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Abstract: The paper commemorates the centenary of the special theory of relativity, which
effectively sets the limit for the structure of space–time to that of the stationary system. The
long lasting debate for definition of concepts of instantaneity and simultaneity was thus
resolved by the declaration of constancy of speed of light in vacuo as a law of physics. All
motions were thus bounded by the light cone and described by the properties of differential geo-
metry, firmly anchored in the calculus of variations. The key contribution underpinning the
theory was the resolution of the contradiction imposed by the Galilean transformation through
physical explanation and the adoption of the Lorentzian transformation. This highlighted the
relative nature of both space and time and the linkage of these to preserve the sanctity of the
light cone. The resulting space–time geometry was then founded on the traditional calculus
of variation with the addition of this transformation. This retains the time as an independent
coordinate and its linkage to space in an explicit form. One implication of this approach has
been the retention of the concept of infinitum for some physical quantities as a drawback for
use of the Lorentzian transformation. The paper shows that this singular behaviour need not
arise if the explicit linkage in space–time is abandoned in favour of the implicit inclusion of
time as a link between the curved structure of space and the speed of light, thus restating the
calculus of variation in line with special relativity. This points to a closed loop space–matter
field, which may belie the fabric of the continuum. One implication of this interpretation is
that a small variation in speed of light within the field would be required to dispense with the
aforementioned singular nature of the Lorentzian boost, while still remaining within the spirit
of special relativity.

Keywords: special theory of relativity, principle of incompleteness, closed loop space–matter
field

1 INTRODUCTION

With the acceptance of the Copernican heliocentric
system, it became apparent to Galileo [1] that all
bodies were subject to motion, thus measurement
of kinematic quantities cannot be achieved in an
absolute sense, but relative to an observer, also in
some state of motion. He declared this to be the
principle of relativity. With this realization, the
concept of relativism was born. Galileo then stated
that no observer could distinguish between the
states of absolute rest and absolute motion.

Measurement of motion of an entity required a
transformation to the frame of reference attached
to the observer. This transformation was provided
by Galileo [1] for observers in relative uniform
motion, known as the Galilean transformation in
shear, because the world-lines of motion of entities
appear as straight lines. At the turn of the 20th
century, Galilean transformation was used in an
experiment to measure the velocity of the Earth rela-
tive to aether (the so-called aether wind), which was
assumed to occupy the empty space (see any
standard physics text on the Mickelson–Morley
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experiment and section 3). Furthermore, it was noted
that Maxwell’s equations for electromagnetic waves
do not transform properly under Galilean transform-
ation. Lorentz [2] had already established that at
velocities nearing the speed of light, the measured
distances in the direction of motion appear to signifi-
cantly contract (referred to as the Fitzgerald’s
Contraction, who first described this phenomenon).
Lorentz provided a new form of transformation,
which took this anomaly into account and enabled
proper transformation of Maxwell’s equation [3].
Lorentzian transformation, referred to as the boost
function, provides a relationship for time of an
observer as a mixture of time and spatial coordinates
of another. Thus, not knowing the physical impli-
cations of this relationship, he rather uncomfortably
called the time of an observer the local time. An
important feature of the Lorentzian transformation
is that it limits motion of observable matter within
the light-cone. While much of the physics’ world
at the turn of the 20th century was concerned with
the seeming incompatibility of Maxwell’s equations
with the classical Newtonian physics, with a stroke
of ingenuity, Einstein unified kinematics by declar-
ing the constancy of velocity of light in vacuo as a
law of physics, and brushed aside the concepts of
instantaneity and simultaneity by replacing them
with the time of the stationary system (the Galilean
absolute rest or absolute motion, see the Editorial
to this issue), and declared the Galilean principle of
relativity also as a law of physics. Later, he named
the theory underpinning these declared laws of
physics as the special theory of relativity, recogni-
zing its limited validity to uniform motion of
matter [4].

2 ASPECTS OF CALCULUS OF VARIATIONS

The foundation of physics of motion, as shown vari-
ously here, is based upon differential geometry or
simply properties of curves. Additionally, the motion
of matter on such curves can be described with
regard to infinitesimal changes or evanescent quan-
tities. In other words, small increments of time
only are admissible. The study of vanishing changes
within differential and integral geometry is known
as the calculus of variation. Newton placed the
basis of his theories of motion on this approach,
using a series of lemmas and corollaries in the style
of the early Greek mathematicians such as Euclid
and Pythagoras. This approach avoided the rather
tedious and rigorous method later suggested by
Cauchy, but is equally effective and far more
accessible.

Perhaps, the most important and underlying
properties of limits in differential geometry are the

curvature properties of a path, giving physical
meaning to kinematic quantities: velocity and accel-
eration. For this purpose, Newton introduced
Lemmas VI–VII in the Principia [5], using a geo-
metrical proof as depicted in Fig. 1. Note that the
angle of contact made at point A should vanish for
the curve to continue beyond it. Newton put it as a
Lemma in the following form (refer to Fig. 1): ‘If
any arc ACB, given in position, is subtended by
its chord AB, and in any point A, in the middle of
continued curvature, is touched by a right line AD,
produced both ways; then if the points A and B
approach one another and meet, I say, the angle
BAD, contained between the chord and the tangent,
will be diminished in infinitum, and ultimately
will vanish.’

The proof provided by Newton makes use of refut-
ing the contrary: that the continuity of the curvature
is contradicted if the lemma is not upheld. The
extension of this lemma was made by a subsequent
one, where Newton stated: ‘The same things being
supposed, I say that the ultimate ratio of the arc,
the chord, and tangent, any one to any other, is
the ratio of equality [5].’ Then, using elementary

Fig. 1 Limits in the Euclidean geometry
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Euclidean geometry, one can see that (see Fig. 1)

arc ACB ¼ RDu

chord AB ¼ 2R sin
Du

2

tangent AD ¼ 2R tan
Du

2

(1)

It is clear that as Du! 0, sin Du � tan Du � Du and the
ratio of all these evanescent quantities tend to unity. If
one is to assume that point B converges upon A in a
uniform manner with a velocity, v, and a correspond-
ingly short time interval Dt! 0, then RDu ¼ vDt.
This can be represented as v ¼ RDu/Dt ¼ Dx/Dt,
where in Fig. 1, AD ¼ x. Thus, in limit with the dimin-
ishing quantities

v ¼ limDt!0
Dx

Dt

� �
(2)

In differential geometry, one can represent this in the
limit as v ¼ dx/dt.

3 SOME LIMITATIONS WITH DEFINITIONS

The problem with the earlier mentioned definition of
velocity is that Dt! 0, which means that in the
extreme case of it attaining the value of zero, the mag-
nitude of velocity reaches infinity. This breaches the
velocity limitation set at the speed of the stationary
system, in other words, the speed of light. It would be
asked naturally, what is wrong with that? The simplest
explanation would be: because physics is the study of
nature as perceived by humans, and only verifiable as
such, and that such observations are bounded by the
speed of light, then concepts such as infinite velocity
are meaningless. If this view is adopted, then some
unnatural conclusions can be drawn from some of
the most fundamental axioms in physics. To demon-
strate this, the following example is used.

