
 
 
 

This item was submitted to Loughborough’s Institutional Repository by the 
author and is made available under the following Creative Commons Licence 

conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288387654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

Department of Economics

Economic Research Paper No. 00/9

The Determinants of Technology

Diffusion: Evidence from the UK

Financial Sector

Adrian R. Gourlay and Eric J. Pentecost

August 2000



Centre for International, Financial and Economics Research
Department of Economics
Loughborough University
Loughborough
Leics.,  LE11  3TU
UK

Tel:  + 44 (0)1509 222734
Fax:  + 44 (0) 1509 223910
Email:  E.J.Pentecost@lboro.ac.uk

Director :  Dr Eric J Pentecost
Deputy Director :  Professor C J Green

Associate Directors:

Professor Kenneth J Button,George Mason University, USA

Professor Peter Dawkins, University of Melbourne, Australia

Professor Robert A Driskill, Vanderbilt University, USA

Professor James Gaisford, University of Calgary, Canada

Professor Andre van Poeck, University of Antwerp, Belgium

Professor Amine Tarazi, University of Limoges, France



1

The Determinants of Technology Diffusion:

Evidence from the UK Financial Sector

by

ADRIAN GOURLAY† AND ERIC PENTECOST

Department of Economics, Loughborough University, LE11 3TU, England

This paper investigates the role of firm and industry-specific factors in the

diffusion of automated teller machines (ATMs) in the UK financial sector.  A

duration model of technology adoption is employed in the empirical modelling and

is applied to an annual panel of adoption histories over the period 1972 - 1997.

The main factors affecting the diffusion of new technology are found to be

endogenous learning, cumulative learning-by-doing effects, firm size, growth and

profitability, and price expectations.  There is, however, little evidence to support

the role of stock effects in the diffusion process.  The results are found to be robust

across a number of specifications of the baseline hazard function.
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1 INTRODUCTION

Research into the inter-firm diffusion of new technology has paid relatively little attention to

the determinants of innovation diffusion in the financial sector.  This is in contrast to the

growing theoretical and empirical literature examining diffusion in the industrial sector.1

Arguably, this paucity in the literature needs to be addressed given the rapid product and

process innovation experienced by the United Kingdom (UK) financial sector over the last

two decades (Bank of England, 1986; Pawley, 1993; Llewellyn, 1992, 1997).  The payments

system, in particular, has presented an abundance of opportunities for the wider use of

information technology (IT).  This is largely due to its main functions being focussed on the

availability, storage, retrieval and transmission of information.  One such technology is the

automated teller machine (ATM) which has been widely adopted by retail banks and

building societies since their commercialisation in 1972.  An ATM is an automated cash

dispenser (with additional transaction services) which allows holders of an appropriate cash,

debit or credit card to access their retail deposit accounts in order to withdraw and deposit

cash.  Thus, the ATM can be interpreted as both a process and a product innovation

 The reasons why firms do not instantaneously adopt new technology immediately

after its commercialisation (i.e. diffusion is a time-intensive process) can be traced to

different theories of innovation diffusion advocated in the literature.  According to early

epidemic theories of inter-firm diffusion (Griliches, 1957; Mansfield, 1968), diffusion is a

disequilbrium process resulting from information asymmetries between potential users

(Lesson and Metcalfe, 1994; Baptista, 2000).

In contrast to epidemic models, contemporary approaches to technology diffusion are

characterised by the dismissal of information spreading as the key explanatory variable of

innovation diffusion.  Rather, models (in general) assume that firms behave optimally (i.e.,

are profit maximisers) and that information pertaining to the technological and economic

characteristics of the innovation is perfect.  Within this equilibrium approach there are three

categories of models that have been developed in the literature (Karshenas and Stoneman,

1995; Sarkar, 1998): the rank or probit; stock or game theoretic, and order effects.

In rank or probit models (Davies, 1979; Ireland and Stoneman, 1986) potential

adopters of a technology have different inherent characteristics and consequently obtain

different gross returns from its use.  These different characteristics generate different

preferred adoption dates.

                                                       
1 See Sarkar (1998) and Geroski (2000) for recent reviews of the relevant literature.
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Hannan and McDowell (1984, 1987) and Sinha and Chandrashekaran (1992) find

strong support for the existence of rank effects in the diffusion of ATMs in the US banking

sector.  Firm size and variables capturing the proportion of demand deposits to total deposits

are found to have a positive effect on the (conditional) probability of adoption.  Institutional

variables are also found to have a significant effect on adoption.  Hannan and McDowell

(1987), however, reject the existence of epidemic effects.  Results obtained by Ingham and

Thompson (1993) for the diffusion of ATMs in the UK building society sector confirm the

importance of rank effects.  Advertising expenditure and labour costs are found to have a

positive effect on the probability of adoption, although variables capturing the mix of retail

deposits are found to be insignificant.

