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The Sichuan (China) and L‟Aquila (Italy) earthquakes again highlighted the 

question of our preparedness for natural hazards. Within a few seconds an earthquake 

can demolish many buildings, destroy infrastructure, and kill and injure thousands of 

people. In order to reduce the impact of earthquakes on human life and prepare 

hospitals to cope with future disasters, this paper discusses earthquake related damage 

to healthcare facilities. It investigates the damage to 34 healthcare facilities in seven 

countries caused by nine earthquakes between 1994 and 2004, in order to determine 

common and specific issues. The investigation shows that structural and architectural 

damage tended to be different and specific to the situation, while utility supplies and 

equipment damage were similar in most cases and some common trends emerged. 

INTRODUCTION 

Earthquakes have always been a threat to human life and a major cause for damage to 

infrastructure. Previous earthquakes have resulted in physical damage, threatened lives and 

damaged healthcare facilities whose main function is to save lives and reduce the impact of 

disasters. Hospital resilience (i.e. strength and robustness) has always been important, but in 

recent years exclusive attention has been given to this subject specifically after the World Health 

Organization (WHO, 2008) and the United Nation International Strategy for Disaster Reduction 

(UNISDR) world campaign „Hospitals Safe From Disasters‟; the World Health Day (7 April 

2009) and the International Day for Disaster Reduction (14 October 2009). “There are countless 

examples of health infrastructure — from sophisticated hospitals to small but vital health centres 

— that have suffered this fate. One such case occurred in the Hospital Juarez in Mexico. In 

1985, almost 600 patients and staff lost their lives when this modern (for its time) and well-

equipped hospital collapsed in the wake of an earthquake” (WHO, 2007a). Literature and 

experience reveal that healthcare discontinuity is common following earthquakes; but it is not 

very clear what the causes of discontinuity are. The present paper discusses the causes of hospital 

inoperability in several countries with the aim of identifying the impact of earthquakes on the 

continuity of healthcare. The objectives are to explore the significance and performance of 

healthcare facilities in disasters; scrutinize the legislations and standards for healthcare resilience 

to earthquakes; and compare healthcare facilities response to earthquakes. 
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METHODOLGY 

Data collection 

This study adopted a pluralistic qualitative research method defined as a systematic, empirical 

strategy for eliciting responses from people in a special social context; and is concerned with 

information less understood by calculation (Fellows and Liu, 2003). A state of the art literature 

review, including research papers and reconnaissance reports were performed to identify and 

explore the key factors affecting the operation of medical facilities. Legislations for seismic 

resistant design and governmental and non-governmental guidance were also reviewed to 

identify laws and practices to mitigate seismic effect. Field investigations and interviews with 

hospital staff (clinical and administrative) were used to comprehensively explore the key 

factors affecting the operation of healthcare facilities. Between July 2003 and November 2005, 

ten hospitals located in three countries were investigated following four earthquakes (see Table 

1). The information was complemented with two in-depth interviews (in May 2009) with 

experts from earthquake engineering, and disaster risk management to find the lessons learned 

from past earthquakes and actions undertaken to mitigate with future events. 

Classification of hospital key factors 

Healthcare key factors are often classified into two categories: physical and social. The 

physical category includes structural and non-structural parts; whilst the social category 

encompasses staff and administrative parts (e.g. partnership with other organizations). The focus 

of this paper is on the physical category, the social category will be considered in future work. 

“The structural parts of a building are those that resist gravity, earthquakes, wind and other 

types of loads; they include columns; beams and foundations”; and “the non-structural parts 

include all parts of the building and its contents with the exception of the structure” they “are 

composed of: lifeline facilities; medical facilities; and architectural elements” (DoHS/WHO 

Nepal, 2004). Although this classification is clear and follows a logical philosophy, it does not 

provide clear information when describing non-structural damage; for example, in one of the 

reports we read: “…many of these structures had equipment and non-structural damage, 

resulting in extended business interruptions” (Miyamoto, et al., 2009), this statement does not 

describe whether the damage is related to utilities, architectural or other items. Furthermore, the 

European Microseismic Scale (EMS-98, 1998) involves architectural and structural components 

in the same category when assessing the damage to buildings. In this paper, components are 

classified into three categories: structural and architectural; equipment; and utilities. This 

classification does not compromise the importance of healthcare system components (structural 

and non-structural), “both the structural system and most of the non-structural systems are 

required to perform without interruption after an earthquake to enable adequate functionality” 

(FEMA, 2007); instead, it provides clearer information about the type of damage, which helps 

the perceiver to understand what is the impact on hospital operation and who is expected to be 

involved in the repairs. 