Newton’s three axioms form the cornerstone of
physics. Using his second axiom, and the same
calculus of variation as mentioned earlier

F ¼ ma ¼ m
dv

dt
(3)

The velocity is

ð
dv ¼

F

m

ð
dt (4)

or

v ¼
F

m
t þ C (5)

and choosing the boundary conditions v ¼ 0jt¼0,
C ¼ 0, thus v ¼ (F/m)t.

For any small ratio of F/m (corresponding to an
inappreciable force applied to a very massive
body), as long as sufficient time is allowed, t! 1,
v! 1, which is simply not sensible.

This simple example, among others, meant that
Einstein’s special theory of relativity should be
upheld. The special theory of relativity simply
states that velocity is limited by the speed of propa-
gation of light in vacuo [4]. It further confirms
the Galilean principle of relativity, which draws no
distinction between the state of absolute rest and
absolute motion, both of which are representations
of the speed of light in vacuo.

To correct the previously mentioned anomalous
problem and at the same time retain the Newtonian
axioms, it should be noted that the mass of the test
entity is related to its velocity. Therefore, the special
theory of relativity implies that as the velocity of the
entity progressively increases, so should its resist-
ance to motion. This is also a restatement of the
Galilean principle of inertia [1]. Thus, mass of an
entity is not a constant as treated earlier, but a func-
tion of the state of its motion (say velocity). One can
state this simply as m ¼ f(v). An important con-
clusion is that mass is a motion-like property, and
it should be possible to describe it in terms of differ-
ential geometry, like the kinematic quantities. How
does this affect Newton’s second axiom? Because

F ¼ ma ¼
d(mv)

dt
¼

d

dt
( f (v)v) (6)

which means that

F

ð
dt ¼

ð
d( f (v)v) (7)

This is simply the impulse–momentum equation in
which for a given impulse, the momentum should
be conserved. This means that an observer would
note an increasing resistance to the motion of the
entity, if its velocity were to progressively increase,
as suggested earlier. This means that its mass also
appears to increase, although such will not be noted
by the entity itself. Thus, mass, like other motion-like
quantities, has a relativistic nature. The key point is
that it is not merely the simple traditional interpret-
ation put upon its definition, and as yet it is not
fundamentally understood. Nevertheless, to carry
out the integration in the earlier equation, one
would need to know the function f(v) apriori.

Without going into a detailed historical review, it
can be noted that the way an observer perceives
the velocity of a moving object, v, is relative to the
speed of observation itself (i.e. the speed of light, c).
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Thus, if a beam of light is directed at an object
moving away from an observer, the velocity of the
beam relative to it will be (c 2 v). When the beam
reflects from this object and returns to the observer,
then it would be (cþ v). It is clear that from the aver-
age speed, the results obtained would be c. Thus, any
variations in the velocity of the object, v, would be
insensible. The problem is in the way the transform-
ation is made from the frame of the moving object to
that of the observation itself. This transformation is
referred to as the Galilean transformation in shear,
and was noted in an attempt to measure the velocity
of the Earth relative to the so-called aether in the
Michelson–Morley experiment (readers are referred
to any standard text book on the physics of motion).

It is, therefore, obvious that with the Galilean
transformation, the irrational conclusion would be
that v ¼ 0 always. Subsequent to the Michelson–
Morley experiment, it became clear that a new trans-
formation was needed between the space–time
coordinates of a moving object X iji¼0!3 ; (t, x, y, z)
and those of an observer j jjj¼0!3 ; (t, h, 6, z ). The
Lorentzian transformation [2] shows that when the
distance moved by the object is, for example z, this
appears to be foreshortened to z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (v2=c2)

p
relative

to the observer [4]. Of course, when v� c, then the
observer will measure the same actual distance.
Otherwise, if the object has moved by a distance,
z ¼ vt, the observer measures the same end point
as z ¼ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (v2=c2

p
)þ vt. The same relationship

can be obtained for all other spatial coordinates, thus

j j ¼
X i � vX 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (v2=c2

p
)

, i ¼ j ¼ 1! 3, X 0 ¼ t (8)

The relationship in the temporal sense is given as

t ¼
z � vtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� (v2=c2
p

)
(9)

Therefore, the Lorentzian transformation embodies
the relative nature of both space and time. The trans-
formation function, Bv ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (v2=c2)

p
, repre-

sents the velocity boost as the velocity of an object
nears that of the speed of light [2]. Using this trans-
formation, it is obvious that like space and time,
mass is also a relative quantity, and it transforms in
the same manner as them (using the principle of
preservation of four- momenta: one in time and
three in space, see standard texts), thus

m ¼ f (v) ¼
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� (v2=c2)
p (10)

where m is the rest mass of the entity. Mass of a
moving object is perceived to increase dramatically

by an observer as it moves close to the speed of
light. This relationship suggests a relativistic mass
function of the form shown in Fig. 2.

This so-called definition for mass has certain
appeal, in that it affords it a motion-like property,
in line with properties of differential geometry.
However, it seemingly provides it with no fundamen-
tal physical meaning (i.e. the underlying reason for
it). Using the definition in equation (10), it is clear
that the energy of matter is given as [6]

E ¼ mc2 ¼
mc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� (v2=c2)
p (11)

which leads to the interchangeability of energy and
mass, where clearly the quantity mc 2 is the rest
energy of matter, implying an intrinsic property, for
which no physical explanation can be made. The
concept is not appealing to all because it removes
from mass, the motion-like property that it afforded
by the virtue of equation (10). It also demands the
acceptance of point-like (atomistic) nature of mass
at the limit v ¼ 0 or rest Dt ¼ 0, which is beyond
the attainable increments of successive observations
or Dt ! 1=c. This last point makes the concept of rest
mass as an intrinsic quantity philosophically impon-
derable, something that has concerned both schools
of thought, positivist atomism (as in the Cartesian
School, see D’Alembert [7]) and rational empiricism
of the field theorists (relativism) [8]. The problem
is that although relativity affords mass a motion-
like property, it does not tie it down explicitly to
space, time, or space–time geometry. This would
be the main reason for representatives of both the
D’Alembert and Mach schools not accepting the
theory of relativity in its entirety, observing its
hybrid nature with respect to the retention of mass
as an intrinsic property. To retain most of the

Fig. 2 Relativistic mass function
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foregone discussion within the theory of relativity,
there must be a linking between the matter and
space–time in the form of a closed field. The calculus
of variation needs to be revisited to set the limits in
line with the observable (i.e. banishment of concepts
such as v! 1 and Dt! 0).

