

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288387711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Augmented Attack Tree Modeling of SQL Injection Attacks

Jie Wang, Raphael C.-W. Phan, John N. Whitley and David J. Parish
High Speed Networks Research Group

Department of Electronic and Electrical Engineering,
Loughborough University, LE11 3TU, UK

Email: {J.Wang3, R.Phan, J.N.Whitley, D.J.Parish}@lboro.ac.uk

Abstract—The SQL injection attacks (SQLIAs) vulnerability is
extremely widespread and poses a serious security threat to
web applications with built-in access to databases. The SQLIA
adversary intelligently exploits the SQL statement parsing
operation by web servers via specially constructed SQL
statements that subtly lead to non-explicit executions or
modifications of corresponding database tables. In this paper,
we present a formal and methodical way of modeling SQLIAs
by way of augmented attack trees. This modeling explicitly
captures the particular subtle incidents triggered by SQLIA
adversaries and corresponding state transitions. To the best of
our knowledge, this is the first known attack tree modelling of
SQL injection attacks.

Keywords-Augmented Attack Tree; SQL Injection Attack;
Modelling

I. INTRODUCTION
Since web applications have become one of the most

important communication channels between service
providers and clients, more script kiddies and sophisticated
hackers target victims either for fun, commercial reasons or
personal gain. The increasing frequency and complexity of
web based attacks has raised awareness of web application
administrators of the need to effectively protect their web
applications. The OWASP 2010 report places Injection
Attacks, including SQLIAs, as the most likely and damaging
[9]. SQLIAs are caused by attackers inserting a malicious
SQL query into the web application to manipulate data, or
even to gain access to the back-end database. The main
reason contributing to the successful SQLIAs is due to bad
web application design and implementation. In design and
development phase, SQLIAs can be prevented by some
adherence to guidelines including: validation of inputs before
passing them to the database; the use of safe SQL statements
for data access; and providing no error messages [4].

In assessing the risk of a web based system against
SQLIAs and in facilitating detection of such intrusions, there
is a need to properly model SQLIAs especially the subtly
constructed SQL statements.

In this paper, we model SQLIAs with the Augmented
Attack Tree (AAT) [6]–[8] technique and furthermore
propose regular expressions as a solution to generically
capture the subtle SQLIA-constructed statements. Attack
trees describe attacks toward a system as a construction of
atomic attacks modelled as states that an attack must go
through to achieve success [2]. Such trees focus on the
analysis of measurable goals that can ultimately be translated
into specific tests against real-world implementations. While

conventional attack trees have been widely used [1]–[3], [5],
[10], they only concentrate on displaying the states of an
attack. We argue that for SQLIAs it is crucial to explicitly
model the transition process (edge of the attack tree) between
states as well, and therefore conventional attack trees cannot
provide sufficient information for analysis of SQLIAs. Our
SQLIA modeling based on the Augmented Attack Tree
allows to explicitly link regular expressions capturing
generic signatures to different types of SQLIAs.

The rest of this paper is organized as follows. Section 2
provides background information about SQLIAs and
describes the attack tree modeling techniques including the
conventional attack tree and augmented attack tree. Section 3
shows our proposed SQLIA modeling. Section 4 reviews the
related works. Finally in Section 5, conclusion and further
work are presented.

II. PRELIMINARIES
Wherever Times is specified, Times Roman or Times

New Roman may be used. If neither is available on your
word processor, please use the font closest in appearance to
Times. Avoid using bit-mapped fonts if possible. True-Type
1 or Open Type fonts are preferred. Please embed symbol
fonts, as well, for math, etc.

A. Background on SQL Injection Attacks
SQLIAs are command-injection attacks where the

attacker injects a malicious SQL query into back-end
database through web application interface. The back-end
database executes the system defined SQL statement with
injected SQL query, and sends the corresponding execution
results back to the attacker. The attacker could submit
malicious SQL commands directly to the back-end database
to extract confidential information or even obtain the root
privilege of database.

SQLIAs are classified into seven types: Tautologies;
Illegal/Logically Incorrect Queries; UNION Query; Piggy-
Backed Queries; Stored Procedures; Inference and Alternate
Encodings [13]. There are ten kinds of attack goals of
SQLIAs: identify injectable parameters; identify database
finger-prints; determine database schema; extract data; add
or modify data; perform denial of service; evade detection;
bypass authentication; execute remote commands; and
escalate privilege [13]. Any of the attack goals can be
achieved by any of the types, so there are a large
combination of attacks. _____________________________________

978-1-4244-5265-1/10/$26.00 ©2010 IEEE

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on August 05,2010 at 14:10:15 UTC from IEEE Xplore. Restrictions apply.

