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Abstract: The paper provides a solution for � nite line concentrated contact of a roller-to-race under
aligned and misaligned conditions. The lubricated contact conjunction is subject to an
elastohydrodynamic regime of lubrication under isothermal conditions. Of particular interest are the
edge stress discontinuities, represented by large secondary pressure spikes at the side constriction and to
the rear exit in the contact domain. These pressure ‘pips’ are considerably larger in magnitude than those
occurring in the central exit of the contact. The presence of pressure peaks inhibits the � ow of lubricant in
their vicinity, causing islands of minimum lubricant � lm thickness at the sides of the contact, referred to
as the end closure � lms. The paper shows that the � lm shape and pressure distribution at the extremities
of a � nite line contact are not revealed by the traditional line contact solutions usually undertaken. The
� ow pattern becomes more complex with roller misalignment and the edge effects described are
exacerbated. The paper provides the � rst ever solution of misaligned roller-to-race contact for moderate
to high loaded elastohydrodynamic conjunctions. The numerical predictions conform well with both
experimental and numerical � ndings of others for the cases where similar work has been reported.

Keywords: concentrated � nite line contact, elastohydrodynamic lubrication, aligned and misaligned
contacts

1 INTRODUCTION

Rolling element bearings are usually employed to
support rotating shafts and are often subjected to
combinations of radial and axial forces, as well as
moments. For example, when a shaft is supported by a
pair of non-self-aligning bearings at its ends, the
bearings generate reaction forces, induced by the shaft
de� ection. Under an ideal loading condition, where
misalignment of the shaft does not occur, the load
distribution on an aligned roller-to-race contact can be
obtained. Harris [1] postulated that when a roller
bearing is subjected to pure radial forces, the load is
evenly distributed along its effective length. However, in
practice, roller misalignment occurs and relationships
between the roller load, moment, de� ection and its
angular misalignment are required to solve the problem.

Gohar [2] provided a three-dimensional solution for
the elastostatic pressure distribution for a roller in a cold
rolling process. He used overlapping isoceles triangles of
equal base length to represent the elastostatic pressures
along the roller length and assumed an elliptical pressure
distribution in the transverse direction. Using the same
method, Heydari and Gohar [3] and Johns and Gohar
[4] obtained elastostatic pressure distributions and
corresponding footprint shapes for both aligned and
misaligned rollers in rolling element bearings under dry
contact conditions. In their solutions, a � exible shaft
supported by a number of rolling bearings was assumed
in order to yield a statically determinate system.

Rahnejat and Gohar [5] further extended the works in
references [3] and [4] for the case of tapered roller
bearings. Hartnett [6] used a similar method to that of
Rahnejat and Gohar [5] to analyse the elastostatic
pressure distribution in rolling elements-to-races con-
tacts under dry contact conditions. Other research
workers, e.g. Kannel [7] and Zantapulos [8], have also
reported similar methods for the evaluation of elasto-
static pressures and footprint shapes.

These studies showed the existence of high-pressure
regions at the contact extremities, caused by the
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discontinuous nature of the roller axial pro� le at its
ends. In order to reduce the edge stresses, rollers are
blended at their ends or along their lengths. High
pressures in the central region were � rst predicted in a
one-dimensional in� nite line contact elastohydrody-
namic conjunction between mating discs or meshing
teeth under a steady state entraining condition, for
example, by Dowson and Higginson [9] and experimen-
tally found by Niemann and Gartner [10]. Using the
optical interferometric method for a roller on a � at glass
disc contact, Wymer and Cameron [11] showed that the
absolute minimum lubricant � lm thickness forms on
either side of the contact (with respect to the direction of
entraining motion) and to the rear, towards the exit
constriction. The con� rmation for this was found by a
full two-dimensional solution for the elastohydrody-
namic � nite line conjunction by Mosto� and Gohar [12].
They found good agreement with the aforementioned
experimental results, as indeed did Park and Kim [13] in
a more recent numerical solution. Both of these � nite
line solutions used � nite differences to solve the
Reynolds equation, with heavy overrelaxation and the
use of Gaussian elimination. The latter provides a
slightly more re� ned solution in terms of computation
time, using a partial pivoting technique, which uses the
symmetric properties of the contact with respect to the
direction of entraining motion for aligned rollers.