4 USE OF LIGHT CONE AND HYPERBOLIC
GEOMETRY

There is a certain elegance in the axiomatic nature and
mathematical simplicity of Euclidean geometry. As a
result, when finally a link was established between
the kinematic quantities and thus force, momentum,
and energy with geometry, it furnished them with
the same attributes. The axiomatic nature of Eucli-
dean geometry is due to its affinity with human obser-
vation, in other words, the Euclidean eyes. Whether
this attribute is intrinsic to human nature or one
evolved through power of suggestion is beyond the
scope of this discourse, but is nevertheless interesting.
In any case, it does reveal its shortcomings, when deal-
ing with the problems highlighted earlier (i.e. the per-
ceived increasing mass of an object at very high speeds
by an observer, and the problem with the Michelson–
Morley experiment). Almost all every day phenomena
on the Earth deviate substantially from the speed of
light, and this makes the Euclidean geometry akin to
human observations. When attempts are made to
extend the same to those events (generally of electro-
magnetic nature) using Euclidean geometry, its lim-
ited nature provides rather surprising results, such as
those described earlier; the main reason being the
breach of the light cone.

Therefore, it became clear that a new form of
geometry should be adopted to complement the
Lorentzian transformation. Note that the Lorentzian
transformation was used to correct the Euclidean
observations to fit the facts. This led to the introduc-
tion of hyperbolic geometry (a form of non-
Euclidean geometry) by Minkowski, with the norm

[9], jjEjj ¼ j 02

� Si¼1!3j
i2

� �1=2

, where an event E in

(1þ 3) space–time is defined as

f (E) ¼ c2j 02

�
X

i¼1!3

j i2

E ; (j 0 ¼ t, j i, i ¼ 1! 3) (12)

This not only empowered the Lorentzian transform-
ation to preserve the light cone c2j 02

� Si¼1!3j
i2

¼ 0,
but also defined the kinematics of the space–time as
f(E) ¼ 0 (light-like), f(E).0 (time-like), and f(E ),0
(space-like) events.

Thus, the hyperbolic geometry lays down a solid
foundation upon which the special theory of relati-
vity resides, and with the embodied Lorentzian

transformation the conservation of four momenta
and that of matter–energy is achieved.

However, one problem still remains: no explicit
alteration is made to differential geometry. Even
though hyperbolic geometry confines the time axis
(as described earlier) within the light cone, Dt is
allowed to diminish to zero in the definition of
limits in differential geometry. In other words, the
interval of time between two successive observations
can diminish beyond the value 1/c in the definition
of equation (2), and then be corrected later by the
constraints introduced by hyperbolic geometry.
This is almost the same as using the Euclidean
geometry, and then correcting the results of obser-
vations to fit the physical facts via the Lorentzian
transformation. Furthermore, the relative nature of
events is ascertained with respect to given observers
in hyperbolic geometry, thus losing the opportunity
of using it as a unified framework. Such would not
be the case if all events were measured as deviations
with respect to a unified frame of observation, or the
speed of light, as this remains a constant for all
observers in relative motion. Differential geometry
can, therefore, be made affine to special relativity,
and deviations from it can be described in line with
the general theory. This necessitates, first re-defining
the calculus of variation and second introducing
appropriate space–matter fields.

5 CALCULUS OF VARIATION MADE AFFINE
TO SPECIAL RELATIVITY

In this way, proper use can be made of the profound
nature of hyperbolic geometry. The re-interpretation
of differential geometry within the context of special
relativity can simply be described as kinematics rela-
tive to the speed of light rather than to any particular
observer.

Using hyperbolic geometry in (1þ 3) space–time,
(j i), i ¼ 0! 3. For light-like behaviour [9]

(cj 0)2 ¼
X3

i¼1

(j i)2 ¼ z 2 (13)

Note that j0 ¼ t. Thus, in the usual symbols,
c 2t 2 ¼ z2. Hence, t ¼ (1/c)z, which corresponds to
the uniform motion of light in vacuo.

To seek a definition for velocity as a slope in differ-
ential geometry and bounded by special relativity

v ¼
@s

@t
¼
@cs

@z
¼ c

@s

@z
þ s

@c

@z
¼ c

@s

@z
(14)

for c considered to be constant. Note that @s=@z ¼ 1
for light-like behaviour.
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This definition is independent of time in an expli-
cit sense, and where s is the arc length of motion. The
key point to bear in mind is that time is now
embedded in an implicit manner within a scalar
field rcs, as described later.

This can be defined as

v ¼ limDz!1=c
Ds

Dz

� �
(15)

which is clearly a valid definition for velocity as that
set by its instantaneous nature (slope in differential
geometry) by Cauchy in 1821 [10]. It has, however,
a much more profound meaning that has a closer
affinity to natural phenomenon by its axiomatic
nature through universal observation. In other
words, it defines the instantaneous velocity as
being in harmony with the frame of observation
(i.e. in simultaneity with speed of observation or
the speed of light). This underpins the notion that
simultaneity is the same as the speed of the station-
ary system, in other words, the speed of light. This
definition, unlike the time-based definition, is under-
pinned by the special theory of relativity in its
inception.

Now the local curvature provides the acceleration as

a ¼
@

@t

@s

@t

� �
¼
@

@t

@cs

@z

� �
¼
@

@z
c
@cs

@z

� �

¼
@c

@z

@cs

@z
þ c

@2cs

@z2
¼ v

@c

@z
þ c

@

@z

@cs

@z

¼ v
@c

@z
þ c

@v

@z
(16)

which, because the speed of light is assumed to
be independent of spatial location, z provides
the usual definition for acceleration as a ¼
c(@v=@z) ¼ (@v=@t). However, it should be noted that
this relationship is only true for light-like behaviour,
and thus, the equality c(@v=@z ) ¼ (@v=@t) is not
generally permitted. This point can be exploited
advantageously, because for light and other
electromagnetic radiation a ¼ v(@c=@z ), the second
term on the right-hand side of equation (16)
being c(@v=@z ) ¼ c(@=@z )(c(@s=@z )) ¼ c2(@2s=@z 2) ¼ 0,

as v! c, therefore, (@s=@z )! 1 (see equation (14)).
This is defined as the slope of unity, or the light-like
behaviour, where a ¼ 0. The first term on the
right-hand side of equation (16) will also be zero,
unless the speed of light was to alter, for example, in
the presence of a strong gravitational field.

Away from light-like behaviour, time-like and
space-like characteristics are noted by the properties
of the Minkowski norm. In general, f(E) in equation
(12) can have any real value, with a positive
value corresponding to time-like behaviour. Thus,

c2j 02

� z 2 ¼ f (E). This relationship describes all
material points within the light cone in the frame
of reference of an inertial observer (j 0,

z ; j i, i ¼ 1! 3). Admitting only small quantities,
the world-curve of the motion can be stated as
c2dj 02

� dz 2 ¼ dt 2, where dt is the proper time of a
material point in motion in relativity. The proper
four-velocity of this material point is given as
(@t=@t, @s=@t), where ds is the arc length of motion
in the Euclidean geometry, corresponding to the
proper time, dt. The term @t=@t is the local time dila-
tion factor. Then, the spatial proper three-velocity
components can be found from

u ¼
@s

@t
¼
@s

@t

@t

@t
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (v2=c2)

p @s

@t

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� (v2=c2)
p @cs

@z
(17)