B. Attack Tree Modeling
1) Conventional Attack Trees. Attack trees were defined
to model threats against computer network sys- tems
[11]. According to varying attacks, attack trees provide a
formal, methodical way to describe the security of system.
The tree structure is utilized to represent attacks against a
system, with the root node representing the ultimate attack
goal and the branches representing ways to achieve the goal.
Two connection types, OR and AND, are used to connect
multiple child nodes with same parent node. OR means that
the goal can be reached if any one of the subgoals is reached,
whereas AND means that the goal can be reached only if
all of subgoals are reached.

Construction of an attack tree depends on the expertise
of the analyst. Any designing errors result in a flawed attack
tree and lead to incorrect analysis. An attack tree is built
from the attacker’s point of view, therefore, the attack tree
analyst must conceive as an attacker with infinite resources,
knowledge and skill [2].
2) Augmented Attack Tree. Augmented Attack Tree
(AAT) [6]–[8], [14] extended the conventional attack tree
by associating with each branch a sequence of malicious
operations that could have been used in the attack. The
formalization of AAT is stated as follows [7], [8]:
Definition 1. An augmented attack tree is a rooted labeled
tree given by AAT= <V, E, ε, Label, SIGu,v>, where

� V is the set of nodes in the tree representing
the different states of partial compromise or sub-
goals that an attacker needs to move through in order
to fully compromise a system. ν V is a special
node, distinguished from others, that forms the root
of the tree. It represents the ultimate goal of the
attacker, namely system compromise. The set V can
be partitioned into two subsets, leaf nodes and
internal nodes, such that

� leaf_nodes internal_nodes=V,
� leaf_nodes internal_nodes=Φ ;,
� ν internal nodes
� E ⊆ V×V constitutes the set of edges in the attack

tree. An edge <u,v> E defines an atomic attack
and represents the state transition from a child node
v to a parent node u, u, v V. An atomic attack is a
sequence of incidents. The edge <u, v> is said to be
“emergent from” v and “incident to” u.

� ε is a set of tuples of the form <v, decomposition>
such that

� ν internal nodes and
� decomposition [AND-decomposition, OR-

decomposition]
� Label is the name of the exploit associated with each

edge.
� SIGu,v is an attack signature which is defined as
� Definition 3 below.
� Definition 2. An incident-choice is a group of related

incidents, the occurrence of any one of which can

contribute towards the state transition in the attack
tree.

�
� Definition 3. An attack signature SIGu,v is a

sequence of incident-choices (incident-choice1,
incident-choice2, . . ., incident-choicen) such that
the sequence (incidenti,1, incidenti,2, . . . ,
incidentm,n) constitute an atomic attack.

� Modeling SQL Injection Attacks
� This section shows our modelling of SQLIAs with

AAT and regular expressions. Of the seven well
known SQLIA types [13], we model: Tautology
Query; Logically Incorrect Query; UNION Query;
Piggy-Backed Query; and Timing Inference Query.
We ignored to model Stored Procedures, Alternate
Encodings and Blind Injection Inference Query
because of the following: Stored Procedures
provides the functionality to consolidate and
centralize logic that was originally implemented in
applications. As such the content of a stored
procedure is not distinct from other SQLIA at- tacks,
so cannot be modeled separately. Alternate
Encodings provide different coding practices and is
used in conjunction with other SQL based attacks.
The attacker injects a Blind Injection Inference
Query mainly dependent on individual’s intuition
and experience without the assistant of database
feedback information. The injection contents are the
same as other SQLIA methods. Therefore, we focus
on modeling with above mentioned five types. In
this section, we first discuss the mechanism of
modeling. Then, we model each type of SQLIAs in
turn.

�
� Modeling Mechanism
� The modeling of SQLIA obeys the definition of

AAT. For lack of a better name, we term our
modeling result as Augmented SQL Injection Attack
Tree (ASQLIAT).

