with fixed-length messages, i.e., the modified permutation families are secure

against any Φ-restricted related-key attack under the assumption that the underly-

ing block ciphers are secure and the functions of Φ only transform the modified key

portions.
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Fig. 1 Comparison of the construction (C) of Proposition 1 and the previous ones (A, B)

In Section 5, we will discuss how known types of attacks can apply and relate to

the key-recovery security bounds for Constructions A, B and C.

4 Construction of Secure PRP-RKA Families from Secure PRF Families of a

Certain Form

This section shows that secure PRF families of a certain form can be transformed into

secure PRP-RKA families. Before showing it, we give a more rigorous bound of the

PRF-RKA/PRP-RKA switching Proposition 8.9 in [3].

Lemma 1 (PRF-RKA/PRP-RKA Switching) Let A be a related-key adversary that
queries its oracle with at most r different key transformations from fixed Φ and at most
q times per transformation. Then

|Pr[ K
$← K, G

$← Rand(K,D,D) : AGRK(·,K)(·) = 1]

− Pr[K
$← K, G′ $← Perm(K,D) : AG′RK(·,K)(·) = 1]| ≤ r · q · (q ·min{r, NMΦ} − 1)

2 · |D|

where NMΦ = maxK,K′∈K{|{φ ∈ Φ : φ(K) = K′}|}.

Proof From Proposition 8.9 in [3] we know that

|Pr[ K
$← K, G

$← Rand(K,D,D) : AGRK(·,K)(·) = 1]

− Pr[K
$← K, G′ $← Perm(K,D) : AG′RK(·,K)(·) = 1]| ≤ Prg[D] ,

where Prg[·] represents the probability in the experiment K
$← K, G

$← Rand(K,

D,D),AGRK(·,K)(·), where g
$← G, and g is the probability variable. Let D represent

the event that, for each related-key that A accesses to its oracle (i.e., φ(K) where A
queries (φ, M) to its oracle), there are no collisions in the responses of the oracle for dif-

ferent messages. In [3], Bellare and Kohno showed that Prg[D] ≤ r·q·NMΦ·(q·NMΦ−1)
2·|D| .

However, we can give a more rigorous bound for Prg[D].
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Let φ1, φ2, · · · , φr′ , (r′ ≤ r) be transformations in Φ that A queries. Without

loss of generality, we assume that φ1(K) = · · · = φa1(K) = K1, φa1+1(K) = · · · =

φa1+a2(K) = K2, · · · , φa1+···+am−1+1(K) = · · · = φa1+···+am−1+am(K) = Km where

a1 + · · · + am−1 + am = r′ and Kj 6= Kj′ for 1 ≤ j < j′ ≤ m. Since A queries at

most q times per key transformation, for each Ki the probability of a collision in the

output of the oracle on distinct inputs is at most
ai·q·(ai·q−1)

2·|D| (this bound follows from

Proposition A.1 in [2]). Furthermore, each ai is at most min{r′, NMΦ}. Thus Prg[D]

is bounded as follows.

Prg[D] ≤
m∑

i=1

ai · q · (ai · q − 1)

2 · |D| ≤
m∑

i=1

ai · q · (q ·min{r′, NMΦ} − 1)

2 · |D|

≤ r · q · (q ·min{r, NMΦ} − 1)

2 · |D| . ¤

Note that Lemma 1 improves the bound of Bellare and Kohno’s PRF-RKA/PRP-

RKA switching proposition by a factor of approximately NMΦ. Using Lemma 1 we can

easily show Theorem 2.

Theorem 2 (PRF→PRP-RKA) let E : K1 × K2 × D → D be a permutation family

on D and let F : K1 × K2 × D → D be a function family defined as FK1(K2||M) =

EK1||K2
(M) where K1 is a secret key in K1, K2 is either a secret key in K2 of E

or a message in K2 of F , and M is a message in D. If F is a secure PRF, then

E is a secure PRP with respect to Φ−restricted RKAs if each function φ in Φ is

a partial transformation for which there exists a function φ′ : K2 → K2 such that

φ(K1, K2) = (K1, φ′(K2)). Formally, given a PRP-RKA adversary A attacking E that

queries its oracle with at most r different key transformations and at most q queries

per transformation, we can construct a PRF adversary BA attacking F such that

Advprp-rka
Φ,E (A) ≤ Advprf

F (BA) +
r · q · (q ·min{r, NMΦ} − 1)

2 · |D|

and BA takes the same amount of time and makes the same number of oracle queries

as A.

Proof Let BA be the F adversary that works as follows.