Note that u ¼ @s=@t ¼ (1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (v2=c2)

p
(@cs=@z) ¼

(v=c)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (v2=c2)

p
, which is in line with both the

special case given by equation (14) and the Lorent-
zian transformation [2]. Two important relations
also result, @s=@t ¼ @s=@tjv � c and @s=@z ¼ (1=c)
(@s=@t)jv! c. Note that the slope of unity is achieved
by the second of these relations, while in the general
case @s=@z ¼ (1=c)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (v2=c2)

p
(@s=@t), which yields

the same equality as the earlier one for v! c, and
deviates from unity inversely in proportion to the
local time dilation factor as @t=@t:

Now, the acceleration of this material point can be
obtained by differentiation of equation (17), also
employing the definition in equation (16) as

a ¼
@u

@t
¼
@

@t

@s

@t

� �
¼
@

@t

@t

@t

@s

@t

� �
¼
@t

@t

@

@t

@cs

@z

� �

¼
@t

@t

@

@t

@t

@t

@cs

@z

� �
¼
@t

@t

@t

@t

@v

@t
¼

@t

@t

� �2@v

@t

¼
@t

@t

� �2

v
@c

@z
þ c

@v

@z

� �
(18)

6 KINEMATIC QUANTITIES AS
INCOMPLETENESS FROM UNIFIED
FRAME OF OBSERVATION

Definition (16) is a special case of equation (18),
where in the latter, the proper time is taken into
account. Furthermore, in this case the deviation
from the slope of unity constitutes a = 0. In other
words, an accelerated motion yields curved space.
Therefore, with the exception of perfect straight
line motion of slope of unity (i.e. the light-like beha-
viour), all other motions are curvilinear, with their
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slopes as deviations from the light-like behaviour in
accordance with the quantity @t=@t. The
corresponding local curvature is obtained by assum-
ing the constancy of the speed of light in equation
(18) (i.e. @c=@z ¼ 0) as @2s=@z2 ¼ (a=c2) @t=@tð Þ

2. There-
fore, the motion of all material points in any region of
space, z, within a weak gravitational field may be
described with respect to the light-like behaviour
by a pair of numbers: its deviation from a slope of
unity, and its corresponding local curvature:
I ; (I1, I2) ; ((@t=@t), (a=c2)(@t=@t)2), where the vec-
tor I is hereinafter defined as the incompleteness
of the observed motion, defined previously in geo-
metrical terms in reference [11].

The term cs in equation (14) assumes the meaning
of kinematic viscosity in the traditional sense, as it
has the units of m2/s (s being the displacement). Of
course, in the current definition here, all quantities
are of geometric attributes. The definition, therefore,
relates to the extension in a given spatial direction
or the stretching of a curve (or matter striving to
describe a path). If, as earlier, it can be stretched to
its limit of unity, it represents a straight line. In other
words, the state of motion of matter to traverse such
a path endows to such matter a light-like property.

Now referring to equation (18), note that the curva-
ture is defined as the combination of interactions
between the moving matter and the fabric of space
and the action of light itself. (i.e. the manner in
which light propagates in space). This becomes the
definition for acceleration, which sits very naturally
with fundamentals of observation itself. The final
term on the right-hand side of equation (18) is the
usual observation model, indicating curvature
of motion as viewed by the speed of observa-
tion (i.e. the speed of light). If put in the
form c2(@t=@t)2(@2s=@z 2) ¼ (1=(1� (v2=c2)))(@2s=@z 2),
it shows the deviation from light-like behaviour
as observed by any observer in uniform motion.
However, one can use the light-like slope of unity as
a frame of measurement and use the defined incom-
pleteness to note that with the constancy of the
speed of light I2¼ (a=c2)(@t=@t)2¼ (a=c2)(1� (v2=c2)),
which means the slower the material point, the
greater the incompleteness, making it easier to
discriminate. This is simply axiomatic. Although the
value of c in vacuo and on a geometric slope of
unity remains constant, in line with special relativity,
there is no reason for it not to adhere to other curva-
tures to facilitate observation of other phenomena,
indicating its wave-like motion.

7 CLOSED LOOP SPACE –MATTER FIELD

The earlier mentioned relationships are kinematic in
nature. In other words, they are concerned with

observation of phenomena by an observer. This
means that the inseparability of space and matter is
not strictly embodied in them, which accounts for
the underlying cause of accelerated motion. By the
preceding arguments, a curvature in space is created
by the action of matter upon it. Because the unitary
nature of matter must be refuted as contrary to evol-
utionary dynamics, then its multiplicity can be
described, in its simplest representation, by the pre-
sence of motion of a conglomerate of matter, creat-
ing the curvatures of space. Now, using equation
(18), a ¼ (dt=dt)2(@2c2s=@z2), which for motions
v � c! dt=dt � 1. The term c 2s can be interpreted
as the resistance of space (note that cs has the con-
ventional unit of kinematic viscosity as previously
described) to the propagation of matter at the
speed of light (i.e. the electromagnetic waves). There-
fore, it represents a closed loop space–matter field
interpretation. It is a closed loop field, because the
presence of all matter in such a space is implicit
within the quantity c 2s, as opposed to an atomistic
definition, which is based on the presence of discrete
masses such as a gravitational source and target
bodies. The quantity c 2s, in conventional terms,
has the unit of m3/s2. In the Newtonian atomistic
view (i.e. the discrete action of bodies in the law of
universal gravitation), the product GM provides the
basis of interpretation and has the same unit.
Einstein’s weak gravitational field theory is a half
way house, where an open loop field is assumed, as
the underlying source for the curved space–time.

In the conventional interpretation of gravitational
action

a ¼
@w

@z
¼ rw (19)

where the simplest form of gravitational potential is a
gradient form, inversely proportional to the distance
from the source, M, as w ¼ �GM=r. The negative sign
is due to the work done by the gravitational field. As
the field varies from position to position in space (i.e.
z ; j i, i ¼ 1! 3), equation (19) can be written in its
general form as a ¼ �rw. Note that the vector field,
a, does not depend on any target body of mass, m,
but only on the source mass, M. This precisely
demonstrates the open loop nature of the conven-
tional interpretation, explained earlier. Similarly, in
the closed loop interpretation

a ¼
dt

dt

� �2@2c2s

@z2
¼

dt

dt

� �2 @

@z

@c2s

@z

� �

¼
dt

dt

� �2@w

@z
¼

dt

dt

� �2

rw (20)
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where rw ¼ (@w=@ji), i ¼ 1! 3, and in this case
w ¼ @c2s=@z ¼ c2rs for c remaining constant in
accord with special relativity.