Table 1. List of Hospitals investigated 

Earthquake/Country Date Investigation date Hospitals visited 

Boumerdes/Algeria 21 May 2003 July 2003 CHU and Thenia 
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Miyagi-Ken 

Hokubu/Japan 
26 July 2003 August 2003 Fukaya and Kashimadai 

Bam/Iran 
26 December 

2003 

February 2004 

and 

September 2005 

Imam Khomeini and 

Aflatoonian 

Niigata Chuetsu/Japan 23 October 2004 November 2004 
Ojiya; Uonuma; Tamiya; and 

Nakajo 

 

There are significant numbers of case studies illustrating the performance of healthcare 

facilities after earthquakes; however, difficulty finding complete information was the main 

reason to limit the cases to thirty four hospitals as shown in Table 2. Unfortunately, there is 

limited information about the recent performance of Chinese and Italian facilities following the 

2008 Sichuan and 2009 L‟Aquila earthquakes, although Miyamoto et al. (2009) and EEFIT 

(2009) reported that recently built hospital buildings were damaged. 

Table 2. List of investigated hospitals and their relevant earthquakes 

Code Name of hospital Name of Earthquake Source of information 

NR1 Northridge Hospital 

1994 Northridge 

Earthquake,  

California, USA 

(Pickett, 1997); 

(Young, 1995); 

(USGS, 1996); and 

(McKevitt, et al., 

1995) 

NR2 Olive View Hospital 

NR3 Holy Cross Medical Center 

NR4 
Veteran‟s Administration 

Hospital (building #3) 

NR5 
LA County Medical Center 

(mental health building) 

NR6 St John‟s Hospital 

NR7 
USC Medical Center (USC 

hospital building) 

NR8 
Granada Hills Community 

Hospital 

HN1 
Medical College of Kobe 

University 
1995 Hyogo-Nambu 

Earthquake, Japan 

(Shinozuka, et al., 

1995); (Schiff, 1998); 

and (Ukai, 1996)  HN2 Hyogo Medical Center 

KC1 Izmit SSK 

1999 Kocaeli Earthquake, 

Turkey 

(Pickett, 2003); 

(Rodoplu, 2000); and 

(Scawthorn, 2000)  

KC2 Izmit State 

KC3 Adapazari SSK 

KC4 Adapazari State 

CC1 Christian Hospital 
1999 Chi-Chi Earthquake, 

Taiwan 

(Yao and Chuang, 

2001); (Soong and 

Yao, 2000); and 

(Soong, et al., 2000)  

CC2 Veteran Hospital 

CC3 Shiun-Tuan Hospital 

BH1 Civil Hospital 

2001 Bhuj Earthquake, 

India 

(WHO, 2001); and 

(Sharma, 2001)  

BH2 Jubilee Hospital 

BH3 Branch Hospital 

BH4 Mental Hospital 

BH5 Nursing School Hospital 
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BH6 ANM Training School 

BH7 Tuberculosis Centre 

BM1 CHU Centre Hospital 2003 Boumerdes 

Earthquake, Algeria 

Field investigation  

BM2 Thenia Hospital 

MH1 Fukaya Hospital 2003 Miyagi-Ken Hokubu 

Earthquake, Japan MH2 Kashimadai Hospital 

IR1 Aflatoonian Hospital 
2003 Bam Earthquake, Iran 

IR2 Imam Khomeini Hospital 

NG1 Ojiya Hospital 

2004 Niigata Earthquake, 

Japan 

NG2 Uonuma Hospital 

NG3 Tamiya Hospital 

NG4 Nakajo Hospital 

SIGNIFICANCE AND PERFORMANCE OF HOSPITALS IN EARTHQUAKES 

Significance of hospitals following earthquakes 

Medical facilities are one of the most critical facilities in any country, along with facilities 

such as fire departments and police stations. Hospitals are distinctive, however, due to the critical 

role they play in dealing with the large number of injuries typically associated with large-scale 

disasters such as earthquakes. Ninety seven percent (97%) of earthquake related injuries occur 

within the first 30 minutes following the main shock (Gunn, 1995). This urged organizations 

such as the WHO (2007a) to insist that healthcare facilities “must be physically resilient and able 

to remain operational and continue providing vital health services” following disasters to 

guarantee immediate medical treatment. Events such as the 2005 Kashmir and the 2008 Sichuan 

earthquakes caused enormous number of injuries requiring hospitals with large capacity, which 

was a problem in many cases such as in Taiwan during the 1999 Chi-Chi Earthquake (Soong and 