The use of the Voghepol transformation and Gaus-
sian elimination meant that comparisons with experi-
mental � ndings could be carried out where the load and
entraining speeds were relatively low. Furthermore, such
solution methods did not lend themselves to the
investigation of misaligned roller conditions, particu-
larly where the loss of contact symmetry calls for an
increased mesh density, even with the use of irregular
mesh spacings, as in references [12] and [13]. Use of the
low relaxation effective in� uence Newton–Raphson
(EIN) method, together with the Gauss–Seidel iterative
procedure highlighted by Ehret et al. [14] and Jalali-
Vahid et al. [15] provides for more accurate, stable and
rapid solutions to the problem, with higher mesh
densities in addition.

Misalignment of a roller gives rise to combined
entraining with a tilting motion. The rigid-body squeeze
effect was included in the � nite line contact elastohy-
drodynamic analysis of mating discs by Rahnejat [16],
by extending the steady state solutions of reference [12]
to a quasi-static analysis for given ratios of the velocity
of a normal approach to that of the speed of entraining
motion. However, the effect of misalignment was
ignored, as well as the local contributions due to the
elastic squeeze � lm effect. This paper attempts to
overcome the shortcomings in the aforementioned
analyses, by providing solutions that are applicable for
a larger range of operating conditions, as well as
allowing comparison with previously reported experi-
mental � ndings.

2 METHOD OF FORMULATION

To predict the pressure distribution and the correspond-
ing lubricant � lm thickness, a simultaneous solution to
the Reynolds equation and the elastic � lm shape in the
conjunction formed by the contiguous bodies in contact
is needed.

2.1 Reynolds equation

The dimensionless form of the Reynolds equation for a
� nite line contact of a roller against a � at can be written
as
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where x denotes the direction of entraining motion.
Note that b is the half-width of the rectangular contact
as shown in F ig. 1. The ultimate term in the equation
can be simpli� ed as
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Since a quasi-static analysis is carried out, no � lm
history is available for the determination of the elastic
body squeeze � lm action as de� ned by the term
qh i, j qt. Therefore, this term is ignored in the analysis.

The bulk density of the � uid is assumed to remain
largely unaltered in a small interval of time, as the
pressure distribution remains the same under instanta-
neous quasi-static conditions, studied here. To solve the
Reynolds equation, isothermal conditions were assumed
and a rheological model was used to describe the
lubricant density and viscosity variations with pressure.

2.2 Lubricant viscosity

Roelands [17] derived an expression for the lubricant
viscosity variation with pressure for mineral oils under
isothermal conditions as

Z exp ln Z0 9 67 ¡1 1 PPh
§

Š 3

where 5 1610¡9, a constant with units of m2/N. It
must be noted that in the Roelands equation, the
lubricant viscosity is de� ned using three different
parameters [i.e. the atmospheric viscosity Z0 , the
asymptotic isoviscous pressures Piv as and the pres-
sure–viscosity index 0 67 ].
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2.3 Lubricant density

The variation in density of the lubricant with pressure is
de� ned by Dowson and Higginson [9] as

r 1
aPPh

1 bPPh
4

where a and b are constants, dependent upon the
properties of the � uid. The values used in the current
analysis are 5 83610¡10 and 1 68610¡9 respectively,
which are based on mineral oils.

2.4 The elastic � lm shape

When an analysis of a line contact is carried out, the axial
contact dimension is usually considered to be in� nite. The
reason behind this assumption is that under lubricated
conditions, the lubricant side � ow (i.e. the side leakage) is
ignored, thus making the problem one dimensional. This,
however, does not conform to practical situations, as no
element in contact has an in� nite dimension. Therefore,
the contact width, transverse to the � ow direction, is made
� nite. Since an equivalent system is used, where the roller
is considered to be in contact with a � at elastic half-space,
only the deformation of the elastic surface is considered.
Assuming the undeformed pro� le of the roller to be
parabolic, the lubricant � lm thickness at any location
within the contact domain can be expressed as (see F ig. 2)

Fig. 1 Hertzian pressure distribution for a � nite line contact

Fig. 2 Components de� ning the elastic � lm shape equation (5)
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h x , y h0 hgp x , y de x , y 5

As the roller is edge-blended in order to reduce edge
stress concentrations, the alteration in its axial unde-
formed pro®le must be taken into account when
evaluating hgp x , y (see Fig. 3).

By the principle of superposition, the total elastic
de� ection at node k , l can be formulated as [18]
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2
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Using parabolic lateral and axially blended undeformed

pro� les of the roller (see F ig. 3) and the non-
dimensionalizing equation (5), the elastic � lm shape
becomes

h x , y h0

x i, j ¡ g
§2

2
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£ 2

2R d
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b2

³ ´( )

de x , y

9

Note that z and g are coordinate shifts in the Y and X
directions respectively from the centre of the contact to
the origin of the computation domain for the descrip-
tion of the roller pro� le (see F ig. 1). The term in the
brace in equation (9) provides the blended end pro� le of
the roller (see Fig. 3), with the mid-region having a zero
pro� le. Symmetry is employed to set the pro� le at the
axial extremities.

