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ABSTRACT 
An on-line adaptive blind source separation algorithm for 
the separation of convolutive mixtures of cyclostationary 
source signals is proposed. The algorithm is derived by a p  
plying natural gradient iterative learning to the novel cost 
function which is delined according to the wide sense cy- 
clostationarity of signals. The efficiency of the algorithm 
is supported by simulations, which show that the proposed 
algorithm has improved performance for the separation of 
convolved cyclostationary signals in terms of convergence 
speed and waveform similarity measurement, as compared 
to the conventional natural gradient algorithm for convolu- 
tive mixtures. 

1. INTRODUCTlON 

In many practical situations such as in the radiocommu- 
nications, telemetry, radar, sonar and speech contexts, the 
sources are nonstationary and often (quasi)-cyclostationary 
and the observed signals are usually convolutive mixtures, 
so that the conventional methods for standard blind source 
separation (BSS) problem, in which the mixtures are as- 
sumed to be instantaneous and the source signals are as- 
sumed to be statistically stationary, are not appropriate any 
more. Increasing interest has therefore been focused on 
solving the problem of BSS of convolutive mixtures [l]. 

Addressing the BSS problem for cyclostationaty sources 
is a relatively new approach. In [Z], the proposed method 
minimizes a cost function constructed from the cyclic moss- 
correlation of recovered sources at various time lags, and 
presents iterative update equations following from the nat- 
ural gradient technique. In [3], it is shown that the current 
second- or higher-order BSS methods perform poorly if the 
assumption that the source signals are statistically station- 
ary remains unchanged. Most existing BSS approaches ex- 
ploiting the cyclostatiomity of the sources are either batch 
algorithms as in 131 or are based on second-order statistics 
as in [2]. and very few of them are concerned about convolu- 
tive mixtures. In this paper, we propose an on-line adaptive 
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BSS algorithm for convolutive mixtures using high-order 
conventional statistics and second-order cyclostationarity of 
the source signals. We will show that the statistical property 
of cyclostationary signals can he exploited to increase the 
separability of the convolutive mixtures of cyclostationary 
sources. 

2. PROBLEM FORMULATION 

Assume that N source signals are recorded by M sensors, 
where M 2 N .  The output of each sensor is modeled as 
a weighted sum of convolutions of the source signals cor- 
rupted by additive noise. In a compact form. we have 

x(k) = H(r)s(k) + v(k) (1 )  
where s ( k ) ~  CN is the source vector, x( k ) E  CA' is the sen- 
sor vector, k is the discrete time index; H(z)E is 
the z-transform of the mixing matrix with entries H i j ( z )  = 

1,. . . , N), where i-' 
is the timeshift operator, i.e. i - I s j ( k )  = s j ( k  - 1). For 
simplicity, we ignore additive noise in the following deriva- 
tions. The source signal vector s(k)  is modeled as a wide 
sense cyclostationary signal [4], and its components s i (k )  
are assumed to be mutually independent with zero mean. 

The aim is to reconstruct the source signals q ( k )  (up to 
an arbitrary permutation and filtering operation) from only 
knowledge of the sensor signals z i ( k )  without knowing the 
source signals and the mixing process. Alternatively, we 
have 

P-I 
h i j p z - P  (i = 1,. . . , M I  j 

y ( k )  = W(z,k)x(k) (2) 
= W(Z; k ) H ( z ) ~ ( k )  = C(:, k)s(k) (3) 

where y(k) E CN is the output vector of estimated source 
signaIswithentriesyi(k) =c,"=~ ~ i j ( z , k ) z j ( k ) ,  w ( z , ~ )  
is the m i x i n g  temporal network with entries Wij(z, k )  = 
c,'=, ~ ~ i j ~ ( k ) z - ~ .  The task is to adjust W(z> k)  such that 
limk,, C ( z ,  k )  = PAD(z), where P E R N x N  is an per- 
mutation matrix, A E I t N x  is a nonsingular diagonal scal- 
ing matrix, and D(z) is a diagonal matrix whose ii-th entry 
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is E, C , ~ Z - P ,  ctp is a complex scalar weighting, and p is 
an integer delay value. This formulation makes the i.i.d. as- 
sumption in the deconvolution context unnecessary for con- 
volutive BSS. Taking advantage of the scale and permuta- 
tion indeterminacy of the conventional BSS methods [4], 
we assume that the cyclic correlation matrix of the soorces 
at lag T = o follows %U.(O) = E { e J f l s k s ( k ) s H ( k ) } =  I', 
where ( . ) H  denotes the Hermitian transpose operator, and 
I' has entries as follows 