The essence of the stock effects models (Reinganum, 1981a, 1981b, 1989; Quirmbach,

1986) is that benefits to the marginal adopter from acquisition decreases as the number of

previous adopter's increases.  As firms acquire new technology, their production costs fall.

This leads to changes in the output of firms and the industry, thereby affecting industry

prices and the profitability of further adoption.  Order effect models are similar to the rank

effect models in that the gross returns to a firm adopting new technology depends upon its

position in the order of adoption, with higher order adopting firms achieving a greater return

than low-adopters.2  As noted by Baptista (2000), however, the stock and order effects

models will have opposite effects on the probability of adoption.  The stock effects focuses

on the equilibrium number of adopters and the subsequent lower profitability of adoption,

whilst the order effects focus on the anticipation of subsequent adoptions.  Hence, the stock

effect has a negative effect on the probability of adoption, and the order effects a positive

effect.

Hannan and McDowell (1987) find a significant and positive relationship between the

number of previous adopters at the state level (as a proxy for the stock effect) and the

probability of ATM adoption in the US banking sector. To date, however, empirical testing

of stock and order effects has been predominately on the diffusion of technologies in the

industrial sector (see Karshenas and Stoneman, 1993; Colombo and Mosconi, 1995;

Baptista, 2000).

There are two aims to this present paper.  The first is to examine the determinants of

ATM diffusion in the UK financial sector.  A general duration model of diffusion is built,

which allows the incorporation of rank, stock and order effects.  Empirical testing of the

                                                       
2 This can be justified on two grounds.  First, pre-emption and first-mover advantages (Fudenberg and Tirole,
1985).  Second, advantages relating to the acquisition of prime geographic sites or limited pools of skilled
labour (Ireland and Stoneman, 1985).
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model is performed by employing a panel of adoption histories for a stock of UK financial

institutions from 1972 to 1997.  The second objective is to test the robustness of the results

across a range of different assumptions relating to the underlying hazard rate of adoption.

2 A MODEL OF TECHNOLOGY ADOPTION

As illustrated by Karshenas and Stoneman (1993, 1995), Colombo and Mosconi (1995), and

Baptista (2000) it is possible to subsume alternative theories of diffusion into one

encompassing model.  The specification of an encompassing model then enables one to test

empirically which (if any) of the epidemic, rank, stock, order effects play a significant role in

the diffusion process.  Throughout this paper, ATM technology is modelled as being

embodied in a specific capital good supplied by a capital producing industry.

The model assumes that a new technology can be adopted by financial institution i in

industry j by purchasing one unit of the technology at price tP  at time t.  Furthermore, τijg  is

defined as the (gross) profit obtained by a firm in period τ  from the use of the ATM.  Rank,

stock and order effects determine per-period profits.3  Specifically, the arguments of ( )gij .

are assumed to be a vector of characteristics of the firm Ci  (reflecting the rank effects), the

number of firms already using the new technology at time t, itK , reflecting the stock effects

and the number of previous adopters at the date of adoption, τiK , reflecting the order effects.

Although iti KK =τ by definition, both terms are initially entered as separate arguments into

the determinants of ( )gij .  to keep the stock and order effects conceptually separate.  Firms

are assumed to behave with perfect foresight conjectures.

 In both the stock and order effects, the return in each period of use is dependent upon

the number of other adopters at that date, whilst for the rank effects the returns in each

period are independent of other users.  For the ith institution adopting an ATM in time t, its

per period (or annual) benefits in time τ  from adoption at time t, t≥τ , is4

                         ( ) [ ] 0 ,0 ,  ,, 32 ≤≤≥= ggtKKCgg itiiij ττ τ                                                  (1)

                                                       
3 The theoretical model and the subsequent empirical model explicitly ignore supply side influences in the
diffusion process.  This is arguably not a restrictive restriction for the case of ATM technology given the extent
of imported technology.  See Kirkman (1987) and Austin (1992).
4 The partial effects of Ci  in (1) cannot be determined a priori and ultimately depends on which institution-
specific characteristics are deemed to affect the optimal time of adoption.
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In the empirical implementation of the model it is assumed that all institutions belong to the

same industry so that j = 1.