2.5 Load balance

In non-dimensional form, the applied load is de� ned by
its Hertzian equivalent pressure distribution as

W
pPhbl

2
10

where l 2a. The normal load carried by the generated
elastohydrodynamic pressures over the contact area can
be de� ned as

W
…

A
PPh dxb dya 11

Fig. 3 Roller pro� le in the Y direction (axial) (Rd dub-off radius)
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Equating the above loads and after some simpli� cation,

W
…

A
P dx dy p 12

3 METHOD OF SOLUTION

3.1 Computation domain

Once the dimensions of the elastostatic footprint for a
particular load and geometry are calculated, a domain
that is generally larger than the contact area is identi� ed.
Assuming the entraining velocity vector uAV

1
2 u1

u2 to be in the X direction in F ig. 4, a regular mesh with
� nite nodal points is constructed over the rectangular
computational zone. As shown in � gure, the size of this
zone is such that it is about 4.5 to 5.0 times the
elastostatic footprint half-width in the inlet region of the
lubricated conjunction, and about 1.5 to 1.6 times that
at the outlet.

Along the axial length of the roller (i.e. in the Y
direction), the zone is extended at both sides to about
4–8 per cent of the elastostatic footprint half-length. The
percentage extension of the boundary can be varied to
obtain the best starting position of the pressure curve in

the axial direction. The dimensions shown in the � gure
correspond to approximate fully � ooded conditions. It
must be noted that if the entraining velocity is very high,
then the inlet boundary must be increased accordingly
to accommodate for the elongated inlet trail.

For the solution of the � nite line elastohydrodynamic
lubrication (EHL) problem, a grid of 64 elements in the
entraining direction and 162 elements in the axial
direction is employed. These can, however, be increased
to obtain a � ner mesh, which in turn may result in more
accurate solutions.

3.2 Solution of the Reynolds equation

The Reynolds equation is discretized at every node in
the computation domain and is rewritten in the
following form:

Xnx¡1

k 2

Xny¡1

l 2

£
J ij, kl DP k , l ¡f R

i, j 13

The left-hand side differentials form the Jacobian terms
qf J

i, j qP k, l and the right-hand term forms the
residual function f R in central difference discretization,
this being the Reynolds equation itself. The Jacobian
terms are given in backward differences. The residual

Fig. 4 Dimensions of the computational grid
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term is, therefore,

f R 1

2Dx2

rh
3

Z

Á !

i 1, j

rh
3

Z

Á !

i, j

2

4

3

5P i 1, j ¡
rh

3

Z

Á !

i 1, j

2
rh

3

Z

Á !

i, j

rh
3

Z

Á !

i¡1, j

2

4

3

5P i, j

8
<

:

rh
3

Z

Á !

i, j

rh
3

Z

Á !

i¡1, j

2

4

3

5P i¡1, j

9
=

;

b2

2Dy2a2

rh
3

Z

Á !

i, j 1

rh
3

Z

Á !

i, j

2

4

3

5P i, j 1

8
<

: ¡ rh
3

Z

Á !

i, j 1

2
rh

3

Z

Á !

i, j

rh
3

Z

Á !

i, j¡1

2

4

3

5P i, j

rh
3

Z

Á !

i, j

rh
3

Z

Á !

i, j¡1

2

4

3

5P i, j¡1

)
¡ 6

uAVZ0R 2

b3Ph

rh
§

i 1, j ¡ rh
§

i¡1, j

Dx

#

14

The Reynolds equation for the Jacobian terms is
discretized, using the same method as that given above,
except for the right-hand side of the equation, where the
Couette � ow terms are discretized, using the standard
backward differencing scheme in order to achieve a
better degree of numerical stability. Hence, the � ow
terms can be written as

12
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15

Therefore, the Reynolds equation for the evaluation of
the Jacobian term f J is similar to equation (14) with the
Couette term replaced by equation (15).

3.3 Boundary conditions

The boundary conditions employed are:

1. At the boundaries of the rectangular computational
zone the pressures are zero. Thus, for a mesh of 65 by
163,

P i, 1 P 65, j P i, 163 P 1, j 0

2. To avoid the generation of negative pressures in the
� uid � lm, at the cavitation boundary, the Reynolds
condition

P
qP

qx
qP

qy
0

is employed. Numerically, P 0 whenever the
pressure is negative.