8 UNIVERSAL GRAVITATIONAL CONSTANT
AND EINSTEIN’S RIPPLES

In the strictest terms, the results of the earlier two
alternative interpretations cannot be equated, as
one is atomistic in nature, while the other relies on
a continuous closed loop field. However, in cases
where the mass of a source is the dominant factor
for the curved space–time as in the case of the
solar system (i.e. the Sun accounts for nearly 99 per
cent of the mass of the solar system), this equival-
ence may be assumed. Thus, the gravitational poten-
tial may be regarded as equivalent to that of the
space–matter field, described earlier

c2rs ;
GM

r
(21)

Now, this can lead to a physical description for the
universal gravitational constant, noting that G ¼
(c2=M)rrs, where rs is the slope at the location z ;
j i, i ¼ 1! 3 at a distance r from the source M. This
may be surmised as a wave-like or ripple motion,
proposed by Einstein as it varies with distance r.
Now the earlier mentioned relationship can be
represented as follows

G ¼
c2r

M
rs ¼

E

Mm
rrs (22)

This relationship provides a physical description for
G: as the ripple created by a mass M remotely from
any locality (at a distance r), given by rs, where
matter of total energy E and mass m can reside.
This description ties the curved space with the resid-
ing matter and the gravitational action of a nearby
massive body. For G to be regarded as a constant
(which is in line with all measurements of orbital
motions in the solar system), such systems should
possess a massive body and rs should be almost
insensible, which, as evidence suggests, is the case.
Using equation (22), the ripple amplitude caused
on the space proximate to the gravitational field of
the Earth may be surmised. For example, at a dis-
tance of 1000 km from the surface of the Earth, with
G ¼ 6.673 � 10211 m3/kg s2, mass of Earth ¼ 5.976�
1024 kg, its radius ¼ 6371 km and assuming
c ¼ 300 000 km/s, the amplitude of ripple is sur-
mised to be 6 nm. However, it should be noted that
the ripple in any spatial location is determined by
the action of a many-body system. In the case of a
location described earlier, the gravitational potential

of the Sun cannot be ignored. If the same relation-
ship was to be used in the case of the Sun’s gravita-
tional potential alone, with its mass and distance as
1.989 � 1030 kg and 1.5 � 108 km, respectively, then
the ripple amplitude obtained is 10 nm. The import-
ant point to note is that any object creates ripples in
space as it moves and at any location in a system, the
ripple amplitude is an amalgam of these constitu-
ents, and not necessarily in an additive manner.

To observe why G is regarded as a constant, the
relativistic nature of the mass in equation (22) can
be replaced, using equation (10). Then

G ¼
c2

M
rrs ¼

c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (v2=c2)

p
m

rrs

’ c2 1�
1

2

v2

c2
�

1

8

v4

c4
� � � �

� �
rrs

m
(23)

It is clear that for massive bodies moving at
v � c, G � (c2rrs=m), which is independent of the
state of their motion and that G is of electromagnetic
nature (thus a universal constant). It is also a
property of the closed field, c2rs.

9 SPECIAL RELATIVITY AND SINGULARITY
DUE TO THE LORENTZIAN BOOST

A problem still remaining, among others, with the
approach expounded is retaining the Lorentzian
boost function. This can still lead to the attainment
of infinitum, for example in the evaluation of rs
from equations (22) or (23), where for v! c,

rs! 1. The main reason for this is the acceptance
of the notion of mass in its traditional atomistic
sense. Furthermore, c2rs cannot be claimed as the
space–matter field, if mass remains alongside it as
a discrete entity. This would indeed be the source
of objection by the proponents of both the atomistic
school of thought and the field theorists alike. The
current exposition favours the latter, while sympathy
also exists with D’Alembert’s view of the imponder-
able nature of mass as an entity [7, 8].

The most poignant manifestation of the singularity
at the heart of the theory of relativity is the Lorent-
zian boost (1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (v2=c2)

p
), which shows that as

v! c, Bv ! 1. Thus, many important relations,
discussed earlier, including time dilation and relative
mass tend to infinity. These are the result of the con-
straint imposed by the constancy of speed of light in
vacuo, or in other words: special relativity. The grow-
ing trend in disputing special relativity has come
about as a result of a desire to remove this source
of singularity, thus extending the theory of relativity,
which is felt by many to be the fundamental basis
upon which the observed nature resides. Some
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have resorted to observations of accelerated motion
of light in vacuo in certain circumstances as anoma-
lous dispersion [12], although Einstein himself had
only accepted the same within a gravitational field.
If the notion of a closed loop space–matter field, as
described above, is accepted then it can be shown
that such concept as vacuum has no place since
space itself cannot exist in such circumstances. To
show this, tidal motion in vacuo must be considered.

In the traditional atomistic view, tidal acceleration
created by a source may be defined by derivatives
@a=@j i, i ¼ 1! 3. Using equation (19), this can be
represented in terms of the potential as @a=@j i ¼

@2w=@j i@j j, i, j ¼ 1! 3, yielding a 3�3 matrix for
r2w. At the origin of the source, r2w ¼ 0 for i = j.
Thus, only the diagonal terms have a finite value.
Now, using the Newtonian gravitational potential, it
is simple to show that r2w ¼ 0 (the Laplacian of the
potential) at any location in space z ¼ ji, i ¼ 1! 3,
away from any source. This is, in fact, the vacuum
field equation. In the closed field view of space, the
analysis has to be extended to the case of a distri-
bution of matter in order to remain in line with the
space–matter field. In this case, r2w ¼ r†rw ¼ r†a
(using equation (21)). Note that the product r†r ¼

r2 is defined as the inner product of the vector differ-
ential operator, thus, r† a is the divergence of a.
Hence, empty space can be defined as the place,
where the average tidal acceleration is given by
r†a ¼ r†rw ¼ c2r†r2s ¼ c2r3s ¼ 0, when the con-
stancy of speed of light is upheld. Because c = 0,
then r3s ¼ 0, or the Laplacian r2s is finite. This
means that passage of light creates the space,
which otherwise will have a null content (see sub-
sequently). For the limiting case of the slope of
unity, this is regarded as the theoretical perfection
(completeness, (I 1, I 2) ¼ (1, 0), see section 5, and
also reference [11]). In special relativity, this con-
dition is designated the vacuo. In incompleteness,
such a space is only created by the passage of light.

This simple analysis qualifies the concept of vacuo,
where in this case, it is replaced by the notion of null
space: one containing no matter (where the sanctity
of inseparability of matter and space is thus upheld).
When matter enters a place, space is created, and
vice-versa, space must exist as a condition for the
presence of matter. Therefore, vacuum in its
traditional sense is not the same as the null space.
There is a noteworthy subtle difference here. In
relativity, the speed of light is constant in vacuo,
but in incompleteness, slope of unity remains
merely a theoretical perfection in a space where no
other matter but light can reside. It may then be sur-
mised that such defined null space is created by the
passage of light and ceases to exist without it. To
provide some theoretical basis for this, the relations
in the preceding paragraph can be investigated

again for the general case of the space–matter
field, where for rc = 0, rw ¼ vrc þ crv (see equa-
tions (18) and (20), and note that in general,
w ¼ cv). Now

r†a ¼ r†rw ¼ r†(vrc þ crv)

¼ vr2c þ cr2v ¼ 0 (24)

The obvious solution for this empty space, other than
for presence of light is v! c and r2v ¼ 2r2c, and
noting that jjr2cjj,0 indicates that rc must attain
its maximum value to reach the slope of unity. In
incompleteness, a space is created by this action of
light, whereas in special relativity, this location rep-
resents a form of vacuo.