<Adversary BO(·)
A >

1. Select K2 at random from K2.

2. Obtain A’s request (φ(= (id, φ′)), M) by running A.

3. Return O(φ′(K2)||M) to A.

4. If A outputs b, then output b. Otherwise, go to Step 2.

When BA is given access to F , A computes E with related keys. So the following

equality holds:

Pr [K1
$← K1 : BFK1 (·)

A = 1] =

Pr [(K1, K2)
$← K1 ×K2 : AERK(·,(K1,K2))(·) = 1] .
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When BA is given access to G where G is randomly chosen from Rand(K2×D,D), BA
replies to A using an independently selected random function on D for each φ′(K2).

So the equation

Pr [G
$← Rand(K2 ×D,D) : BG(·)

A = 1] =

Pr [(K1, K2)
$← K1 ×K2, G

$← Rand(K1 ×K2,D,D) : AGRK(·,(K1,K2))(·) = 1]

holds. Therefore, by using the above two equations and Lemma 1,

Adv prp-rka
Φ,E (A) = Pr[(K1, K2)

$← K1 ×K2 : AERK(·,(K1,K2))(·) = 1]

− Pr[(K1, K2)
$← K1 ×K2, G

$← Rand(K1 ×K2,D,D) : AGRK(·,(K1,K2))(·) = 1]

+ Pr[(K1, K2)
$← K1 ×K2, G

$← Rand(K1 ×K2,D,D) : AGRK(·,(K1,K2))(·) = 1]

− Pr[(K1, K2)
$← K1 ×K2, G

$← Perm(K1 ×K2,D) : AGRK(·,(K1,K2))(·) = 1]

≤ Advprf
F (BA) +

r · q · (q ·min{r, NMΦ} − 1)

2 · |D| . ¤

Theorem 2 can be exploited to construct various RKA-secure permutation families

from MAC algorithms which are already known to be secure in the sense of PRF. Con-

sider for example OMAC [17] with fixed-length inputs, if all message blocks except for

the first one are modified into parts of keys, then the modified permutation family is

secure against any Φ-restricted related-key attack under the assumption that the un-

derlying block cipher is secure in the sense of PRP and functions in Φ only transform

the modified key portions.

Note. A function family F : K1×K2×D → D may not be a permutation on D with

respect to each element of K1×K2. In this case, Theorem 2 is not applicable. However,

notice that most existing block-cipher based MAC algorithms (function families) can

be converted to permutation function families, because they are constructed based on

permutation families, i.e., block ciphers.

5 Security of Three PRP-RKA Ciphers against Key Recovery

A preliminary extended abstract version of this section appeared in [35]. In [16], it was

shown that the advantage Advkr
E (A) of any KR adversary A mounting a generic attack

depends on the number t of verifications made to the block cipher E (i.e., evaluations

of the form EKi
(Mi) for any text Mi and any key Ki of the adversary’s choice), and

on the key bit-length k. More specifically, it was shown that:

Advkr
E (A) ≤ t

2k
+

1

2k − t
.

This bounds the advantage of a generic adversary. We see that both terms on the right

side of the inequality remain small as long as t ¿ 2k. As t relates to an exhaustive key

search, this means that a generic adversary must exhaust a significant fraction of key

candidates to have a reasonable chance to recover the actual key. This also means that

having an advantage significantly better than by exhaustive search requires exploiting

the specific structure of the block cipher under attack.
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Similarly, in [38], it was shown that the advantage Advkr-rka
Φ,E (A) of any KR-RKA

adversary A mounting a generic related-key attack is bounded by:

Advkr-rka
Φ,E (A) ≤ mt

2k
+

1

2k
,

where m is the number of related-key oracle queries to block cipher E. Analogously,

we see that the advantage of a generic adversary remains small as long as mt ¿ 2k.

5.1 Construction A

In [3], Bellare and Kohno analyzed a PRP-RKA secure block-cipher based construct

that is essentially a generalization of the 2-key variant of DES-EXE [32] structure (see

Fig. 1-Construction A). In particular, they proved:

Theorem 3 (Bellare-Kohno) Let E : {0, 1}k × {0, 1}l → {0, 1}l be a block cipher.

Let E′ : {0, 1}k+l × {0, 1}l → {0, 1}l be the block cipher defined as

E′K1‖K2
(M) = EK1

(
EK1(M)⊕K2

)

where K1 is k bits long and K2 is l bits long. Let Φ be any set of RKD functions

over {0, 1}k+l that modify only K2 and that are independent of K1. Then, for any

adversary A against E′ that queries its related-key oracle with at most r different RKD

transformations and at most q times per transformation, we can construct an adversary

BA against E such that

Advprp-rka
Φ,E′ (A) ≤ Advprp

E (BA) +
16r2q2 + rq′(q′ − 1)

2l+1

and BA makes 2rq oracle queries and runs in the same time as A and q′ is q times the

maximum over all K, K′ ∈ {0, 1}k+l, of the number of φ ∈ Φ mapping K to K′. ut
The result above shows the existence of block ciphers secure against certain classes

of Φ-restricted related-key attacks. PRP-RKA security of the resulting cipher comes

with a restriction that the set of RKD functions Φ defining an RKA adversary only

modifies the second part of the key (i.e., K2). This is a weaker notion of RKA security

compared to previous works [19,20,34] where no such restriction is made.