� Node. A node in ASQLIAT represents the state. The
child node represents the state during whole attack
procedure. The root node represents SQLIA as the
ultimate goal. Since the first step of computer
network attack is usually to identify the attack
object, we assume that the leaf node in all
branches is the state that the attacker found out the
targeted web application. There is a pair of brackets
containing the symbol to distinguish each node.
Those symbols indicate the parent node or child
node in signature.

Edge. An edge in ASQLIAT represents the state
transition from the child node to the parent node with a set of
incidents.

Incident. An incident in ASQLIAT represents either the
injection behavior or the web server execution behavior.

Label. A label in ASQLIAT represents the edge name.
Signature. An SQLIA signature is the related regular

expression that captures the SQL statement constructed by

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on August 05,2010 at 14:10:15 UTC from IEEE Xplore. Restrictions apply.

the SQLIA adversary to mount the particular type of SQL
injection attack. For clarity of illustration, we model the
signature with Perl’s regular expression style [12] (although
any regular expression syntax can be used w.l.o.g). Table 1
illustrates the elements of a modelled SQLIA signature and
corresponding expression symbols. It is important to note
that square brackets indicate the matching of any characters
inside them, round brackets indicate the matching of the
whole pattern inside them and plus mark indicates character
matching more than 1 time. In addition, we utilize a pair of
curly brackets to include a set of possible incidents or
signatures in each edge.

TABLE I. . ELEMENTS AND EXPRESSIONS OF SIGNATURE

Element Symbol

Alphanumeric \w
Comment Mark (\-\-)
Quotation Mark [’”]

Comparison Mark ([=<>]|[<>!]=)
Logical Keyword (OR)

Type (int|char|varchar)
Type Conversion Keyword (CONVERT|CAST)

SQL Keyword (SELECT|INSERT|UPDATE|DROP)
UNION Keyword (UNION | UNION ALL)
Delimiter Mark ;

Delay Tim \d+
 White Space \s

Bracket \c
Case Insensitive /i

Figure 1 illustrates the generated ASQLIAT. The leaf node,

i.e. Found Web Application denotes the state where the
adversary has found a particular attack target. Then, the
attacker performs some actions to explore suitable places to
inject command(s) into the database through web applica-
tions. Usually, the attacker injects the malicious command
through either any input forms on the web application or via
the URL header. Therefore, the transiting incidents along the
edge can be taken from the set {Web Page Form Access,
URL Header Access}; and upon successful execution of
either incident, the adversary progresses to the next state:
Found Injection Place. The expression below shows the
incidents and their corresponding signatures. In signature, 2
indicates the second state as parent node and 1 indicates the
first state as child node.

Incident {Web Page Form Access, URL Header Access}
SIG2,1 {SIGWeb , SIGURL }

C. Tautology Query
The Tautology Query attack injects a piece of malicious

code into one or more conditional statements so that they
always evaluate to true and generate the result according to
the evaluated true condition. Branch (1) in Figure 1
illustrates the generated Tautology Query in ASQLIAT. It is
clearly show that it contains four states and three edges. The
second edge which resides in between the state Found

Injection Place and Web Server Execute Tautology Query is
the Tautology Query Injection. For this kind of attack, the
most significant feature of injection content is containing
three key parts: OR; true condition; and comment mark. In
the generated signature, it must include those three parts. In
order to model and identify this attack is Tautology attack;
the attacker injected code should meet the defined signature,
which is shown as below,

Incident {Tautology Query Statement}
SIGT3, T2 {/[’”]\s+(OR)\s+\w+\s*([=<>]|[<>!]=)\s*\w+

\-\-/i}
When the state of Web Server Execute Tautology Query

happened, the only way to transit into SQLIA state is
through the edge Tautology Attack. There must be some
incidents to indicate the achieving of SQLIA. The set of is
{Bypass Authentication, Information Retrieval}. Once either
of the incidents happen, the attack state achieve.

Incident {Bypass Authentication, Information Retrieval}
SIGR, T3 {SIGBA , SIGIR }

D. Logically Incorrect Query
Logically Incorrect Query attack is the attacker intent to

obtain the error feedback message by injecting incorrect
command into the database. The database structure and type
information can be extracted according to the error message.
Branch (2) in Figure 1 displays the generated Logically
Incorrect Query branch in ASQLIAT. The labels of second
edge and third edge are Logically Incorrect Query and
Logically Incorrect Query Attack. The trick of this SQLIA is
changing the data type of injected data and providing
different data type against system defined data type.
Database server returns error feedback message which can
assist the attacker to further explore database server.
Keywords to change different data type are CONVERT and
CAST and either of them must be exist in the query.
Therefore, the signature to detect this attack must contain
those keywords. Once the attacker triggers the incident in
second edge, the state transits into the state of Web Server
Execute Logically Incorrect Query. The generated signature
is stated as follows,

Incident {Logically Incorrect Query Statement}
SIGLI3,LI2 {/(CONVERT|CAST)\s*\c+\s*(int|char|

varchar)/i}
For the last edge which leading to SQLIA state, it’s

incident contains Return Error Message from Database and
Information Retrieval.