3.4 Initial conditions

The pressure distribution inside the elastostatic foot-
print for a particular load is initially assumed to be

Hertzian, while outside this area the pressure equates to
zero.

3.5 Convergence criteria

Now the solution to equation (13) can be obtained,
using an error tolerance with the Newton–Raphson
method. If a solution obtained is within the limits of the
required tolerance, then the numerical procedure is
deemed to have converged. For the pressures to
converge, the following criterion is employed:

Pnx

i 1

Pny

j 1
Pn

i, j ¡ P0
i, j

­­­
­­­

Pnx

i 1

Pny

j 1
Pn

i, j

4 ErrP 16

where the error tolerance for the pressure ErrP 0 0001.
If convergence is not achieved, the pressures are

updated as

Pn
i, j P0

i, j lDP i, j 17

where l is the under-relaxation factor with the usual
range 0.1–1.0, depending on the type of problem at
hand. Similarly, for the load to reach a converged
solution, the criterion used is

W ¡ p
­­ ­­4 ErrW 18

Here, the error tolerance for load convergence ErrW is
set equal to 0.00005. If the load has not converged, then
the central � lm thickness is adjusted according to the
evaluated unbalanced load, using the following relation-
ship:

H n
0 H 0

0 h· W ¡ p 19

where h· is a damping coef� cient used to reduce the sharp
variations in the iterative values of the central oil-� lm
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thickness, and lies between 0.001 and 0.05. Hence, if the
evaluated load W is less than p, then the central � lm
thickness is further reduced.

4 MISALIGNED CONTACTS

A certain amount of axial misalignment of the rollers is
always known to exist in all applications of roller
bearings due to moment loading conditions [19]. This is
because, under equilibrium conditions, rolling element
bearings already undergo some pre-load once the
assembly is complete, either due to the static de� ection
of the shaft, resulting from the existing radial loads or
due to settling of machine foundation, as explained by
Johns [19]. Hence, the effect of misalignment should be
included when the shaft experiences high radial loads
under dynamic operating conditions.

An estimate of the maximum roller misalignment
angle of the bearing can be obtained assuming elasto-
static contacts. For zero radial clearance in a rolling
bearing having NR number of rollers and a total bearing
radial load Fr , the maximum load on the bottom roller is
given by Harris [20] as

W max
4 08Fr

NR
20

An approximate relationship between the roller load
and its de� ection has been obtained by Lundberg [21]
for the mutual approach of a � nite roller and an elastic
half-space as

d0 % 3 81
W 0 9

l0 8

2 1 ¡ v2

pE

µ ¶0 9

21

which, for a steel-on-steel contact, equates to the
following expression in Imperial units [21]:

d0 % 4 36610¡7 W 0 9

l0 8 22

Harris has approximated this expression to [20]

d0 Kq 23

where q W l
Assume, as an approximation, that the roller can be

considered as a series of laminae behaving indepen-
dently (i.e. under a plane strain condition); the
de� ection at any point along its length can be stated
as [4, 19]

de y d0 yy 24

Using the above equation, the following expression can
be obtained:

q y
1
K

d0 yy 25

The Harris theory can be used to determine the
misalignment angle for any roller by observing that
the moment load on any ith roller is given as

M i

…1 2

¡1 2
qiy dy 26

If ymax is the misalignment angle for the bottom roller,
using the above equations it follows that

M max
ymaxl3

12K
27

If now simple beam theory is used to represent a shaft
supported symmetrically by a pair of rolling element
bearings carrying a radial load of W sh , it follows that

Fr
W sh

2

M
W shL

8
¡ 2EI j
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28

For elastic rollers and races [4, 19],

ymax
j
2

29

The moment distribution for a rolling element bearing
with the top rollers being unloaded is given as

M
Xp 2

c ¡p 2

M i cos ci 30

where M i M max cos ci. Therefore, upon substitution,

M M max
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ci ¡p 2
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Using the above relations,
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² ±
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32

The left-hand term in the denominator of equation (32)
is the end-� xing moment supplied by the bearing. Had
the shaft been simply supported, Young’s modulus in
this term would have to be in� nite. The term on the
right-hand side of the denominator would then have
given the shaft end slope. Equation (32) also shows that
the misaligned bottom roller in a rolling element bearing
is able to supply very little angular stiffness and also has
a load tilt angle [4]. However, even this low angle can
cause a considerable increase in the maximum value of
the resulting EHL pressure distribution, as will be
shown below. With values of W max and ymax obtained by
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the above calculations and the geometry of the roller to
raceway contact being available, the elastohydrody-
namic pressure distribution and the corresponding
lubricant � lm thickness can be determined.