With DES-EXE like structures, one may wonder if existing attacks [32,11] on DES-

EXE apply to this variant. We answer this in the affirmative. First, we describe a

meet-in-the-middle (MITM) attack that does not require related-key queries. Next, we

present a differential RKA that requires slightly less effort.

MITM Attack.

1. Let 〈M, C〉 and 〈M ′, C′〉 be any two pairs of plaintext/ciphertext in L with C =

E′K1‖K2
(M) and C′ = E′K1‖K2

(M ′).
2. For each key guess, K̂1 ∈ {0, 1}k, do the following.

(a) Evaluate

S1 = E
K̂1

(M)⊕ E
K̂1

(M ′) and S2 = E−1

K̂1
(C)⊕ E−1

K̂1
(C′)

and check whether S1 = S2.
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(b) If so, let K̂2 = E−1

K̂1
(C)⊕ E

K̂1
(M) and validate the guessed key K̂1‖K̂2 on all

pairs of L.

3. If the guessed key is validated, return (the consistent key) K̂1‖K̂2.

If the above MITM adversary tries all possible keys K̂1 ∈ {0, 1}k at Step 2, it will win

the key recovery game with probability 1. As a result, the success probability of this

adversary is ρ, the proportion of guessed keys.

Recalling the results in [16], when considering a generic adversary, any block cipher

E′ of key length k + l bits is expected to provide the following security bound:

Advkr
E′(A) ≤ t

2k+l
+

1

2k+l − t
,

where t denotes the number of verifications. A closer look at the proof offered in [16]

shows that if the generic adversary makes verifications with distinct key candidates

then the bound can be sharpened as:

Advkr
E′(A) ≤ t

2k+l
+

1− t
2k+l

2k+l − t
=

t

2k+l
+

1

2k+l
.

If we let t denote the number of times Step 2 in the MITM attack is performed (i.e.,

the number of times distinct key candidates are being manipulated), then the success

probability is given by:

Advkr
E′(MITM) = ρ =

t

2k
.

Interestingly, we observe that

Advkr
E′(MITM) =

t

2k
>

t

2k+l
+

1

2k+l
,

and so the block-cipher based construct of Fig. 1-A does not give the best possible

security against key recovery. In fact, the effective keyspace is essentially reduced by l

bits.

Differential RKA Attack (DRKA).

1. Let 〈M, C〉 be any pairs of plaintext/ciphertext in L with C = E′K1‖K2
(M).

2. Query the related-key oracle with (M, ∆) and obtain the pair (M, C′) with C′ =

E′K1‖K2+∆(M).

3. For each key guess, K̂1 ∈ {0, 1}k, do the following.

(a) Check whether

E−1

K̂1
(C)⊕ E−1

K̂1
(C′) = ∆ .

(b) If so, let K̂2 = E−1

K̂1
(C)⊕ E

K̂1
(M) and validate the guessed key K̂1‖K̂2 on all

pairs of L.

4. If the guessed key is validated, return (the consistent key) K̂1‖K̂2.

According to [38], we know that any block cipher E′ of key length k+ l bits is expected

to provide the following security against generic related-key attacks:

Advkr-rka
Φ,E′ (A) ≤ mt

2k+l
+

1

2k+l
,
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where m denotes the number of calls to the related-key oracle and t the number of

verifications. Interestingly, in a way similar to the analysis of the previous attack,

we get that, for m = 1, the success probability of our differential related-key attack

(DRKA) satisfies

Advkr-rka
E′ (DRKA) =

t

2k
>

t

2k+l
+

1

2k+l
.

Again, we conclude that the block-cipher based construct of Fig. 1-A does not offer the

best possible security against key recovery, in this case, in the presence of related-key

oracles.

5.2 Construction B

Lucks [29] argued that Theorem 3 only applies for large l. For practical values of l, one

may have that Advprp-rka
Φ,E′ (A)−Advprp

E (BA) is not negligible. He therefore considered

a construction that yields a more meaningful security bound. See Fig. 1-B.