The boost has now the form

Bv ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� (v2=c2)
p ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (1=c2){c(@s=@z)þ s(@s=@z)}2

p
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (1=c2){crsþ src}2

p (25)

The first term in the curly brackets is the restatement
of the special theory, where in vacuo, and in line with
the incompleteness theorem: rs ¼ 1. If the second
term in the curly bracket is ignored, then the singu-
larity in dilation time and the relativistic mass func-
tion would be reached. The second term, however,
small (and this will always be the case, except for
the case of a very strong gravitational field nearby,
such as a black hole) is finite, and close examination
shows that for proper determinism

rs , 1�
s

c
rc, rc , 0, s = 0 (26)

The first condition states that the slope of unity is
merely theoretical, as no other matter than light
should reside here. This is also qualified by the argu-
ments in the preceding section, where the maximum
value for

rc¼ 0: rs! 1 and w! c2 (v! c) (27)

One can surmise that in the absence of matter and
any gravitational field, the value of s! 1. Astronom-
ical observations do not support this. However, they
show large areas of empty space, presumed to be
occupied by the so-called grey matter. Speculation
should not be favoured, but an equally valid postu-
late to that of the presence of grey matter can be
put forward here, as follows. The Sun’s gravitational
potential in the vicinity of the Earth is ��8:85�
108 m2=s2 and declines within the solar system to
21.84�107 m2/s2 in the vicinity of Pluto at its furthest
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orbital position (the negative signs indicate the
attractive nature of the gravitational potential).
Note that the potential in light propagation in slope
of unity, creating space is w¼ c2¼ 9�1016 m2=s2,
which is much larger than the gravitational potential
to bring the matter together, even near a star thou-
sands of times larger than our Sun. Therefore, it
may be surmised that wherever the speed of light
exceeds that governed by a nearby gravitational
field, expansive (or dispersive) action will take place
in the space. The creation of this space will push
the galaxies apart, as indeed observed by the astron-
omers. Whether other matter can enter this domain
is a question of conjecture. It should be noted that
the quantity cs, described in section 6, will assume
a very large value, and breaching the required poten-
tial to enter this domain appears to be foreboding.
Inferring from Einstein’s analogy of the fabric of
space–time as a warped sheet due to the action of
potential fields, a field such as that proposed here
is likely to stretch it beyond endurance. Therefore,
the alternative proposal to large areas of grey matter
may be tears in the fabric of space. As the light nears
any significant gravitational field rc , 0, and its dis-
persive potential attenuates. This is the reason for
the second condition in equation (26), which also
further underpins the first stated condition.

Another extreme condition is when rs! 0 and
(s2=c2)(rc)2 ! 1. Thus, rc=c! 1=s, which is the
limiting case in the first condition in equation (26).
The ratio rc=c is the curvature of a ray of light, as
shown in the next paragraph (note that it is a nega-
tive quantity). Therefore, in this limiting case (using
equation (30)) ru! 1=s. Note from equation (1)
that ru ¼ Du=Ds ¼ 1=R. Therefore, this limiting con-
dition points to a place, where the curvature of a
ray of light adheres completely to the curvature of
space, and with rs! 0, s ¼ R! 0 (and both being
negative), which is presumably determined by a
very strong gravitational field. Now using the general
case of the space–matter field potential for this case

w¼ cv¼ c(crsþ src)¼ c2rsþ csrc

! csrc¼ c2s
rc

c
¼ c2s �

1

s

� �
¼�c2jrs!0 (28)

It can be observed that the space–matter field poten-
tial has an attractive nature under this condition.
Equations (27) and (28) specify the bounds of the
described potential, �c2 ,w, c2. At the upper
limit, uncontrolled dispersion occurs in the con-
verted null space created by the passage of light
alone. At the lower bound, the curve of space
diminishes. This is interpreted as a singular point
with infinite matter. However, at the very limit of
potential attaining its lower bound, space cannot
exist as shown in equation (28). Thus,

electromagnetic radiation from such a location
must inhibit this condition to arise. This suggests
that blackholes should radiate energy, which con-
forms to recent observations by Integral, ESA’s
gamma ray observatory [13], which has shown that
black holes at the centre of each galaxy, such as the
Sagittarius A-star at the centre of Milky Way act like
cosmic vacuum cleaners, drawing in gas and matter
trapped due to their large gravitational pull. The
matter is then crushed and heated until outward
bursts of X-rays and gamma rays take place.

Using equation (28) to represent the boost in terms
of the potential w, the second term in the radical
becomes. (1=c2){crs þ src}2 ¼ (1=c2){w=c}2 ¼ {w=c2}2,
and the bounded potential (justified by the earlier dis-
cussion) prohibits the attainment of singularity at
either of the extreme cases described here. All other
phenomena fall in between the two extremes described
earlier, for all of which the term in the curly brackets in
equation (25) conforms to the conditions in equation
(26). Thus, the singularity is removed from the
Lorentzian boost function. All that now remains to be
addressed is to define mass within the closed loop
space–matter field interpretation.

Light propagates in space as a series of wavefronts.
Owing to the wave-particle duality interpretation put
on the propagating nature of light, its rays are con-
sidered as paths described by photons of light, and
remain orthogonal to the wavefronts at any given
location in the field. By virtue of the principle of
incompleteness everywhere in ordinary space the
wavefronts are curved, and thus the speed of light
must alter from point to point within the field, even
though this may be by an inappreciable amount.
This argument is in line with the general theory of
relativity and also the Huygens’ principle [14].
Furthermore, referring to the foregone arguments,
it is clear that the speed of light will alter in all such
ordinary spaces (spaces other than the defined null
space to replace notions of vacuo or empty space).
This is true, because the variation of speed of light
in gravitational fields and in passage through differ-
ent media is now well established. Two very proxi-
mate locations, z1 and z1 þ Dz on a current
wavefront can be considered. The new position of
this front is considered at the short interval of Dt,
as shown in Fig. 3. The speed of light is considered
to be different at these locations according to the
Huygens’ principle and the corresponding rays of
light are shown in the figure. Therefore, the front is
slanted (not parallel) with respect to its preceding
position. This being the case, there is a small angle
between the rays of light from these very proximate
locations (i.e. Du). Thus

Du � sin Du ¼
c(z1)Dt � c(z1 þ Dz )Dt

Dz
(29)
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The initial wavefront is taken as a straight line, corre-
sponding to the theoretical limit of rs! 1, indi-
cating that the rays of light are in transition to an
ordinary field. The overall spatial coordinate is z ¼

j i, i ¼ 1! 3 and as shown in section 2 in the limit-
ing case Dt ! (1=c)Dz. It follows from equation (27)
that in the limit, c(du=dz) ¼ �dc=dz, or

ru ¼ �
rc

c
(30)

Note that the motion of rays of light in all ordinary
spaces (other than the described null space) is dece-
lerative in nature.

10 INTERPRETATION OF MASS IN THE
CLOSED SPACE–MATTER FIELD

With the singularity removed from the Lorentzian
boost function for all matter, the relativistic nature
of mass in equation (10) can be retained with the
new description of the boost given in the previous
section. However, two problems remain. First, a
definition is required for the rest mass and second,
the atomistic nature of mass should also be aban-
doned to sit comfortably within the closed loop
space–matter field concept.