For a given misalignment angle, y, measured from
one end of the roller in the Y direction, the undeformed
geometrical pro� le of the roller in the new position can
be expressed as (see F ig. 5):

hgp y hgp y y i, j tan y 33

The primed term, representing the undeformed mis-
aligned pro� le in the above expression, replaces the
aligned roller pro� le in equation (5).

5 RESULTS AND DISCUSSION

The footprint shape for the � nite line contact of a roller
pressed into an elastic half-space has been found to be
like a dogbone (or a dumbell) shape by a number of
workers [3, 4, 7, 12, 13, 16, 19, 22, 23]. Under lubricated
conditions, the oil-� lm contour has a similar shape. A
guide contour map is shown in F ig. 6. This guide
contour is used to refer to the various results presented
in this section. The various cross-sections in the
direction of entraining motion and in the transverse
direction have been indicated on the � gure. The sections
1–1 and 3–3 are through the central contact domain in
the rolling and transverse directions, while the sections
2–2, 4–4 and 5–5 are through the side constriction (end
closure).

This approach, discussed in Section 4, was employed
by Johns and Gohar [4] to obtain the operating
conditions on the highest loaded roller with a maximum
misalignment angle (i.e. the bottom roller). In the
current analysis, pressure distribution and correspond-

ing � lm shape have been obtained under the same
conditions as used by Johns and Gohar [4] for a dry
elastostatic contact.

Fig. 5 Geometrical pro� le for the misaligned roller

Fig. 6 Guide contour for � nite line contacts
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Figure 7a shows two central pressure pro� les in the
transverse direction for an aligned roller with dub-off
edges, under a load of 2256N. It can be observed that
good agreement exists between both results. The

pressure over the central � at region is found to be
similar, with slightly reduced pressure spikes along this
central contacting region. As expected, the contact
length is extended slightly in the case of the lubricated

Fig. 7 (continued over)
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Fig. 7 (continued over)
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solution to include the side lobes. Figure 7b shows the
pressure isobars for the lubricated contact under the
elastohydrodynamic regime of lubrication. It can be
observed that the region of maximum pressures is at the
side constriction, indicated on the inset to the � gure,
which has been enlarged in the vicinity of the side
constriction. The maximum value of the pressure spike
has been obtained as 2.1 GPa at the side constriction
and in the region of the rear exit. Figure 7c illustrates the
pressure pro� le in the transverse direction through the
side constriction (section 4–4 of the guide contour). The
corresponding � lm thickness is also shown in the same
� gure. The minimum � lm thickness indicated along this
section is 1.02mm. The absolute minimum � lm thickness
is along a section to the rear of section 4–4 and
immediately prior to the exit constriction. Its value is
0.837mm, as shown in the oil-� lm contour of F ig. 7d.
The pressures are much lower here than those to the side
of this exit constriction. This absolute minimum � lm
thickness can be observed through section 5–5 in the
direction of entraining motion in F ig. 7e. The pressure
pro� le along this section is also shown in the same
� gure, having the highest pressure element in the contact
domain at 2.1 GPa. Returning to F ig. 7a, it should be
noted that the pressure spikes are much lower in value
(i.e. approximately 1.3 GPa). The lower values of

pressure and the correspondingly higher � lm thickness
values along the central sections, both in the entraining
and the lateral directions, when compared with the
corresponding values at the side and the rear constric-
tions, indicate that the one-dimensional solution of the
Reynolds equation in the case of roller to races, cam
to follower or gear meshing teeth is inappropriate.
Such actions would lead to underestimation of the
value of contact pressures and overestimation of the
value of � lm thickness. Therefore, neither fatigue life
nor wear performance of contacting members in such
concentrated contacts can be predicted accurately,
unless a three-dimensional � nite line analysis is carried
out.

Figure 8a shows an interferogram of the oil-� lm
contours by Wymer and Cameron [11] for a slender
taper roller bearing in contact with an optically � at glass
race under pure entraining motion. Taking the average
taper radius of 0.0041m, a simulation run was under-
taken for a cylindrical roller under the same operating
conditions. The oil-� lm thickness contour obtained
numerically is shown in F ig. 8b. A good qualitative
comparison is observed between the numerical predic-
tions and the experimental � ndings, although a quanti-
tative comparison is inappropriate as the roller
geometry only approximates the taper roller bearing