The net present value of the increase in gross profits arising from adopting at time t

with discount factor r, in continuous time can be written as

                     ( ) ( )[ ]∫
∞

−−+−=Υ
ttit dttrgP  exp.. τ                                                         (2)

The institution is then assumed to choose an optimal time of adoption (taken from the

commercialisation of the ATM for which t = 0), t*, that is determined by two necessary and

sufficient conditions.  The first is that adoption yields positive profits, i.e., 0≥Υit .  The

second condition is referred to as the arbitrage condition (Karshenas and Stoneman, 1993,

1995).  The arbitrage condition requires that for adoption it must not be more profitable to

wait beyond t*, i.e., the net benefit from adoption must not be increasing over time.  This can

be represented as

                                                      ( )[ ] 0exp. ≤−Υ dtrtd it                                                              (3)

The profitability and arbitrage conditions are pivotal for the subsequent process of

technological diffusion in this model and determine two distinct aspects of the process.  The

profitability condition in (1) determines the set of potential adopters.  The arbitrage condition

contained in (3) determines the optimal adoption times, t*, for each adopter.  The optimal

adoption date for institution i, ti
* will be given by the condition in (3).5

As shown by Karshenas and Stoneman (1993), the two adoption conditions can be

translated into a relationship between the probability of adoption in the small time interval

( )dttt + , , i.e. the hazard rate, and the rank, stock, and order effects.  The hazard rate is

specified as

                    [ ]tttitttit rkpCKPrJh  , , , ,=                                                                     (4)

                                                       
5 The inequality sign in (3) allows for the possibility of corner solutions.  This could occur, for example, when
the optimal date of adoption is the year of commercialisation.  Karshenas and Stoneman (1993) provide a
formal proof of the existence of an optimum value of (3) at some t < ∞.
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The function in (4) states that the conditional probability of adoption, ith , is a function of the

interest saved, tt Pr , stock effects, tK , rank effects, iC , the expected change in the price of

technology, tp , and the expected change in the number of users discounted by the interest

rate, tt rk .  According to theoretical models of diffusion, the following first-order

derivatives should apply: 0 ,0 ,0 ,0 ,0 54321 >><< <
> JJJJJ .  Equation (4) forms the basis

of estimation.

3 THE DATA SET

3.1 The Set of Potential Adopters

The enabling characteristic of an ATM is its ability to allow deposit-holding customers to

access their accounts via a personal cash card (primarily to withdraw cash).  The

commercialisation of ATMs in the UK occurred in 1972 and this forms the start date of the

empirical study.6  The adoption of ATMs in the UK has, unsurprisingly, been confined

exclusively to two separate sectors within the financial sector: the retail banking sector and

the building society sector.

In this paper the set of potential adopters is defined as the stock of retail banks and

building societies at the end of 1997.  The definition employed for retail banks is identical to

that used by the Bank of England (1997) which focuses on two criteria.  The first is that the

institution must have a ‘large’ branch network in the UK.  Secondly, the institution has to

participate in the UK clearing system.  At the end of 1997 there were 20 retail banks

operating in the UK.  The definition employed for building societies is purely an ‘empirical’

one and utilises the members of the Building Societies Association (BSA).  At the end of

1997 there were a total of 86 members of the BSA (see BSA, 1997).  These institutions were

contacted and asked the year at which adoption (if any) of ATMs took place, adoption being

defined as the year at which they first started to operate one or more ATMs.  After excluding

those institutions from which data was not forthcoming a total of 98 potential adopters were

identified, of which 12 are retail banks and 86 are building societies.  Following convention

it was assumed that the number of adopters was constant throughout the period 1972 to

1997.  As noted by Karshenas and Stoneman (1993) and Baptista (2000), sampling a stock of

existing firms creates the potential for a selection bias since the sampling design explicitly

                                                       
6 First generation ATMs were first adopted in the UK in 1967 (Jones, 1981; Austin, 1992).  These early
machines did not, however, rely on a personal cash card in order to make withdrawals and did not directly debit
the customers account.  They therefore lay outside the definition used here.
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excludes those firms that exited the industry before the end of 1997.  It was found that the

probability of exit is uncorrected with the explanatory variables included.7

The stock of potential adopters includes 35 institutions that had not adopted on or

before the end of 1997.  These institutions are necessarily right-censored at 24 years as their

spells of non-adoption were incomplete.  For the period 1989 to 1997 the number of ATM

adopters in this sample has remained identical.  The fraction of ATM adopters overtime is

shown in Figure 1 below.

FIG. 1 Diffusion of ATMs

3.2 Variables Affecting the Adoption Decision

The covariates included in the rank effect have been subsumed in the vector Ci .  The exact

elements of this vector have, up to now, been left unspecified.  A number of firm and

industry-specific variables are deemed to influence the adoption decision.

Firm size plays a prominent role in rank models of diffusion (see Davies, 1979) and

has traditionally been found to have a positive effect on the probability of adoption.

Evidence provided by Humphrey (1994) suggests the existence of significant (positive) scale

and scope economies for ATM technology.  This suggests that adopting ATMs, ceteris

paribus, is likely to be more profitable for relatively larger institutions.