Theorem 4 (Lucks) Let E : {0, 1}l × {0, 1}l → {0, 1}l be a block cipher. Let E′ :

{0, 1}2l × {0, 1}l → {0, 1}l be the block cipher defined as

E′K1‖K2
(M) = EEK1 (K2)(M)

where K1 and K2 are l bits long. Let Φ be any set of RKD functions over {0, 1}k+l that

modify only K2 and that are independent of K1. Then, for any adversary A against

E′ that queries its related-key oracle with at most r different RKD transformations, we

can construct an adversary BA against E such that

Advprp-rka
Φ,E′ (A)

r + 1
≤ Advprp

E (BA) .

and BA makes no more oracle queries than A and runs in the same running time as

A. ut

The encryption of key K2 under key K1 is used as the final secret key to encrypt

the plaintext M , i.e., C = EEK1 (K2)(M). Further, note that although a 2l-bit key

K1‖K2 is used, essentially the adversary just needs to recover the final l-bit secret key

K̃ := EK1(K2) that is used to key the encryption of M , which reduces the exhaustive

key search space to l bits. For an attacker performing an exhaustive search (XS) on K̃,

we therefore have

Advkr
E′(XS) =

t

2l
=

t

2k
,

where t denotes the number of guessed keys (note that in this construction, k = l).

This has to be compared with the security bound given by a generic KR adversary

against a 2l-bit key cipher E′′:

Advkr
E′′(A) ≤ t

22l
+

1

22l − t
=

t

22k
+

1

22k − t
.

We see that the above XS attacker has a substantially larger success probability, and

the effective keyspace is halved.
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5.3 Construction C

Recall that DESX [21] is defined as:

DESX(M, K1‖K‖K2) = K2 ⊕ EK(M ⊕K1)

where K1 and K2 are the pre- and post-whitening keys, respectively, and K is the key

to the inner E encapsulated by the two outer whitening (XOR) operations. The basic

structure of Construction C is like DESX [21] except that the pre- and post-whitening

keys equal each other and is the result of applying an ε-AXU2 hash function h to the

input tweak T , K1 = K2 = h(T ) :

E′K‖T,h(M) = h(T )⊕ EK(M ⊕ h(T )).

In other words, this construction can be viewed as 2-key DESX where the secret key

is equivalently K and h(T ), thus the total key length is |K|+ |h(T )|, i.e. k + l.

This construction, by design, and hence its security proof in Proposition 1, restricts

that the set of RKD functions Φ defining an RKA adversary only modifies the input T

and not the input K to EK(·); this is similar to the RKD-restricting design approach

of Constructions A and B.

An advanced slide attack [10] was applied to DESX. It is basically an MITM attack.

We show that a variant also applies here.

MITM Attack. We first make some observations. Consider a pair of plaintexts M and

M ′ such that the corresponding ciphertexts, C and C′, satisfy the relation C ⊕ C′ =

h(T ). Such a pair is called a slid pair. For such a slid pair 〈M, C〉 and 〈M ′, C′〉, we

have

C = C′ ⊕ h(T ) = EK

(
M ′ ⊕ h(T )

)
and C′ = C ⊕ h(T ) = EK

(
M ⊕ h(T )

)

which yields

E−1
K (C)⊕M = E−1

K (C′)⊕M ′ .

Based on this, we can mount the following attack.

1. Let L = 〈Mi, Ci〉1≤i≤p be a list of p known pairs of plaintext/ciphertext with,

Ci = E′K‖T,h(Mi).

2. For each key guess, K̂ ∈ {0, 1}k, do the following.

(a) For each 1 ≤ i ≤ p, evaluate E−1

K̂
(Ci)⊕Mi and insert

〈E−1

K̂
(Ci)⊕Mi, i〉

into a hash table keyed by the first component, and check whether there is a

coincidence (collision) in the table.

(b) If so, assuming that the collision occurs for indexes i and j, namely, E−1

K̂
(Ci)⊕

Mi = E−1

K̂
(Cj)⊕Mj , let h(T̂ ) = Ci⊕Cj and validate the guessed key K̂‖h(T̂ )

on all pairs of L.

3. If the guessed key is validated, return (the consistent key) K̂‖h(T̂ ).
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The probability to have at least one coincidence (i.e., to find at least one slid pair

〈Mi, Ci〉 and 〈Mj , Cj〉 in L) is about

1− exp(−p2/2l+1) with p = |L|
due to the birthday paradox.

As a result, if t/2k denotes the proportion of keys guessed at Step 2, the success

probability of our MITM attacker is

Advkr
E′(MITM) ≈ t

2k

(
1− exp(−p2/2l+1)

)
.

More precisely, when the cardinality p of the plaintext/ciphertext list is square-root of

the entire plaintext space, i.e. p = 2(l+1)/2, then this MITM attack gives the adversarial

advantage

Advkr
E′(MITM) = O

(
t

2k

)
>

t

2k+l
+

1

2k+l
.

Thus, the MITM applies to this construction when the adversary has access to a signif-

icantly large plaintext/ciphertext list, of cardinality p ≥ 2(l+1)/2. Further discussions

of this in comparison with other constructions are given in subsection 5.4.