Fig. 7 (a) Central pressure pro� les along section 3–3. (b) Pressure isobars for the lubricated contact
(dimensional). (c) Axial pressure and corresponding � lm pro� les along section 4–4. (d) Oil-� lm
contour for the lubricated contact. (e) Pressure and corresponding � lm pro� les along section 5–5
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Fig. 8 (a) Interferogram by Wymer and Cameron [11]. (b) Oil-� lm contour obtained numerically. (c) Oil-� lm
contour by Park and Kim [13]. (d) Pressure isobar for the Wymer and Cameron condition. (e) Pressure
isobar by Park and Kim for the Wymer and Cameron condition
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used in the experiment. Park and Kim [13] have also
provided a qualitative comparison with the same
experimental results. Their oil-� lm contour is also
shown in the same � gure (F ig. 8c). Good agreement
can be seen between all these � ndings. However, Park
and Kim [13] have employed a computational grid of
56624 elements, with the latter in the axial direction
having irregular spacing according to an arithmetic
progression, similar to that originally employed by
Mosto� and Gohar [12]. In the present analysis, a
regular mesh of 846162 elements has been employed.
The pressure isobars obtained here and by Park and
Kim [13] for the aforementioned conditions are shown
in F igs 8d and e.

Another comparison is made with the experimental
work of Wymer and Cameron [11], this time at a higher
speed of entraining motion at 4 m/s. F igures 9a and b
show the experimental interferogram and the corre-
sponding numerically obtained oil-� lm contours respec-
tively. Good agreement is again observed under these
conditions. Wymer and Cameron [11] have in fact
carried out extensive measurements of lubricant � lm
thickness for various values of entraining motion for
blended and unblended rollers. F igure 10a shows a
comparison of the current numerical predictions with
their experimental results, represented by their extra-

polated oil-� lm thickness equation found by regres-
sional analysis of their results. In this � gure, the
numerical predictions given by Dowson and Higginson
[9] extrapolated the oil-� lm thickness equation and these
for a � nite line contact given by Mosto� [23] have also
been plotted. Good agreement is observed between all
these � ndings. The power index for the variation of
central � lm thickness with U* is between 0.64 and 0.67.
F igure 10b shows the same comparison for the mini-
mum exit � lm thickness in the direction of entraining
motion and along the section 1–1 in the guide contour.
Very good agreement is obtained between the numerical
predictions here and the extrapolated oil-� lm thickness
equation of Dowson and Higginson [9] for the minimum
exit � lm. Wymer and Cameron’s [11] obtained minimum
exit � lm thickness formulae predicts thinner � lms, but
with the same slope of variation with U*, this being
approximately 0.7. The absolute minimum � lm thick-
ness occurs in the end closure region to the side and the
rear of the exit, as previously discussed. This should be
the determining factor in the wear performance of the
concentrated � nite line contact.

Johns and Gohar [4] have shown that, in practice,
under the loading condition described in Section 4, the
bottom roller in a roller bearing is in fact subjected
to a combination of compressive and moment loads,

Fig. 9 (a) Interferogram by Wymer and Cameron [11] for high entraining speeds. (b) Oil-� lm contour
obtained numerically
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Fig. 10 (a) Variation of central � lm thickness with U . (b) Variation of minimum exit � lm thickness with U
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resulting in a misalignment. F igure 11a shows the two
central transverse pressure pro� les for the same condi-
tions as in Fig. 7a, but with a misalignment of angle 0.058.
One of the pressure pro� les is taken from Johns and

Gohar [4] under elastostatic dry conditions, while the
other is under the lubricated condition obtained in this
analysis. Again, a close conformance is observed. The
lubricated pressure pro� le in this � gure is again shown in

Fig. 11 (continued over)
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F ig. 11b together with the corresponding central trans-
verse section’s oil-� lm shape. Comparing the minimum
� lm thickness regions at the sides of the contact along

this section with those of the aligned roller in F ig. 7c, it
can be observed that the minimum � lm thickness at
the loaded (i.e. tilted) end is hardly altered. In fact, the

Fig. 11 (continued over)
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oil-� lm thickness is mainly affected in the side constric-
tion and in the exit region by the effect of misalignment.
This fact is observed later on. The pressure pro� le
through the side constriction (along section 4–4 in the
guide contour) is shown in F ig. 11c. Due to the large
misalignment, the pressure pro� le has become grossly
asymmetrical, with large pressures generated only in the
tilted direction. The maximum pressures have nearly
reached a value of 3 GPa. These represent the severe

conditions due to moment loading. The pressure spikes
under such conditions converge to form a narrow region
of high pressure, as shown by the twin peaks in the
� gure. The same � gure shows the corresponding � lm
thickness with a minimum value of 0.943 mm. Compar-
ing this � gure with that for the aligned roller (F ig. 7c),
it can be noted that the minimum � lm thickness along
this section has decreased in the tilted direction by
approximately 9 per cent, while in the unloaded end of