As noted by Lawrence and Shay (1986), the deposits of financial institutions play a

dual role in their production process.  Their first role is to provide liquidity and transactions

services.  Secondly, deposits provide an input (together with capital and labour) in the

production of other assets.  During periods of rapid deposit growth, therefore, financial

institutions may wish to expand capacity by adopting ATM technology.

                                                       
7 Full details of the estimated results can be obtained from the author.
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Scarborough and Lannon (1987), Ingham and Thompson (1993), and Haynes and

Thompson (2000) have argued that the main characteristic of ATMs underlying their

adoption has been the technology’s inherent ‘labour-saving’ qualities.  To measure the

potential for labour-savings is extremely problematic.  An ideal measure would be the

capital-labour ratio defined over those capital and labour inputs employed directly in the

provision of deposit services.  In this paper the ratio of branch staff employed to branches

operated is employed as a measure of the potential for labour-saving.

Empirical evidence provided by Hannan and McDowell (1984, 1987) suggests that

after-tax retained profits are a significant factor affecting the timing of ATM adoption in the

US banking sector.  Consequently, liquidity constraints are measured as the ratio of after-tax

profits to the value of assets (the latter being a measure of relative institution size).

The corporate status of a firm (either independent or part of a larger concern) may also

have an impact on the decision to adopt.  As noted by Rose and Joskow (1990), Karshenas

and Stoneman (1993) and Baptista (2000), the effect of corporate status is likely to be

ambiguous.  On the one hand, independent institutions may be better positioned with regard

to speed of implementation once the decision to adopt has been made.  On the other,

institutions that are part of a larger institution may be better informed and bear less risk in

adopting new technology.

Church and Gandal (1993) and Colombo and Mosconi (1995) have found that the early

adoption of previous vintage technologies may increase the marginal benefits from the

adoption of later ones through learning-by-doing effects.  In the case of ATM technology,

first generation machines were first commercialised in 1967.  As noted by Kirkman (1987),

these were not strictly ATMs but, rather, cash dispensers.  By the mid-1970s these machines

had been phased-out (see British Bankers’ Association, 1986).  This potential of learning

effects is captured by a dummy variable, taking a value of one if the institution has adopted

first generation ATMs, and zero otherwise.

The potential influence of order effects is assessed by the number of firms expected to

adopt in the following period.  Assuming perfect foresight, this is measured as the first

difference in the number of adopters at time t.  Similarly, stock effects are measured as the

accumulated number of adopters at time t.
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4 ECONOMETRIC ESTIMATION

A duration or failure time model (Kiefer, 1988; Heckman and Singer, 1984, 1985; Neumann,

1997) is employed to model the time to adoption as a function of the independent variables.

The hazard rate is defined as the probability that firm i will adopt the innovation at time t

conditional on the firm not having adopted the innovation before t.  The main issue to

address in modelling diffusion within this framework is how to incorporate the effect of

firm-specific variables on this hazard rate.  It was decided to choose a general class of

models known as 'proportional hazard models' proposed by Cox (1972).  These models have

been employed extensively in previous diffusion studies (see Hannan and McDowell, 1987;

Ingham and Thompson, 1993; Saloner and Shepard, 1995), and have the advantage of

ensuring a positive hazard rate without the need to impose further restrictions on the

parameters of the model.  The general form of the proportional hazard function is

                                        ( ) ( ) ( )ββ itit thth Xexp ,X ; 0=                                                 (5)

where ( )th0  is the baseline hazard, X is a vector of explanatory variables incorporating the

rank, stock, and order effects, and β  is a vector of parameters to be estimated.  Estimation

proceeds by maximum likelihood techniques (Kalbfleisch and Prentice, 1980; Neumann,

1997).  Appendix B gives details of the likelihood function.

  Estimation of the model in (5) can proceed by either estimating the baseline

nonparametrically, or alternatively assuming a priori distribution.8  Two specifications of the

baseline hazard, ( ).0h , were employed: the log-logistic and lognormal.  The justification for

employing these parametric functions is based on the nonparametric Kaplan-Meir (1958)

estimate of the baseline hazard for ATM diffusion as shown in Figure 1 below.9   This

suggests that the conditional probability of adoption increased up until 13 years post-

commercialisation of ATMs and then decreased.  For appropriate parameter values, both the

log-logistic and lognormal distributions will display similar nonmonotonic properties (see

Appendix B).