Resistance against RKA. We consider whether allowing the adversary extra access to

a related-key oracle would cause an attack better than bruteforce. To do so, we need

to exploit the related-key oracle to our advantage. The related-key oracle, by design of

the Construction C only allows variation to T , thus related-key differences can only be

induced with the T input via the function h(·). If with non-negligible probability an

input difference ∆T = T ⊕ T ′ leads to an output difference ∆H = h(T )⊕ h(T ′), then

one could choose two plaintexts m and m′ = m⊕∆H such that a zero input difference

goes into the underlying cipher EK (a non-zero difference does not propagate to any

non-negligibly observable property at the output since EK is a secure block cipher),

and a ciphertext difference C⊕C′ = ∆H is obtained. This could give a distinguisher for

the construction but does not lead to key recovery. However, h(·) by design is ε-AXU2,

therefore

Pr[h(T )⊕ h(T ′) = ∆H] ≤ ε

for all T, T ′, ∆H so even this would not apply. A potential strategy to extend this to

key recovery is to consider message-input dependent differences [9] 〈∆T, ∆Hi〉 through

h(·), where the space of possible output differences is partitioned into classes ∆Hi

dependent on the classes of input values Ti, so one can query the related-key oracle

with plaintext inputs mi = m ⊕ ∆Hi and expect that the ciphertext difference be

observed as ∆Hi only if the unknown input T falls within the class Ti. Once detected,

T can be searched (along with exhaustive guess of K) within the reduced space of Ti.

The notion of input (message/key) dependent differences [9,30] has been considered

for block ciphers; we leave open the question of whether input dependent differences

can be exploitable for ε-AXU2 hash functions. Meanwhile, the idea of exploiting many

small biases rather than confining to only one larger bias, was proposed in [37] as the

generalized (truncated) differential cryptanalysis technique.

The best known attack therefore remains to be the related-key meet-in-the-middle

attack over the keyspace [38]; more precisely the keyspace is reduced by the number

m of queries made to the related-key oracle, resulting in the success probability of

Advkr-rka
Φ,E′ (A) ≤ mt

2k+l
+

1

2k+l
.
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5.4 Discussions

Table 1 summarizes the KR and KR-RKA adversarial advantages for Constructions A,

B and C, contrasting between the expected (exp) advantage and the actual derived

advantage as a consequence of specific attacks.

Table 1 Comparing the Adversarial Advantages

Cipher Key Length exp Advkr(·) Advkr(·) exp Advkr-rka(·) Advkr-rka(·)
A k + l t

2k+l + 1
2k+l MITM : t

2k
mt

2k+l + 1
2k+l DRKA : t

2k

B 2l = 2k t
22l + 1

22l−t
XS : t

2l
mt
22l + 1

22l −
C k + l t

2k+l + 1
2k+l MITM : mt

2k+l + 1
2k+l −

t
2k (1− exp(−p2/2l+1))

In the KR case, attacks exist on Constructions A and B that reduce their security

effectively to the exhaustive search space over one (instead of both) key part. Construc-

tion C thus far fares better where its adversarial advantage is additionally a function

of the cardinality p of the plaintext/ciphertext list; whereas the specific attacks on

Constructions A and B work with only a pair of plaintext/ciphertexts. Having said

that, the attacks on Constructions A, B and C in previous subsections are the best

known attacks so far; it is open whether there are better attacks in future that close

this gap between the constructions.

In the KR-RKA case, a specific attack exists on Construction A; while it seems sim-

ilar attacks do not exist on the other constructions. For Construction B, this resistance

is derived from the fact that both key parts K1 and K2 are input to an underlying

cipher E before being input as a key to a subsequent application of the cipher E. This

way, assuming that the underlying cipher E is a good PRP, adversarial variations in

the key parts are not significantly observable at the output of E. For Construction C,

this resistance is similarly derived from the fact that the adversarial variation on key

part K enters a good underlying PRP cipher E, and that even if the input T to the

key part h(T ) is adversarially variable, the fact that h is ε-AXU2 means no significant

variation patterns will be observed at the output.

6 Relationships between Security Notions

In this section, we introduce indistinguishability and non-malleability based security

notions for the RKA setting that give more information on permutation families. We

also show the relations among these notions as well as relations with pseudorandomness

and tweakable counterparts.

We first give a definition of indistinguishability, which is the same as the left-or-right

security notion of Bellare et al. [1].

Definition 6 (TWEAK-IND) [13] Let Ẽ : K×T ×D → D be a tweakable permutation

family and A be an adversary. Then the tweak-ind advantage of A is defined by

Advtweak-ind
Ẽ

(A) = Pr[K
$← K : AẼK(·,·)1,Ẽ−1

K (·,·)1 = 1]

− Pr[K
$← K : AẼK(·,·)0,Ẽ−1

K (·,·)0 = 1].
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AÕ(·,·)b,Õ−1(·,·)b

(b = 0 or 1) means A with two oracles Õ(·, ·)b, Õ−1(·, ·)b; for an

adversary’s query of ((T0, M0), (T1, M1)) (resp. ((T0, C0), (T1, C1))) to the first (resp.

second) oracle it returns Õ(Tb, Mb) (resp. Õ−1(Tb, Cb)).