(4) 
1, i f l  E {1,2,. . . , N } , g  = I = i  

[I'll., = [ 0, otherwise 

3. TBE PROPOSED ALGORITHM 

3.1. Combining Cyclic Decorrelation With Natural Gra- 
dient Learning for Instantaneous Mixtures 

The wide sense cyclostationarity assumption implies that 
the cyclic correlation function of the soorces satisfies [Z]: 

( e J O i k s i ( k + r ) s j ( k ) )  = o i f  i # j  ( 5 )  

(eJPJksi (k  + T)S;(~)) = 0 if Bi # Bj  (6) 

(eJBiks,(k)st(k)) > o vi (7) 

where J = a. the superscript * denotes complex conju- 
gation, (.) denotes the time averaging operator, and pi is a 
nonzero cycle frequency of source i. Invoking these proper-. 
ties into the Kullback-Leibler divergence, ow cost function 
for instantaneous mixhxes is defined as 

N 

P ( W ( k ) )  = - logdet(W(k))  -ClOgPi(Yi(k))  
i = l  

where Tr (.) and det (.) are respectively the trace and deter- 
minant operators, and p, (yr(k)) is an appropriat$ly chosen 
independent pdf. The term RCy (k) is defined as RCy ( I ; )  = 

E:, R & ~  (k), where (k) = ( e J P s k y  (k) y H  (k)) is 
the output cyclic correlation matrix for the z-th cycle fie- 
quency which is required to satisfy limk,, eY (k) = P, 
where the elements of I' take the form in (4). At conver- 
gence, h-, f igy (k) = I. It is straightfomd to fol- 
low that iterative learning will result in the minimization of 
this cost function. Applying the natural gradient rule [5] 
together with a cyclic decorrelation operation, we obtain a 
new learning rule as 

W ( k  + 1) = W ( k )  + /L (k) [I - f(Y(k))YH(k) 

+I - &Cy (k)]W (k) (9) 

where (k) is the learning rate. It is necessary to use split- 
complex nonlinearities in the complex case, e.g. f,(y, (k)) = 

t&(Y,R(k)) + Jt&(y,r(k)), where Y , R ( ~ )  and y Z r ( k )  
are respectively the real and imaginary parts of y,(k), for the 
sources with super-Gaussian distributions, or fz(y,(k)) = 
y,(k) 1y.I' forthe sub-Gaussian case. 

3.2. On-line Adaptive Learning for Separating the Con- 
volntive Mixtures of Cyclostationary Signals 

For convolutive BSS, fiom the algebraic point of view, they 
have equivalent mathematical models to the instantaneous 
cases, only differing in the way in which (W filter, FIR 
filter, 2-transform, wavelets, other transforms) the physi- 
cal phenomena are described [ 5 ] .  Exploiting this fact, it is 
straightforward to use the 2-transform and define the fol- 
lowing cost function for convolutive mixtures of cyclosta- 
tionary sources 