                                                       
8 Hannan and McDowell (1987) and Ingham and Thompson (1993) assume a constant baseline hazard in their
empirical models.
9 This nonparametric estimate is only defined up to the year at which the last adoption took place, and is then
undefined for subsequent years.  See Kalbfleisch and Prentice (1980) for details of this estimate.
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 FIG 1. The Hazard Function

As noted by Karshenas and Stoneman (1993, 1995), however, it is not possible to

identify seperately the baseline hazard from the epidemic hazard in (5).  Following

convention, epidemic effects are assumed to be absorbed into the baseline hazard.  Epidemic

effects are then tested by the time dependence of the baseline hazard.10

The Cox (1972) approach assumes that all covariates are exogenous.11  By definition

this is the case for time-invariant covariates.  For the set of the time-varying covariates,

however, this assumption is likely to be violated by the inclusion of price variables and the

stock of adopters at time t, K t  (Karshenas and Stoneman, 1993).  The real quality-adjusted

price of ATMs fell throughout the sample period and this raises the question as to whether

the price of technology is an endogenous variable and is the result of interaction between

demand (i.e. the institutions) and supply (i.e. the ATM manufactures).  The possible

endogeneity of the first variable is, however, mitigated by the fact that a large proportion of

ATM technology was imported during the early years of diffusion in the UK.  The

endogeneity of the former covariate is more of a concern because stock models assume that

firm size is endogenous.  This potential problem was tackled by employing a two-stage

estimation procedure outlined by Lee (1981) and Murphy and Topel (1985).  In the first-

stage a first-period time series autoregressive model is fitted for K t .  In the second stage,

                                                       
10 Heckman and Singer (1984, 1985) and Lancaster (1990) have argued that the baseline hazard will pick-up
unobserved firm heterogeneity and will cause downward bias in the degree of duration dependence.
Consequently, if estimates suggest positive duration dependence then this will provide empirical support for the
importance of epidemic effects in the diffusion of ATMs.
11 For a formal definition of exogeneity in duration models see Lancaster (1990).
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estimates of parameters from the first stage are employed to obtain estimates of K t  and its

first one-period ahead expectation, k t .

5 RESULTS

Table 1 below summarises the definitions of all the variables used in estimation.  Details of

data sources are contained in Appendix C.  Three specifications of the model contained in

expression (4) were estimated, each employing a lognormal and a log-logistic baseline

hazard.  The first model estimated was the fully specified model that included all variables

contained in Table 1.  The second model imposes the restriction 02 =β .  This allows the

significance of stock effects to be tested using a likelihood ratio test.  The third model to be

estimated imposed the restriction 054 == ββ .  This enables the significance of the order

effects to be tested.  The results obtained from these three models are contained in Tables 2,

3, and 4 respectively.

Table 1.

Definitions of Explanatory Variables

Variable Description
p = Parameter of parametric models that determines duration

dependence
CONSTANT = Intercept term

tSIZE = Size of the institution, measured by the value of the total assets
deflated by the Producer Price Index (PPI)

GYt = Growth in institutions deposits measured at time t
rt = Discount rate, measured by the yield on Treasury Bills expressed

as annual interest rates
kt = Expected change in the cumulative number of adopters in the

interval ( )t t,  +1  measured by ( )K Kt t+ −1

Kt = Cumulative number of adopters at time t
pt = Expected change of the price of ATMs measured by ( )P Pt t+ −1

Pt = Real price of ATMs (quality adjusted) at time t, deflated by PPI
STAFFt = Total number of branch staff at time t
BRANCHt = Number of branches operated by each institution at time t
PROFITSt = Profitability of an institution, measured as the after-tax profits at

time t
DPREVIOUS = A dummy variable taking the value of unity for previous cash

dispenser (1967 to 1971) adoption and zero otherwise
DSUB = A dummy variable taking the value of unity if the institution is a

subsidiary and zero otherwise
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The dependent variable employed in all estimated models is the time to adoption.

Consequently, a positive coefficient sign implies that the variable have a positive effect to

the time to adoption, and conversely for a negative coefficient.  From Table 2, the parameter

vector β  remains relatively stable in terms of values and signs when comparing results from

a lognormal specification of the baseline hazard to that of a log-logistic one.  The log-

likelihood ratio test for the existence of epidemic effects at the industry-wide level accepts

the hypothesis of their existence.  This is additionally a test of these two models against the

exponential model specification, the latter of which imposes the condition 1=p  (Cox and

Oakes, 1984).  Thus, acceptance of the existence of epidemic effects in the diffusion process

is additionally a rejection of the exponential model specification.

The coefficient on K t  (representing stock effects) though having the correct sign is

found to be statistically insignificant.  As noted by Karshenas and Stoneman (1993), this

may not necessarily indicate the total absence of such effects and may alternatively be

captured by the time-varying baseline hazard.  If this is indeed the case then imposing the

condition 02 =β  should lead to an increase in the estimated coefficient for p.  As shown by

Table 3 the reverse of this effect occurs and, moreover, the subsequent log-likelihood ratio

test rejects the existence of stock effects.

Order effects are captured by the coefficient on k rt t .  The coefficient on this variable

is statistically significant and has the correct sign a priori in both the fully specified model

and restricted stock models.  Moreover, the log-likelihood ratio-test for the existence of

order effects in Table 4 rejects the absence of these effects at the 0.05 level.