Incident {Return Error Message from Database,
Information Retrieval}

SIGR,LI3 {SIGEM , SIGIR }

E. UNION Query
The UNION Query attack is to inject UNION keyword

following with another SELECT query statement. The result
is database returns the dataset that is the union results of
the original first query and the injected second query. The
generated UNION Query branch is shown as Branch (3)

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on August 05,2010 at 14:10:15 UTC from IEEE Xplore. Restrictions apply.

in Figure 1. The label of second edge is UNION Query
Injection and the label of top edge is UNION Query Attack.

The most important keywords in the injected code are
UNION and SELECT. So, the generated signature is:

Incident {UNION Query Statement}

Figure 1. Augmented Attack Tree Modeling of SQL Injection Attacks

SIGU3,U2 {/[”]\s+(UNION|UNION\s+ALL)\s+(SELECT)
/i}

The label in top edge is UNION Query Attack. The
possible incidents are Information Retrieval and Bypass
Authentication.

Incident {Information Retrieval, Bypass Authentication}
SIGR,U3 {SIGI R , SIGBA }

F. Piggy-Backed Query
In Piggy-Backed Query attack, the query be extened by

injecting additional queries after the original one.
Consequently, the database receives multiple SQL queries
and executes them in sequence. Branch (4) in Figure 1
illustrates the Piggy-Backed Query branch in ASQLIAT.
The incident in the second edge, which label is Piggy-
Backed Query Injection, is to inject multiple queries into the
original one. Because Piggy-Backed Query combines
several SQL query together, there must be some data
manipulation keywords or data definition keywords. It’s
wise to model the signature with those keywords following
with a delimiter which indicates the ending of previous
query.

Incident {Piggy-Backed Query Statement}
SIGPB3, PB2 {/[’”]\s*;\s*(SELECT|INSERT|UPDATE|

DELETE |DROP)/i}
The incidents in the top edge, which label is Piggy-

Backed Query Attack, can be Information Retrieval,
Information Modification and Perform DoS.

Incident {Information Retrieval, Information
Modifica- tion and Perform DoS}

SIGR, PB3 {SIGIR , SIGIM , SIGDoS }

G. Timing Inference Query
 The inference attack implemented according to the

obtained result from a true or false evaluation about data

values in the database. In this kind of attack, the target web
server has been secured enough so that there is no enough or
usable feedback error messages. In this situation, the attacker
injects malicious command into the web server and then
observes how the website changes.

For Timing Inference Query, the attacker injects query
with both if/then evaluation statement and delay time. The
attacker then obtains information from the database by
monitoring the timing delay as the response of the database.
If the timing delay take place, it means that the injected
if/then evaluation statement been executed successfully by
database server. Otherwise, the statement is wrong and need
further modification. The last branch in Figure 1 displays the
modeling of this kind of SQLIA. The label of edge between
the state Found Injection Place and the state Web Server
Execute Timing Inference Query, is Timing Inference Query
Injection. It is important to contain the keyword WAITFOR
and the length of waiting time in the generated signature.
The generated signature is stated as follows,

Incident {Timing Inference Query Statement}
SIGTI3, TI2 {/(WAITFOR)\s+\d+/i}
Moreover, the label of top edge is Timing Inference

Attack. The possible incidents are Information Retrieval,
Information Modification and Identify Database Scheme.

Incident {Information Retrieval, Information
Modification and Identify Database Scheme}

SIGR, TI3 {SIGIR , SIGIM , SIGDS }

III. RELATED WORKS
Poolsapassit and Ray [6] proposed another Augmented

Attack Tree (AAT). AAT [6] applied the conventional attack
tree with extra attack probability labels. A label l is
associated with a node S, given by the tuple <n, m> where
m and n are positive integers greater than 0 with m. m is
termed the least effort to compromise subgoal S while n is
termed the number of currently compromised subgoals under

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on August 05,2010 at 14:10:15 UTC from IEEE Xplore. Restrictions apply.