Because no place in relativistic space–time and
within incompleteness is regarded as static, it is
clear that the concept of rest mass is merely retained
as a mathematical convenience and has no physical
meaning or reason. Returning to equation (25), it is
clear that for the boost to attain a value of unity

rs

s
¼
rc

c
, rc , 0 (31)

The second condition mentioned earlier has been
justified in the previous sections. The first condi-
tion states that the curvature of motion at a given
location is the same as that of the bending of light
rays. Wherever this condition holds, the mass of the
object and that regarded as its rest mass are one

and the same. Clearly, the curvatures in equation
(31) are in the same field, induced by the divergence
r† a, where by the virtue of Mach’s principle the
acceleration is due to the presence of all the matter
in the field. For the condition given in equation
(31), a balance is found between the light propa-
gation field potential and the gravitational field of
matter within the field. For this condition

w ¼ c2rs ¼ c2s
rc

c

� �
(32)

Noting that the Sun accounts for �99 per cent of all
matter in the solar system, this equality was used in
section 8. Here, it can be noted that equation (23)
with the use of the earlier mentioned relationship
yields

M ¼
c2sr

G

rc

c

����
���� (33)

This relationship provides an atomistic estimate of
mass of a closed space–matter field system as deter-
mined from a specific location within the field, where
the balance described in equation (31) can be
assumed. Here, Bv ¼ 1, M ¼ m. Because for most
fields Bv is close to unity, the concept of rest mass
assumes the same as the mass itself for them. All
parameters in equation (33) are measurable and
thus the concentrated equivalent mass of the field
can be determined. As regards the field interpret-
ation (or local mass within a given location in the
field), it is not necessary to be concerned at all with
this, as shown in the following paragraph.

Like D’Alembert, Mach could not accept the
atomistic concept of mass as an intrinsic property
of matter [15]. In Mach’s interpretation, mass of
an object is the result of its many interactions with
other surrounding matter. This is a relativistic
interpretation, except that, for one thing, it was con-
ceived before the theory of relativity and for another,
it requires a closed loop field interpretation, which is
not a necessary condition in relativity. However, it is
precisely in accord with the interpretation put
forward here. With Mach’s interpretation, as
expounded by Einstein

�m ¼
m1

m2
¼ C �F ¼ C

F1

F2
(34)

Now a location in space in such a closed field may be
assumed, where a body resides and the condition in
equation (31) holds true, and the same body in
another location within the same field, where this
condition is not upheld, then clearly the ratio:
�m = 1, and thus using Mach’s interpretation C / Bv

in equation (34). It is clear that it is not necessary
to be concerned about mass to describe the
conditions locally within the field, which is

Fig. 3 Bending of light rays
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completely defined by Bv and the field in equation
(24), where

a ¼ rw

r2w ¼ vr2c þ cr2v

where

v ¼ crs þ src (35)

Nevertheless, the earlier arguments suggest that
m/ 1=I1, and for I1 !+1, �m ¼ 1. Thus, one can
interpret rest mass as the maximum incompleteness.
At the other end of the scale, mass of matter tends to
nothing, as indeed is the case for photons of light and
nearly all elementary particles such as electrons,
where I1 ! 0 (i.e. absolute motion). Note that these
are measured with respect to the frame of obser-
vation (being universal in nature), and not with
respect to any particular observer. Mathematically

I1 ¼
@t

@t
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

w

c2

� �2
r

¼ 1�
1

2

w

c2

� �2

�
1

8

w

c2

� �4

� � � �

� �

w �! 0 I1 �! 1

w �!+c2 I1 �! 0 (36)

In this interpretation, incompleteness of motion
gives rise to a sense of discerning matter by a quan-
tity chosen to be called mass, which is an entirely
motion like property, described by the way matter
is compelled to move in order to remain on curva-
tures of space predefined by the presence of all
other matter and the local electromagnetic potential
of light there. Therefore, elsewhere (other than for
conditions in equation (36): rw = 0. The curvatures
of space are defined by the incompleteness, I2 (see
section 6), where in general

I2 ¼
rc

c
þ
rv

v

� �
¼

a

cv
(I1)2 ¼

rw

w
(37)

The ratio rw=w is the curvature of the local potential
field. For uniform motion of matter I2 ¼ 0, which
relates to absolute rest or absolute motion only. It
shows that for the former condition in equation
(36) krv=vk ¼ krc=ck, rc , 0, which means that
the curvature of motion of matter at such locations
is the same as the curvature of light and electro-
magnetic radiation. This suggests w! 0 from
equation (36) (an equilibrium between dispersive
electromagnetic and local gravitational potentials).
These are locations, which demarcate the boundary
between electromagnetic radiation and gravitational
implosion, such as near the surface of the Sun. This
condition is the general case of that described in sec-
tion 9, where by virtue of equation (28), w!�c2,
where absolute rest can only theoretically exist.

Thus, for w . 0, the curvature of the field is positive
and all objects are in a propagating field (increasing
kinetic energy). Conversely, for w , 0 there is an
increasing stored potential, which is due to gravita-
tion (an increasing mass).

When I2
= 0, non-uniform motions (rw = 0) take

place on curvatures created by the presence of a con-
glomerate of matter. If curvature of space with an
incompleteness I2 ¼ 0 is thought of as a massless
taut rope, then any ordinary curved space, given by
equation (37), is as a result of a conglomerate of
matter, which may be regarded as mass. Then, I2

= 0
provides the curvature or sagging of the rope. This
interpretation indicates that

m/
1

I1I2
¼

1

I1

w

rw
(38)

which indicates that mass is a form of local stretch-
ing of the rope (note that 1=I2 is the radius of curva-
ture of the potential field, and 1=I1 ¼ Bv describes the
local kinematic conditions). Thus, this is a geometric
extension of the space–matter field, a notion which
was paradoxically first introduced by Descartes
[16]. Now using Einstein’s famous equation
E ¼ mc2, and noting that w!+c2 in the limiting
cases described earlier, it is clear that mass can be
interpreted as

m ¼
1

I1

1

rw
¼

Bv

rw
¼

1

rw
1þ

1

2

w

c2

� �2

þ � � �

� �

¼
1

rw
1þ

1

2

v

c

� �2

þ � � �

� �
(39)

This can become the definition for the local mass,
which has the unit of s2=m: the rate of sagging of
the curve, which may be expressed in kilogram.
Using Einstein’s equation

EI1 rw

w
¼ 1 (40)

With m given by equation (39), one would arrive at
Einstein’s equation with w! c2. It should be noted
that, in general, w ¼ cv, unless all mass is converted
to pure energy. With net gravitational implosion
w , 0, indicating that some of the energy is con-
verted into mass. This would be very small unless
kvk ! c, v , 0, and in the extreme case, w!�c2

means that all energy is converted to mass. These
two extreme conditions are unattainable as
described earlier. It is also clear that for energy–
mass balance to hold

I2� ¼ kI2 jw,0 k¼ kI
2 jw.0 k¼ I2þ

I2�� I2þ
= 0:rw��rwþ= 0

I1 . 0 for v!+c (41)
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Thus, the imploding matter towards a negative
potential (i.e. gravitational) should undergo fusion,
and the energy released would propagate electro-
magnetically with a net positive potential. Thus, the
extreme case of w!�c2 cannot be reached, since
the converted null space, described in section 9
necessitates rs = 0. The value of rc¼ 0 is also
unattainable, and energy will convert to mass
immediately that such a space is created (meaning
that the limit w! c2 is also theoretical). Therefore,
black holes should radiate electromagnetic energy
in planes orthogonal to the curvature of their event
horizon, as indeed observed [13].