Turning attention to the role of rank effects, it is apparent from Table 2 that these have

played an extremely significant role in the diffusion of ATMs.  The likelihood ratio-test for

the joint significance of all the rank effects variables indicate that their existence cannot be

rejected at the 0.001 level.  In particular, the size of the institution, captured by SIZE t  has a

positive and highly significant effect on the conditional probability of adoption.  This is

consistent with previous studies examining the diffusion of ATMs (see, for example, Ingham

and Thompson, 1993).

The STAFF BRANCHt t  ratio although having the correct sign a priori is not found to

be statistically significant in both the lognormal and log-logistic models.  This result may

reflect the fact that this variable is an inadequate proxy for the opportunity for labour saving

associated with ATM technology.  As noted by Kirkman (1987), the labour-saving potential

for ATMs may have been overstated and those branch staff previously employed exclusively
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in the provision of demand services were simply re-deployed after the adoption of ATMs.

Thus, this variable may be capturing the output mix of a financial institution rather than the

potential for labour saving.

The positive and significant coefficients on PROFITS SIZEt t  and GYt  suggests that

liquidity constraints have played an important role in the diffusion of ATMs.  This is

consistent with US evidence (Hannan and McDowell, 1987).

A notable aspect of the results is the role played by the learning-by-using variable,

DPREVIOUS.  This is found to have a positive and significant coefficient at the 0.001 level.

This suggests that institutions with experience in using previous vintage ATM technology

(which embodies similar characteristics to second generation technology) has a positive

impact on the conditional probability of adoption.  This supports the empirical evidence in

Colombo and Mosconi (1995).

The coefficient on DSUB, although negative, is statistically insignificant.  Thus, being

a subsidiary institution does not have any significant impact on the conditional probability of

adoption.

Another notable aspect of the results contained in Table 2 is the role of the technology-

price variable, r Pt t  and that of the price expectations variable p t .  From Table 2, the

coefficient on r Pt t  is of the correct sign as suggested by the theoretical literature, but is not

found to be statistically significant.  The coefficient on the price expectations variable, p t , is

found to be both of the correct sign and statistically significant.  The significance of the

price-expectations variable suggests that myopic-type models employed by Hannan and

McDowell (1987) may be misspecified.

To investigate this issue in greater detail the model was estimated imposing the

parameter restriction 054 == ββ .  The results are shown in Table 4 and conform to the

conventional specification of a myopic-type.  In the context of the theoretical model outlined

in Section 2, this parameter restriction implies that the optimal date of adoption is only

governed by the profitability condition in expression (2).  The results in Table 4 show that

whilst the coefficient estimates of other variables remain relatively stable and of the same

sign, the myopic model is rejected using the likelihood-ratio test to test the parameter

restriction implied by the myopic model.
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Table 2.

Maximum Likelihood Estimates of Lognormal and Log-logistic Models

Coefficient Variable Lognormal Model Log-logistic Model

p TIME 4.6085 (4.6090)** 4.4262 (3.6318)**

1α CONSTANT 3.6275 (11.2490)** 4.1000 (5.9110)**

β 1 SIZEt 0.0328 (3.6780)* 0.0319 (3.5650)**
β 2

Kt -0.0116 (1.8880) -0.0085 (0.8000)
β 3 GYt 1.3137 (2.6710)* 1.8186 (1.9720)*

β 4
k rt t 0.9676 (2.5620)* 1.3714 (2.5669)**

β 5
r Pt t 0.0249 (1.1750) 0.0231 (1.2210)

β 6
pt -0.0105 (2.0520)* -0.0076 (2.2780)*

β 7
STAFF BRANCHt t 0.0118 (1.7270) 0.0203 (1.8820)

β 8 PROFITS SIZEt t 8.9417 (2.0300)* 7.3210 (1.9550)*
β 9 DPREVIOUS 1.1116 (4.1490)** 1.3094 (3.4260)**

10β DSUB -0.5876 (0.8600) -0.4850 (0.8420)

Median duration (years) 29.12 (5.97)** 32.91 (4.32)**

Log-likelihood -166.28 -166.22
Number of observations 1749 1749
Number of individual institutions 98 98

Log-likelihood ratio test for the
existence of epidemic effects:
( )p = 1 14.28  ( ( ) . ).χ 95

2 1 384=  13.68  ( ( ) . ).χ 95
2 1 384=

Log-likelihood ratio test for the
existence of order effects:
( )β4 0= 29.02  ( ( ) . ).χ 95

2 1 384=  28.32  ( ( ) . ).χ 95
2 1 384=

Log-likelihood ratio test for the
existence of rank effects:

)( 1098731 ββββββ ===== 48.72 )60.12)7(( 2
95. =χ  48.12 )60.12)7(( 2

95. =χ
Notes: ** Significant at 1 per cent.