S. The ratio n/m provides the measure of how far an attacker
has progressed towards the ultimate goal in terms of the least
effort along the most advanced attack path that s/he has been
through. Wang et al. [14] improved augmented attack tree [6]
with a notion of “minimal attack tree” and proposed a new
trimming attack tree algorithm to reduce the redundant
branches.

Byres et al. [1] described the first work of how the attack
tree methodology be implemented to the SCADA protocol
MODBUS/TCP with risk metrics. Their attack tree analysis
was qualitative used to identify level of technical difficulty,
severity of impact, probability of detection and the
underlying critical vulnerabilities. Lin et al. [3] applied
attack tree to model the threat of Cross Site Request Forgery
(CSRF) attacks. Morais et al. [5] utilized attack tree to
describe known attacks and derive injection test scenarios to
evaluate the security properties of the protocol. Khand [2]
presented the syntax and graphical representation of five
kinds of new nodes as the extension of the conventional
attack tree to model the security of systems. Saini et al. [10]
constructed attack tree to study and evaluate the security of
MyProxy system with all the possible threats, the cost of
attack execution by attacker and the cost of damage from
attack.

IV. CONCLUSION
In this paper, we have presented a method for

modelling SQLIAs with the Augmented Attack Tree and
regular expressions to capture subtle SQL statements
formed by SQLIA adversaries. This approach is generic, thus
it can be made to equally apply to other kinds of web based
attacks.

REFERENCES
[1] E. J. Byres, M. Franz, and D. Miller. The Use of Attack Trees in

Assessing Vulnerabilities in SCADA Systems. In IEEE International

Infrastructure Survivability Workshop (IISW’04), Lisbon, Portugal,
2004.

[2] P. A. Khand. System Level Security Modeling Using Attack Trees. In
2nd International Conference on Computer, Control and
Communication, 2009. IC4 2009, pages 1–6, February 2009.

[3] X. Lin, P. Zavarsky, R. Ruhl, and D. Lindskog. Threat Modeling for
CSRF Attacks. In International Conference on Computational Science
and Engineering, 2009. CSE ’09, volume 3, pages 486–491, August
2009.

[4] S. Madan and S. Madan. Shielding Against SQL Injection Attacks
Using ADMIRE Model. In First International Conference on
Computational Intelligence, Communication Systems and Networks,
2009. CICSYN ’09., pages 314–320, July 2009.

[5] A. Morais, E. Martins, A. Cavalli, and W. Jimenez. Security Protocol
Testing Using Attack Trees. In International Conference on
Computational Science and Engineering, 2009. CSE’09, volume 2,
pages 690–697, August 2009.

[6] N. Poolsapassit and I. Ray. Using Attack Trees to Identify Malicious
Attacks From Authorized Insiders. Lecture notes in computer science,
3679:231–246, 2005.

[7] N. Poolsapassit and I. Ray. Investigating Computer Attacks Using
Attack Trees. IFIP International Federation for Information
Processing, 242:331–343, 2007.

[8] N. Poolsapassit and I. Ray. A Systematic Approach for Investigating
Computer Attacks Using Attack Trees. the 3rd IFIP TC-11 WG 11.9
Working Conference on Digital Forensics, January 2007.

[9] The Open Web Application Security Project. Owasp 10-2010.
http://www.owasp.org/images/0/0f/OWASP T10 -2010 rc1.pdf.

[10] V. Saini, Q. Duan, and V. Paruchuri. Threat Modeling Using Attack
Trees. Journal of Computing Sciences in Colleges, 23(4):124–131,
2008.

[11] B. Schneier. Attack Trees. Dr. Dobb’s Journal, 24(12):21–29, 1999.
[12] R. L. Schwartz, T. Phoenix, and B. D. Foy. Learning perl. O’Reilly

Media, Inc., 2005.
[13] J. Viegas, W. Halfond, and A. Orso. A Classification of SQL-

Injection Attacks and Countermeasures. In International Symposium
on Secure Software Engineering, 2006.

[14] H. Wang, S. Liu, and X. Zhang. An Improved Model of Attack
Probability Prediction System. Wuhan University Journal of Natural
Sciences, 11(6):1498–1502, 2006.

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on August 05,2010 at 14:10:15 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