(10) P ( W b , k ) )  = p,(W(z,k)) + pp(W(z,k)) 

where the quantity pJW(2,k)) is given by p,(W(z,k)) 
= - c ~ I l o g P " ( Y " ( k ) )  - $ j"logldetW(z,k)lz-'dz, 
pi7(W(z,k)) = ${Tr (Ety (k)) - logdet (fig (k)) - 
N } .  Here, we assume both H(s) and W(z,k) are stable 
with no zero eigenvalues on the unit circle IzI = 1. To ob- 
tain a learning algorithm which minimizes the cost function 
(1  0), we follow the derivation of the algorithm presented by 
Amari et al. [ 5 ]  and calculate the infinitesimal increment 
dp(W(z,k)) corresponding to an increment d W ( z , k ) .  In- 
troducing the Lie group operation on the manifold of FIR 
filters M ( L ) ,  i.e. d ~ ( z , k )  = d ~ ( z , k )  o w+(z), where o 
and are the multiplication and inverse operation defmed 
in the manifold M ( L ) ,  dp,(W(z,k)) takes the following 
form hy simple algebraic and differential calculus 

+ d { l o g d e t L }  + 2TT{dw(z ,  k ) W ' ( z ,  1;)) 

where dX(z,k) is denoted as C~==odX,(k)z-p. Notice 
thatd{Nlog(CE1 eJBsk)}  a n d d { l o g d e t L }  donot de- 
pend on the weight matrix W ( z ,  k), d{logdet (fiey (k))} 
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canbereducedtoZtr(dW(z,k)W'(o,k)), thereforewe 
have (N does not depend on W(z, k)  either) 

d p o ( W ( z , k )  = --Tr{dW(r, k ) W I ( z ,  k ) ]  

From (11) and (12), the partial derivation of p(W(i,k)) 
with respect to X(; ,k )  leads to 

The truncated form of d X ( 2 , k )  on the FIR filter manifold 
M ( L ) ,  i.e. [ d W ( t , k ) W ' ( z ,  1.)IL, implies that the partial 
derivation of p ( W ( t , k ) )  with respect to W ( 2 . k )  can be 
obtained according to the partial derivation with respect to 
X(i, k), applying the moving average approach to the last 
term of (13), that is, R$$(k' (p) = (1 - I~,,)R$;(~) (11) + 
qoCL1 eJP,'y(k)y" ( I C  - p ) ,  an on-line learning algo- 
rithm for convolutive mixtures of cyclostationary signals 
can be implemented as 

WP(k + 1)= W J k )  + p ( k ) { W p ( k )  -Q&) 
+ W , ( k )  - f ( Y @ ) ) 4 ( 1 . ) }  (14) 

where +(k)  can be denoted as E,"=, W f - , ( k ) y ( k  - q ) ,  
and Q q ( k )  = E,"=, W:-&k)$$) (4). The equilib- 
rium points of the proposed learning algorithm satisfy that 

I, where p = 1,2, .  . . , L. This implies that the proposed 
learning algorithm has a drawback that it forces the output 
signals to have nearly flat kequency spectra, which however 
can be avoided by following the nonholonomic constraint 
[5], that is, using W p ( k ) A ( k )  instead of W p ( k )  in (14). 
where A ( k )  = d i a g { f ( y ( k ) ) y H ( k ) } .  The detailed theo- 
retical analysis of the convergence behavior of the proposed 
algorithm in the Lie group sense is given in [6] .  

In implementation, y ( k )  is given by FIR filtered version 
of the input data, i.e. y ( k )  = E:==, W , ( k ) x ( k  - p )  and 
the general updating equation io which all signals and coef- 
ficients are complex-valued is 

W p ( k  + 1) = W P ( k )  + P ( k ) { W , ( k )  -Qp+& - L)  

+ W , ( k )  - f ( Y ( b - - L ) ) q ( k - p ) }  (15) 

The algorithm requires approximately 4 M N ( N  + 1)(L + 
1) + 2N multiplications per time instant, and it requires 
approximately ( ( A t  + 1)(N + l ) N  + A4)(L + 1) memory 

locations to implement. A normalized step size is used in 
practice p ( k )  = p / { p  + ly(k -p)r), where p is a 
positive value which avoids an explosive growth of the step 
size. 