It is more natural in the analogy of the taut mass-
less rope put forward above to use an equality in
equation (38) to define mass, which would now
retain the form m ¼ (1=I1)(w=rw), which is purely
geometrical and has the conventional unit of metre,
in which case E ¼ m.

It is clear that Newton’s second axiom can also
be put in geometric form, using equations (20) and
(39) as

(I1)3F ¼ 1 (42)

As in the case of relativity, force has no dimensions.
One may represent it as F ¼ (1=I1rw)B2

vrw ¼

(a=I1rw) ¼ ma and with the earlier definition for
mass, it retains the usual unit of N.

Now referring back to Fig. 1 and noting that for
convenience the tangent AD may be regarded as
the slope of unity (the theoretical perfection), the
curved motions occur with respect to this slope. This
causes the sagging of the taut rope in the aforemen-
tioned analogy (note that the curve of motion is unli-
kely to be circular). BD is the subtense of the angle of
deviation from the slope of unity and is the versed
sine of the arc AB, shown as AC. The deviation BD
tends to AC in the limit, where clearly according to
section 10, rc! 0. By virtue of corollary IV in the
Principia [5], these displacements are caused by the
impulses acting at point B, and it is clear that
in the limit, here set as Dt ! 1=c, they will have a
continuous nature. These impulses are interpreted
as the centripetal force in the Principia, being equiv-
alent to the force F in equation (42). Because the
incompleteness is measured from the slope of
unity, where the converted space (mentioned earlier)
is void of resistance to electromagnetic motion, other
bodies are drawn away to undertake curvilinear
paths, described by I2. The ratio of motions of these
bodies to that on the slope of unity is the versed
sine of the arc AB, as described earlier. This means
that the ratio of intervals of local time to the time
of the stationary system should be given by
(I1)3 ¼ {1� (w=c2)2}3=2, which is precisely that in

equation (42). This, in fact, is the general case of a
particle/body in curvilinear orbital motion about a
massive body (relative to the particle itself ), subject
to a rectilinear motion due to the action of significant
external forces, in which the particle describes areas
along the orbit in equal times (i.e. all the observed
planetary motions). An important point to note is
the unified nature of equation (42), irrespective of
the form of potential w. It indicates that force is a
local interpretation of geometry of space as a devi-
ation from uniformity, or in other words, as an
incompleteness.

11 CONCLUDING REMARKS

The special theory of relativity declares the con-
stancy of speed of light in vacuo and the Galilean
principle of relativity both as laws of physics. To
limit the motion of all matter within the light cone,
and remain true to the principle of relativity, the
unbounded Galilean transformation was replaced
by the Lorentzian boost. The introduction of the
special theory of relativity had profound effect in
rationalization of many unnatural conclusions of
Newtonian physics at limiting conditions, a
number of which are referred to in section 3.
However, the use of the Lorentzian boost function,
together with the constancy of the speed of light
led to the retention of singular behaviour at limits
of motion. Einstein’s quest to extend the theory to
the case of accelerated motion in non-inertial
frames of reference led him to abandon his atomistic
view. Through the exposition of the special theory he
had unified the action of electromagnetic fields with
the atomistic nature of the classical physics. He was
struck by the views of Mach, and interpreted them in
the form of Mach’s principle, described in the pre-
vious section. This allowed him to develop a new
theory for gravity, finally leading to curved space–
time and motion in non-inertial frames of reference
(i.e. the general theory of relativity [17]). Einstein,
as a field theorist, favoured the description of
space–time in terms of action of weak gravitational
fields, and accepted the limitations of the law of con-
stancy of the speed of light. However, the retention of
the Lorentzian boost function kept the concept of
atomism at the heart of the special theory. This
emanated from his desire to describe all forms of
potential action by a unified theory for gravity. The
open loop nature of such a field, and the lack of an
explanation for observed dispersive action have left
the special theory open to some interpretations,
such as anamolous dispersion of accelerated pulses
of light. For one thing, the aforementioned singular
behaviour had remained. For another, the atomistic
nature of the special theory somewhat decouples it
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from the general theory through retention of some
(in the words of D’Alembert and interpretations
of Mach) imponderable quantities such as mass.
Furthermore, some opportunities may not have
been realized. For example, using the Galilean
principle of relativity (noting that there is no distinc-
tion between the states of absolute rest and
absolute motion) instantaneity was set as the time
of the stationary system, but this was not used to
replace the concept of time as the interaction of
light with space, which would necessitate its devi-
ation from that in vacuo. In this manner, time
would be implicit in the fabric of space, and mani-
fested by variations in speed of light at any position,
as indeed is observed as rays of light bend in travel-
ling through different media. This undertaking
necessitates the description of a closed loop space–
matter field, in accord with Mach’s principle, which
renders this principle the status of a law of physics.
The aforementioned field will then be bounded in
line with the light cone and behave as a dispersive
action in what is defined as a converted null space
to replace the concept of vacuo at one extreme, and
strongly attractive at the other extreme to accommo-
date very strong gravitational fields. In between, the
field is an amalgam of gravitating action of matter
and dispersive nature of electromagnetic potential
in the form of light. The behaviour of light in such
fields conforms to Huygens’ principle. These
additions, embodied in the principle of incomplete-
ness result from an interpretation of the special
theory and underpin the same to lead naturally to
the general theory as any theory for kinematics
should extend to the general case of dynamics.
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14 Huygens, C. H. R. Traité de la lumière, 1690 (Van der
Aa, Leiden).

15 Mach, E. Die Mechanik in ihrer Entwicklung: histerisch-
kritisch dagerstellt, 1883 (Brockhaus, Leipzig).

16 Descartes, R. Principia Philosophiae, 1644 (Elsevier,
Amsterdam).

17 Einstein, A. Die Grundlagen der allgemeinen Relativi-
tatstheorie. Ann. Phys., 1916, 49, 769–822.

APPENDIX

Notation

a acceleration
Bv Lorentzian boost
c speed of light
E energy
F force
G universal gravitational constant
I 1 first incompleteness ¼ Bv

21

I 2 second incompleteness
M source mass
m mass
R radius
r distance from source mass
s displacement or arc of motion
t time
v velocity

Dt increment of time
w potential
m rest mass
t local time
j i time coordinate, i ¼ 0
z ¼ j i spatial coordinates, i ¼ 1! 3
r gradient
r† divergence
r

2 Laplacian
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