Fig. 11 (continued over)
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the roller, the gap has increased by approximately 28
per cent. The two-dimensional pressure cuts and the
corresponding oil-� lm shapes in the direction of
entraining motion through the centre of contact at the
tilted end and at the other (lifted) end are shown in
F ig. 11d. The absolute minimum oil-� lm thickness in the
side constriction and at the rear of the contact in this

� gure is 0.455 mm. Note that the results in F ig. 11c are
not through the corresponding absolute minimum � lm,
but through a close-by section capturing the maximum
pressure spike in the contact domain. Figure 11e shows
the complete oil-� lm contour. The minimum oil-� lm
thickness occurs in the tilted loaded region to the side
and the rear of the contact (these are shown by the

Fig. 11 (a) Central pressure pro� les for the tilted roller along section 3–3. (b) Central pressure and
corresponding � lm pro� les along section 3–3. (c) Axial pressure and corresponding � lm pro� les for
the tilted roller along section 4–4. (d) Corresponding pressure and � lm pro� les for the tilted roller at
lifted, tilted and central points. (e) Oil-� lm contours for the misaligned roller (complete contours,
tilted and lifted ends). (f) Oil-� ow patterns for the roller aligned and misaligned ends
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islands of minimum oil-� lm thickness in the � gure).
Note that the minimum oil-� lm thickness of 0.455 mm
occurs in the side constriction region of the tilted end
and in the vicinity of the rear exit.

A good comparison between the aligned and mis-
aligned contact conditions can be observed by the
lubricant � ow pattern through the contact. Figure 11f
shows the � ow pattern through the contact under an
aligned roller contact with an applied load of 2256.6N
and the speed of entraining motion of 10 m/s. The � ow
pattern is obtained at each location in the computa-
tional zone as
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where Qx is the non-dimensional � ow in the direction of
entraining motion and is given by
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and Qy is the side � ow in the axial direction (along the
length of the roller) and is due to the pressure gradient
only:
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A feature of the elastohydrodynamic regime of lubrica-
tion is the � at � lm shape in the contact domain. This is
corroborated by the low values of Q in the � gure. The
lubricant entrainment in the contact region has a much
lower � owrate than that on the shoulders of the contact,
shown in the � gure by the arrows that indicate roller
ends. The lubricant takes the path of least resistance.
This means that the high pressures on the exit side and
to the sides of the contact inhibit the inward � ow of
lubricant, which is induced by the entraining action.
Therefore, � uid � ow near these high-pressure regions
has a swirl characteristic, as can be seen in the � gure.
These � ow patterns give rise to the islands of minimum
side constriction � lms that were observed in the oil-� lm
contours of F ig. 11e. For the misaligned contact the
asymmetry of pressure distribution disrupts the regular
� ow pattern. Many smaller swirl � ow patterns emerge to
the sides and rear exit of the contact domain, owing to
the multiplicity of pressure peaks. Mosto� and Gohar
[12] have referred to the generation of secondary
pressure peaks as being possibly the result of an inward
diffusion of lubricant due to Poiseuille � ow into these
regions. This would explain the higher elastohydrody-
namic pressure spikes in these regions than those
predicted under dry elastostatic conditions. The results
shown in F ig. 11f give ‘some’ credence to their
observations.

6 CONCLUSIONS

The results show that the prevailing conditions at the
contact extremities and in the direction transverse to
that of entraining motion often represent the most
severe cases, both in terms of generated pressures and
lubricant � lm thickness. The pressure spikes clearly
cause secondary subsurface stress � elds, as shown by
Johns-Rahnejat and Gohar [25], thus inducing fatigue
spalls. The corresponding absolute minimum � lm
thickness occurs in the vicinity of the pressure spikes
and would be the deciding factor for the onset of wear.
Thus, the justi� cation for a � nite line contact solution
for the case of roller-to-race and cam-and-follower pairs
is evident.

REFERENCES

1 Harris, T. A. The effect of misalignment on the fatigue life
of cylindrical roller bearings having crowned rolling
members. Trans. ASM E, J. Lubric. Technol., 1969, 91.

2 Gohar, R. A numerical method for obtaining the deformed
shape of the roll in the cold rolling process. Proc. Instn
M ech. Engrs, Part C, Journal of M echanical Engineering
Science, 1974, 16.

3 Heydari, M. and Gohar, R. Pressure distribution on
radially loaded rollers. Proc. Instn M ech. Engrs, Part C,
Journal of M echanical Engineering Science, 1979, 16.