Similarly, the IND-RKA security notion can be defined as follows.

Definition 7 (IND-RKA) Let E : K × D → D be a permutation family and Φ be

a set of functions over K. Let A be an adversary that is restricted to queries within

Φ×D. Then the ind-rka advantage of A is defined by

Advind-rka
Φ,E (A) = Pr[K

$← K : AERK(·,K)(·)1,E−1
RK(·,K)(·)1 = 1]

− Pr[K
$← K : AERK(·,K)(·)0,E−1

RK(·,K)(·)0 = 1].

AORK(·)(·)b,O−1
RK(·)(·)b

(b = 0 or 1) means A with two oracles ORK(·)(·)b,O−1
RK(·)(·)b;

for an adversary’s query of ((φ0, M0), (φ1, M1)) (resp. ((φ0, C0), (φ1, C1))) to the first

(resp. second) oracle it returns Oφb(K)(Mb) (resp. O−1
φb(K)

(Cb)).

Note that the TWEAK-IND adversary and the IND-RKA adversary should be dis-

allowed from asking queries that will allow it to win trivially. In the IND-RKA security

notion, when the IND-RKA adversary gets an answer C from the encryption oracle for

a query ((φ0, M0), (φ1, M1)), the adversary should be disallowed from asking queries

((φ0, M0), (·, ·)), or ((·, ·), (φ1, M1)) to the encryption oracle and queries ((φ0, C), (·, ·)),
or ((·, ·), (φ1, C)) to the decryption oracle, where (·, ·) represents an arbitrary argument.

The similar argument is applied when the IND-RKA adversary gets an answer M from

the decryption oracle for a query ((φ0, C0), (φ1, C1)). See [13] for the disallowed queries

of a tweak-ind adversary.

We now consider another security notion, non-malleability. In a tweakable permuta-

tion family Ẽ : K×T ×D → D, a tweak-nm adversary A is given access to an encrypting

oracle ẼK(·, ·) and a decrypting oracle Ẽ−1
K (·, ·) where K is chosen uniformly at ran-

dom from the set of keys K. In order to define the advantage of a tweak-nm adversary

A we need definitions of the following three sets.

– M(T ) : a set of all M such that A asks ẼK(·, ·) to encrypt (T, M) or A asks

Ẽ−1
K (·, ·) to decrypt (T, C) and its answer is M .

– C(T ) : a set of all C such that A asks Ẽ−1
K (·, ·) to decrypt (T, C) or A asks ẼK(·, ·)

to encrypt (T, M) and its answer is C.

– M(T, C) : a set {Ẽ−1
K (T, C)} if C ∈ C(T ), and a set D \M(T ) otherwise.

Definition 8 (TWEAK-NM) [13] Let Ẽ : K×T ×D → D be a tweakable permutation
family and A be an adversary. Then the tweak-nm advantage of A is defined by

Advtweak-nm
Ẽ

(A) = Pr[K
$← K, (T, C, f)

$← AẼK(·,·),Ẽ−1
K

(·,·), M = Ẽ−1
K (T, C) : f(M) = 1]

− Pr[K
$← K, (T, C, f)

$← AẼK(·,·),Ẽ−1
K

(·,·), M $←M(T, C) : f(M) = 1].

The function f is the encoding of a predicate f : D → {0, 1}.
Similarly, we can define non-malleability of a permutation family E : K × D → D

against related-key attacks. In related-key attack models, an NM-RKA adversary A is

given access to an encrypting oracle ERK(·,K)(·) and a decrypting oracle E−1
RK(·,K)

(·)
where K is chosen uniformly at random from the set of keys K. In these attack models,

A is restricted to queries of the form (φ, x) in which φ is in a certain set of key

transformations Φ and x is in D. The three sets are defined as follows.
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– M(φ) : a set of all M such that A asks ERK(·,K)(·) to encrypt (φ, M) or A asks

E−1
RK(·,K)

(·) to decrypt (φ, C) and its answer is M .

– C(φ) : a set of all C such that A asks E−1
RK(·,K)

(·) to decrypt (φ, C) or A asks

ERK(·,K)(·) to encrypt (φ, M) and its answer is C.

– M(φ, C) : a set {E−1
φ(K)

(C)} if C ∈ C(φ), and a set D \M(φ) otherwise.

Definition 9 (NM-RKA) Let E : K×D → D be a permutation family and Φ be a set
of functions over K. Let A be an adversary that is restricted to queries within Φ×D.
Then the nm-rka advantage of A is defined by

Advnm-rka
Φ,E (A) = Pr[K

$← K, (φ, C, f)
$← AERK(·,K)(·),E−1

RK(·,K)(·), M = E−1
φ(K)

(C) : f(M) = 1]

− Pr[K
$← K, (φ, C, f)

$← AERK(·,K)(·),E−1
RK(·,K)(·), M $←M(φ, C) : f(M) = 1].