4. SIMULATIONS 

In this section, we examine the performance of the proposed 
algorithm by simulation. A TIT0 (Two Input Two Output) 
sytem is considered that is, N = iM = 2 (The algorithm 
is also suitable for generic MlMO systems). The resem- 
blance between the original and the reconstructed source 
waveforms is measured by their mean squared difference 
E'(&) = lOlog{l -(1/2N)CKI E [lyt(k) - s,(k)( ']} 
(assuming the signals are zeremean and unit-variance). Fast, 
we use sinusoid signals to test the performance of the pro- 
posed algorithm, where the sinusoid signal can be treated as 
a degenerate case of cyclostationsuy signals, we appreciate 
that such a signal will only excite one of the frequency com- 
ponents of a general convolutive system. The two source 

i .  8 .  

Fig. 1. Separation of convolutive mixtures of two sinusoid 
signals: sl and s2 are two sources, 21 and 22 are the two 
convolutive mixtures, ylcngu and yZnigu are the rewv- 
ered signals hy the M~UIA gradient algorithm, ylccnga and 
y2ccngn are the recovered signals by the proposed method. 

signals are set respectively to be s l ( i )  = &(0.4*i), s z ( i )  = 
sin(O.9 * i). The two sources are convolved by FIR fil- 
ters withentries H(I,:,I)=[I 1-0.75 0.91, H(2,:,1)=[0.5 -0.3 
0.2 0.21, H(1,:,2)=[-0.2 0.4 0.7 0.21, H(2,:,2)=[0.2 1 0 0.91. 
The other parameters are L 3 32, p = 0.004, and p = 
0.1. The two cyctic frequencies are respectively (ST)-' 
and 9(%)-'. The separation results are shown in Figure 
I, and the performance indices are respectively 19.67dB 
and 19.1ZdB. In the second simulation (see Figure Z), two 
BPSK signals modulated by sinusoids of carrier kequencies 
(5n)-' and 9(%)-', which can be treated as the other 
general sets of signals with cyclic property, are chosen as 
the source signals. The mixing matrix and the parameters 
are identical to those in the first simulation. The perfor- 
mance indices are respectively 19.9MB and 19.14d.B. Both 
simulation results indicate that the proposed algorithm has 
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improved performance over the natural gradient algorithm 
in recovering the cyclic property and waveform of the cy- 
clostatimary signals tiom the convolutive mixtures. In the 
third simulation (setting the same parameters as in the sec- 
ond simulation), the separability of the proposed algorithm 
is shown in Figure 3, where the convolutive mixtures are 
successfully separated from the two channels in terms of 
the distribution of the global parameters. By resorting to 
the multichannel row intersymbol interference (Row ISI) 

as Isl(i) = ~ ~ ~ ~ ~ ~ , , ( ~ ) l ~ - ~ ~ , , ~ . l c , , ( ~ ) l ~ ,  where 
m=,,r lCi j  @)la 

cii are the filter elements of the global system C ( z ,  k), we 
can further measure the convergence speed of the proposed 
algorithm. From Figure 4, we see that the proposed algo- 
rithm needs a considerably smaller number of iterations to 
converge to the steady-state value, e.g. for ISl(1) to reach 
0.01, there is approximately 30% reduction in convergence 
time, thereby firther indicating an improved convergence 
performance. These are only preliminary simulation results 
which are being extended for further comparison in [6]. 

i ’  

Fig. 2. Separation of two BPSK source signals; the mean- 
ings of the symbols are identical to those in Fig.1. 

Fig. 3. Simulation results of the global parameters of C(z) 
of the TIT0 system after convergence. 

5. CONCLUSIONS 

An on-line adaptive blind separation algorithm for sepa- 
rating convolutive mixtures of cyclostationary source sig- 
nals has been presented. Simulation results have shown 

Fig. 4. Comparison of convergence speed of the proposed 
cyclostationary convolutive NGA (CCNGA) and convolu- 
tive NGA (CNGA) algorithm based on Row ISI. 

that the algorithm leads to faster speed of convergence, tc- 
gether with a better performance for the separation of the 
convolved cyclostationary signals, in particular in forms of 
shape preservation, as compared to Amari’s conventional 
natural gradient algorithm for convolutive mixtures. Al- 
gorithm implementation to more practical environment and 
wider kinds of signals (i.e. EEG signals) is our future work. 
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