*  Significant at 5 per cent.
t statistics in parentheses.
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Table 3.
Maximum Likelihood Estimates of Restricted Stock Lognormal and Log-logistic Models

Coefficient Variable Lognormal Model Log-logistic Model

p TIME 3.4210 (4.0128)** 4.3119 (3.9068)**

1α CONSTANT 4.2701 (9.2510)** 4.4760 (8.7090)**

β 1 SIZEt 0.0399 (2.2330)* 0.0394 (2.3130)*
β 2

Kt - -
β 3

GYt 1.1611 (2.3690)* 1.4845 (2.5258)*

β 4 k rt t 1.2823 (2.3380)* 1.4165 (2.1410)*
β 5

r Pt t 0.0339 (1.1470) 0.0347 (0.9590)

β 6
pt -0.0041 (2.1430)* -0.0067 (2.2260)*

β 7
STAFF BRANCHt t 0.0137 (1.9200) 0.0193 (1.9650)*

β 8 PROFITS SIZEt t 12.8648 (2.1760)* 13.5720 (2.0863)*
β 9 DPREVIOUS 0.6004 (1.9400)* 0.7110 (1.9080)*
β DSUB -0.5056 (1.1010) -0.0413 (1.4250)

Median duration (years) 28.82 (4.25)** 32.44 (4.17)**

Log-likelihood -167.62 -167.16
Number of observations 1749 1749
Number of individual institutions 98 98

Log-likelihood ratio test for the
existence of epidemic effects:
( )p = 1 16.16  ( ( ) . ).χ 95

2 1 384=  15.08  ( ( ) . ).χ 95
2 1 384=

Log-likelihood ratio test for the
existence of stock effects:
( )β2 0= 2.68  ( ( ) . ).χ 95

2 1 384=  1.88  ( ( ) . ).χ 95
2 1 384=

Log-likelihood ratio test for the
existence of rank effects:

)( 1098731 ββββββ ===== 60.14 )60.12)7(( 2
95. =χ  54.46 )60.12)7(( 2

95. =χ

Notes: ** Significant at 1 per cent.
*  Significant at 5 per cent.

t statistics in parentheses.
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Table 4.
 Maximum Likelihood Estimates of Restricted Myopic Lognormal and Log-logistic Models
Coefficient Variable Lognormal Model Log-logistic Model

p TIME 4.6478 (5.1406)** 4.8556 (4.4272)**

1α CONSTANT 3.1867 (12.4200)** 3.2712 (10.6100)**

β 1 SIZEt 0.0035 (2.3130)* 0.0039 (2.3130)*
β 2

Kt -0.0133 (1.6420) -0.0111 (1.7360)
β 3

GYt 1.0346 (2.4870)* 1.2413 (2.0710)*

β 4
k rt t - -

β 5
r Pt t 0.0121 (0.7750) 0.0062 (0.8286)

β 6
pt - -

β 7
STAFF BRANCHt t 0.0110 (1.9620)* 0.0156 (1.6970)

β 8 PROFITS SIZEt t 13.9857 (2.3920)* 13.4102 (2.0270)*
β 9 DPREVIOUS 0.9140 (4.7040)** 1.0351 (4.0410)**

10β DSUB -0.2086 (0.8660) -0.4203 (0.8840)

Median duration (years) 28.82 (10.96)** 24.36 (9.86)**

Log-likelihood -173.56 -175.58
Number of observations 1749 1749
Number of individual institutions 98 98

Log-likelihood ratio test for the
existence of epidemic effects:
( )p = 1 21.64  ( ( ) . ).χ 95

2 1 384=  23.60  ( ( ) . ).χ 95
2 1 384=

Log-likelihood ratio test for the
existence of expectation effects:
( )β β4 6 0= = 14.56  ( ( ) . ).χ 95

2 1 384=  18.72  ( ( ) . ).χ 95
2 1 384=

Log-likelihood ratio test for the
existence of rank effects:

)( 1098731 ββββββ ===== 47.40 )60.12)7(( 2
95. =χ  49.00 )60.12)7(( 2

95. =χ

Notes: ** Significant at 1 per cent.
*  Significant at 5 per cent.

t statistics in parentheses.
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6 CONCLUSION

The empirical contribution of this paper has been to estimate a number of duration models

for a panel data set of adoption histories in the UK financial sector.  The methodology

allowed for the explicit incorporation of time and time-varying covariates.

The empirical results indicate that rank effects have played an extremely significant

role in the diffusion of ATMs, thus supporting probit-type theoretical models.  Institution

size, growth in deposits and profitability were all found to have a positive and significant

effect on the conditional probability of adoption.  Moreover, the results suggest that early

adoption of previous vintage technologies (resulting in learning-by-doing effects) play a

significant role in fostering faster diffusion.  Consequently, the former technology history of

the firm affects current adoption decisions.  No significant role was found, however, for the

labour-saving potential of ATMs.  Reassuringly, the results were found to be robust across

different specifications of the baseline hazard.