The function f is the encoding of a predicate f : D → {0, 1}.

The following three theorems clarify the relationships between these newly defined

security notions IND-RKA, NM-RKA and the SPRP-RKA security notion. Theorem 5

shows that SPRP-RKA security implies IND-RKA security and Theorem 6 shows the

converse. Theorem 7 shows that SPRP-RKA security implies NM-RKA security. The

proofs of Theorems 5, 6 and 7 are similar to the proofs of [13], so we omit them.

Theorem 5 (SPRP-RKA→IND-RKA) Let E : K × D → D be a permutation family

and Φ be a set of functions over K. If E is secure in the sense of SPRP-RKA restricted

to Φ, then E is also secure in the sense of IND-RKA restricted the Φ. Formally, given

a Φ-restricted IND-RKA adversary A that queries its oracles with at most q queries, we

can construct a Φ-restricted SPRP-RKA adversary BA such that

Advind-rka
Φ,E (A) ≤ 2 ·Advsprp-rka

Φ,E (BA) +
2 · q2

|D| − q

and BA takes almost same amount of time and makes the same number of oracle queries

as A.5

Theorem 6 (IND-RKA→SPRP-RKA) Let E : K × D → D be a permutation family

and Φ be a set of functions over K. If E is secure in the sense of IND-RKA restricted

to Φ, then E is also secure in the sense of SPRP-RKA restricted the Φ. Formally, given

a Φ-restricted SPRP-RKA adversary A that queries its oracles with at most q queries,

we can construct a Φ-restricted IND-RKA adversary BA such that

Advsprp-rka
Φ,E (A) ≤ Advind-rka

Φ,E (BA)

and BA takes almost same amount of time and makes the same number of oracle queries

as A.

5 BA takes a slightly higher time than A, as the main loop of BA is A; before performing
A, BA conducts a certain preparation for the use of A, and after performing A, BA outputs
either 0 or 1, which both require a small time complexity. In the following theorems, the same
statement is applied.
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Theorem 7 (SPRP-RKA→NM-RKA) Let E : K × D → D be a permutation family

and Φ be a set of functions over K. If E is secure in the sense of SPRP-RKA restricted

to Φ, then E is also secure in the sense of NM-RKA restricted the Φ. Formally, given

a Φ-restricted NM-RKA adversary A that queries its oracles with at most q queries, we

can construct a Φ-restricted SPRP-RKA adversary BA such that

Advnm-rka
Φ,E (A) ≤ Advsprp-rka

Φ,E (BA)

and BA takes almost same amount of time as A and makes one more query than A.

The following two theorems show that secure TWEAK-IND (resp. TWEAK-NM)

families can be transformed into secure IND-RKA (resp. NM-RKA) families.

Theorem 8 (TWEAK-IND→IND-RKA) Let Ẽ : K × T × D → D be a tweakable

permutation family and let E : (K×T )×D → D be a permutation family defined as in

Theorem 1. If Ẽ is secure in the sense of TWEAK-IND, then E is secure in the sense of

IND-RKA restricted to Φ if each function φ ∈ Φ is a partial transformation for which

there exists a function φ′ : T → T such that φ(K, T ) = (K, φ′(T )). Formally, given

a Φ-restricted IND-RKA adversary A attacking E, we can construct a TWEAK-IND

adversary BA attacking Ẽ such that

Advind-rka
Φ,E (A) ≤ Advtweak-ind

Ẽ
(BA)

and BA takes the same amount of time and makes the same number of oracle queries

as A.

Proof Let BA be the Ẽ adversary that works as follows.

<Adversary BÕ(·,·)b,Õ−1(·,·)b

A >

1. Select T at random from T .

2. Obtain A’s request ((φ0, M0), (φ1, M1)) (or ((φ0, C0), (φ1, C1))) by running A,

where φ0 = (id, φ′0) and φ1 = (id, φ′1).
3. Return Õ(φ′b(T ), Mb) (or Õ−1(φ′b(T ), Cb)) to A.

4. If A outputs b′, then output b′. Otherwise, go to Step 2.

Since the adversary BA is given access to ẼK(·, ·)b, Ẽ−1
K (·, ·)b where K is randomly

chosen from K, BA computes ERK(·,K||T )(·)b, E−1
RK(·,K||T )

(·)b by running A. So the

equality

Pr [K
$← K : BẼK(·,·)b,Ẽ−1

K (·,·)b

A = 1] =

Pr [K
$← K, T

$← T : AERK(·,K||T )(·)b,E−1
RK(·,K||T )(·)b

= 1]

holds. This completes the proof. ¤

Theorem 9 (TWEAK-NM→NM-RKA) Let Ẽ : K × T × D → D be a tweakable

permutation family and let E : (K×T )×D → D be a permutation family defined as in

Theorem 1. If Ẽ is secure in the sense of TWEAK-NM, then E is secure in the sense

of NM-RKA restricted to Φ if each function φ ∈ Φ is a partial transformation for which

there exists a function φ′ : T → T such that φ(K, T ) = (K, φ′(T )). Formally, given
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a Φ-restricted NM-RKA adversary A attacking E, we can construct a TWEAK-NM

adversary BA attacking Ẽ such that

Advnm-rka
Φ,E (A) ≤ Advtweak-nm

Ẽ
(BA)

and BA takes the same amount of time and makes the same number of oracle queries

as A.