4 Johns, P. M. and Gohar, R. Roller bearings under radial
and eccentric loads. Tribology Int., June 1981, 13.

5 Rahnejat, H. and Gohar, R. Design of pro� led tapered
roller bearing. Tribology Int., December 1979, 11.

6 Hartnett, M. The analysis of contact stresses in rolling
element bearings. Trans. ASM E, J. Lubric. Technol., 1979,
101.

7 Kannel, J. W. Comparison between predicted and mea-
sured axial pressure distribution between cylinders. Trans.
ASM E, J. Lubric. Technol., 1974, 96.

8 Zantapulos, H. The effect of misalignment on the fatigue
life of tapered roller bearings. Trans. ASM E, J. Lubric.
Technol., April 1972, 94.

9 Dowson, D. and Higginson, G. R. Elastohydrodynamic
Lubrication, 1966 (Pergamon Press, New York).

10 Niemann, G. and Gartner, F. Distribution of hydrodynamic
pressure on counterformal line contacts. Trans. ASLE,
1965, 8(3).

11 Wymer, D. G. and Cameron, A. EHL lubrication of a line
contact. Part 1: optical analysis of a roller bearing. Proc.
Instn M ech. Engrs, 1973–4, paper 18, 188.

12 Mosto� , A. and Gohar, R. Elastohydrodynamic lubrication
of � nite line contacts. Trans. ASM E, J. Lubric. Technol.,
1983, 105, 598–604.

13 Park, T. J. and Kim, K. W. Elastohydrodynamic lubrica-
tion of a � nite line contact. W ear (Elsevier Science), 1998,
223, 102–109.

14 Ehret, P., Dowson, D., Taylor, C. M. and Wang, D.
Analysis of isothermal elastohydrodynamic point contacts
lubricated by Newtonian � uids using multigrid methods.

CONTACTS OF ROLLERS TO RACES IN ELASTOHYDRODYNAMIC FINITE LINE CONJUNCTIONS 1069

C02902 # IMechE 2002 Proc Instn Mech Engrs Vol 216 Part C: J Mechanical Engineering Science



Proc. Instn M ech. Engrs, Part C, Journal of M echanical
Engineering Science, 1997, 211(C7), 493–508.

15 Jalali-Vahid, D., Rahnejat, H., Gohar, R. and Jin, Z. M.
Prediction of oil � lm thickness and shape in elliptical point
contacts under combined rolling and sliding motion. Proc.
Instn M ech. Engrs, Part J, Journal of Engineering
Tribology, 2000, 214(J5), 427–437.

16 Rahnejat, H. In� uence of vibration on oil � lm in
concentrated contacts. PhD thesis, Imperial College of
Science and Technology, University of London, 1984.

17 Roelands, C. J. A. Correlation aspects of viscosity–
temperature–pressure relationship of lubricating oils. PhD
thesis, Delft University of Technology, The Netherlands,
1966.

18 Johnson, K. L. Contact M echanics, 1985 (Cambridge
University Press).

19 Johns, P. M. The design of cylindrical rollers for use in
shaft and bearing systems. MSc thesis, Imperial College of
Science and Technology, University of London, 1978.

20 Harris, T. A. Rolling Bearing Analysis, 1966 (John Wiley,
New York).

21 Lundberg, G. Elastic contact between two semi-in� nite
bodies. Forschung auf dem Gebieto des Engenieuswesens,
1961, 10(5), 165–174.

22 Moyer, C. A. and Neifert, H. R. A � rst order solution for
the stress concentration present at the end of roller contact.
ASLE Trans., 1963, 6, 324–336.

23 Mosto� , A. Oil � lm thickness and pressure distribution in
elastohydrodynamic elliptical contacts. PhD thesis, Imper-
ial College of Science and Technology, University of
London, 1981.

24 Grubin, A. N. and Vinogradova, I. E. Investigation of
Scienti� c and Industrial Research, Book 30, 1949 (Central
Scienti� c Research Institute for Technology and Mechan-
ical Engineering, Moscow).

25 Johns-Rahnejat, P. M. and Gohar, R. Point contact
elastohydrodynamic pressure distribution and sub-surface
stress � eld. In Tri-Annual Conference on M ulti-Body
Dynamics: M onitoring and Simulation Techniques (Eds H.
Rahnejat and R. Whalley), 1997 (Mechanical Engineering
Publications, London).

M KUSHWAHA, H RAHNEJAT AND R GOHAR1070

Proc Instn Mech Engrs Vol 216 Part C: J Mechanical Engineering Science C02902 # IMechE 2002