There was no support given to the existence of stock effects, although order effects

entered the empirical model with the correct sign and was found to be statistically

significant.

The empirical results lend support to the existence of epidemic effects in the diffusion

of ATMs and it was illustrated that this was not due to the potential problem of

distinguishing between stock effects and the time-varying nature of the baseline hazard.

Moreover, the potential problem of differentiating between time-dependence and duration-

dependence as outlined by Colombo and Mosconi (1995) was shown not to apply to the set

of ATM adopters and, thus, strengthens this result.

It was further found that expectations formed on the number of adopters and the price

of technology have a significant role to play in the diffusion process, although the real

quality-adjusted price of technology fails to register a significant effect.  This lends further

support to the work of Karshenas and Stoneman (1993) that models specifying myopic

expectations may be seriously mis-specified.

In terms of fulfilling the second objective of the paper, the results appear to be robust

across different specifications of the baseline hazard.  This is consistent with previous

diffusion studies.  The decision of whether or not to impose a structure on the baseline

hazard does not appear to radically alter estimates and inferences.
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APPENDIX A. DERIVATION OF THE LIKELIHOOD FUNCTION

As shown by Karshenas and Stoneman (1993, 1995) and Mosconi and Colombo (1995), the

log-likelihood function can be derived from theoretical model outlined in Section 2.  This is

be achieved by introducing a stochastic element into the model.  The arbitrage condition in

(3) is transformed into the following condition

                                           0≤+ εity                                                                                 (A.1)

where ε  is a stochastic error term whose distribution remains invariant across firms and

overtime.  Writing the arbitrage condition in (3) as ity , and assuming ε  is distributed

independently of yi  with a distribution function ( )εΨ , the hazard rate has the form (Cox,

1972; Kalbfleisch and Prentice, 1980)

                                          [ ] [ ]ititit yyh −Ψ=≤+= 0Pr ε                                                          (A.2)

where ( )εΨ  is the distribution function of the stochastic error term.

The unconditional probability of adoption can be represented as a function ( ).f  of time

and the variables influencing adoption, plus a set of parameters.  If ( ).f  defines the density

function for adoption times, then

                                ( )βittff X ;=                                                                           (A.3)

The joint density function for adoption times is then used to set up a likelihood function.

Since the observations for some firms may be right-censored in the sense that not all firms

have adopted on or before the end of the censoring time, the likelihood function ( )βL  is

                          ( ) ( ) ( )( )[ ]{ }θθ βββ −−Π= 1
1 X ;1.X ; itit
n tFtfL                                               (A.4)

where ( ).F  is the distribution function corresponding to ( ).f  and θ  is an indicator variable

that takes the value of unity for firms who have adopted by the censoring time and zero for

right-censored firms.



19

APPENDIX B.  SPECIFICATION OF THE BASELINE HAZARD

The lognormal hazard function has the following specification

                                           ( ) ( ) ( )[ ]{ }
( )[ ]tp

tptp
th

λ
λφ

ln

ln

−Φ
=                                                            (A.5)

where ( ).φ  is the probability density function (PDF) and ( ).Φ  is the cumulative density

function (CDF).  The lognormal hazard imposes the restriction 0>p .  It increases

monotonically from 0=t , obtains a maximum value determined by the value of p and then

approaches 0 as t approaches infinity.  The higher value of p, ceteris paribus, the higher the

maximum value of the hazard.

The log-logistic hazard has the following specification

                                          ( ) ( )
( )p

p

t

tp
th

λ
λλ

+
=

−

1

1

                                                                     (A.6)

The log-logistic hazard is decreasing from infinity for t∀  if 1=p ; increases from 0 to a

maximum at ( ) λppt 11−=  and decreases toward 0 thereafter if 1>p .

APPENDIX C.  DATA SOURCES

• The yield on Treasury Bills was obtained from Table 7.1H of various copies of

Financial Statistics, Office for National Statistics (ONS), Stationary Office, London.

• Producer Price Index (PPI) was obtained from Table 2.1 of various copies of Economic

Trends, ONS, Stationary Office, London.

• Quality adjusted price of ATMs was supplied by the ONS, Cardiff.
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• Data on retail banks and building societies were obtained from previous editions of the

Annual Abstract of Banking Statistics, British Bankers’ Association, London and the

Building Societies Yearbook, Building Societies Association, London and from direct

correspondence with the institutions themselves.

• Data on the time of adoption of ATMs for both retail banks and building societies were

obtained from direct correspondence with the relevant institutions.
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