Proof Let BA be the Ẽ adversary that works as follows.

<Adversary BÕ(·,·),Õ−1(·,·)
A >

1. Select T at random from T .

2. Obtain A’s request (φ∗(= (id, φ′∗)), M∗) (or (φ∗(= (id, φ′∗)), C∗)) by running A.

3. Return Õ(φ′∗(T ), M∗) (or Õ−1(φ′∗(T ), C∗)) to A.

4. If A outputs (φ(= (id, φ′)), C, f), then output (φ′(T ), C, f). Otherwise, go to Step

2.

Since the adversary BA is given access to ẼK(·, ·), Ẽ−1
K (·, ·) where K is chosen

uniformly at random from K, BA computes ERK(·,K||T )(·), E−1
RK(·,K||T )

(·) by running

A. Based on Definition 9 we have

Adv tweak−nm

Ẽ
(BA) =

Pr [K
$← K, T

$← T , (φ(= (id, φ′)), C, f)
$← AERK(·,K||T )(·),E−1

RK(·,K||T )(·),

M = Ẽ−1
K (φ′(T ), C) : f(M) = 1]

− Pr [K
$← K, T

$← T , (φ(= (id, φ′)), C, f)
$← AERK(·,K||T )(·),E−1

RK(·,K||T )(·),

M
$←M(φ′(T ), C) : f(M) = 1].

Since f(Ẽ−1
K (φ′(T ), C)) = 1 if and only if f(E−1

K||φ′(T )
(C)) = 1, the equality

Pr [K
$← K, T

$← T , (φ(= (id, φ′)), C, f)
$← AERK(·,K||T )(·),E−1

RK(·,K||T )(·),

M = Ẽ−1
K (φ′(T ), C) : f(M) = 1]

= Pr [K
$← K, T

$← T , (φ(= (id, φ′)), C, f)
$← AERK(·,K||T )(·),E−1

RK(·,K||T )(·),

M = E−1
K||φ′(T )

(C) : f(M) = 1]

holds. Furthermore, for all φ = (id, φ′) and C, M(φ′(T ), C) of BA takes the same
distribution with M(φ, C) of A (this is because the output of BA is based on the
output of A) and thus the equation

Pr [K
$← K, T

$← T , (φ(= (id, φ′)), C, f)
$← AERK(·,K||T )(·),E−1

RK(·,K||T )(·),

M
$←M(φ′(T ), C) : f(M) = 1]

= Pr [K
$← K, T

$← T , (φ(= (id, φ′)), C, f)
$← AERK(·,K||T )(·),E−1

RK(·,K||T )(·),

M
$←M(φ, C) : f(M) = 1]

holds. This completes the proof. ¤
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7 Conclusions

We have presented an SPRP block cipher construction that is secure against related-key

attacks (with respect to some set of related keys) built from a tweakable SPRP, which

is the most efficient to date. We have also improved a bound for the PRF-RKA/PRP-

RKA switching proposition, which provides a tighter security bound for constructing

PRP-RKA ciphers from PRF of a certain form. Furthermore, we have presented several

key recovery attacks on all known PRP-RKA secure ciphers. Finally, we have defined

various RKA security notions and showed their relations. The results obtained from

this paper can stimulate the design and analysis of SPRP or PRP constructions that

are secure against related-key attacks, and of a broader perspective stimulate the study

of provable security of block ciphers.
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A Theorem 2 of [27]

Let E : K × D → D be a permutation family, let H : T → D be an ε-AXU2 family with
ε ≥ 1/|D| and let E′ : (K × T × H) × D → D be another permutation family defined as
E′K,T,h(M) = EK(M ⊕ h(T ))⊕ h(T ) where (K, h) is a secret key in K×H, T is a tweak in T
and M is a message in D. If E is a secure SPRP and H is ε-AXU2 where ε is negligible, then
E′ is a secure TWEAK-SPRP. Formally, given a TWEAK-SPRP adversary A attacking E′ that
queries its oracles with at most q queries, we can construct a SPRP adversary BA attacking E
such that

Advtweak-sprp
E′ (A) ≤ Advsprp

E (BA) + 3εq2

and BA takes the same amount of time and makes the same number of oracle queries as A.