Yao, 2000). Hospital occupancy is generally high due to the existence of a large number of 

patients, visitors, medical staff and other employees at the same time (PAHO, 1993) in addition 

to the length of stay, which depends on the severity and type of injuries (including patients with 

mental disorders). A sample of 1,502 earthquake related injuries demonstrated that 31% of 

patients had to be admitted to hospital, 64.9% were identified with superficial laceration, 22.2% 

with fractures, and 1% with abdominal injuries requiring debridement and closure under general 

anesthesia, multiple concurrent procedures and urgent laparotomy (Mulvey, et al., 2008). In 

other words, all medical departments must be resilient enough to cope with earthquakes and 

provide diagnosis and treatment to injuries. Although, designing a healthcare facility to be 

resilient to hurricanes and earthquakes does not cost more than 4.5% extra on top of the total 

facility cost (Gibbs, 2007), many facilities are not designed to withstand such disasters. 

Performance of healthcare facilities following earthquakes 

Physical performance 

Published reports and papers reflect significant information about hospital performance in 

earthquakes varying between total collapse and fully operational. The Pan American Health 

Organization (PAHO, 2000) described a hospital as “a hotel, an office building, a laboratory and 

a warehouse” due to the complexity and interconnectivity of its systems. A typical healthcare 

facility depends on the state of its building; continuity of its utility supplies; availability and 
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sufficiency of staff, equipment and medical supply; and easy accessibility for its daily operation. 

The failure of any of these components affects the continuity of medical care. Despite the level 

of knowledge humanity has reached, easy access to information and considerable reports stating 

the experience of previous hospitals many hospital buildings are still very fragile to earthquakes: 

the 1995 Hyogo-Nambu Earthquake (Japan) severely damaged 61% of hospitals in disaster area 

and completely destroyed four facilities (Ukai, 1996); the 2005 Kashmir Earthquake (Pakistan) 

destroyed 50% of hospitals in stricken area raging from “sophisticated” to “rural” facilities 

(WHO EMRO, 2009); and the collapse of many hospitals and schools caused over 10,000 deaths 

following the 2008 Sichuan Earthquake in China (Miyamoto, et al., 2009). Structural behavior 

influences the response of non-structural components as most of them are connected to structure, 

which transfers earthquake forces onto them (WHO SEARO, 2002). For example, the failure of 

St. John‟s Hospital non-structural walls caused the rupture of water lines following the 1994 

Northridge Earthquake in the USA (Pickett, 1997); whilst the Christian and Shiu-Tuan hospitals 

suffered slight structural damage but severe utility and equipment damage during the 1999 Chi-

Chi Earthquake in Taiwan (Soong and Yao, 1999). Many healthcare facilities have not been 

sufficiently physically resilient to cope with earthquakes, although some facilities withstood the 

shaking due to their base isolation systems which helped to perform well such as the University 

of South California (USC) Medical Center (Pickett, 1997).  

“Seismic isolation is a technology that protects the structure by effectively decoupling the 

structure from the damaging effects of the earthquake” (Constantinou, et al., 2007). Seismic 

isolation performance and efficiency come from the radical modification of the building seismic 

response due to: the elongated fundamental period of the structure; the small drift that the 

building experiences; and the reduction of overall forces (Constantinou, et al., 2007), “thus the 

deflections and stresses generated in a base-isolated structure are significantly lower than those 

of a fixed-base one” (Su, et al., 1989); for example, the USC Medical Center building forces 

were reduced by 65% across the plane of isolation and there was no damage in the facility (Di 

Sarno, et al., 2007). Base isolators, therefore, provide a higher and more efficient performance to 

buildings than seismic codes demand; this classifies them as an „ideal‟ solution for critical 

facilities such as hospitals. 

Social performance 

In Japan, following the 1995 Hyogo-Nambu Earthquake, “the attendance rate of personnel in 

hospitals on the first day of the disaster was 58.4% for physicians, 35.0% for dentists, 44.2% for 

nurses, and 31.0% for clerical staff. In the first hours, when the hospitals in the disaster area 

were extremely busy, less than 50% of personnel were able to attend their hospitals” (Ukai, 

1996) due to reasons such as road damage, being among earthquake victims or having a relative 

trapped in rubble. Furthermore, personnel who remain at their duties post earthquakes were 

susceptible to stress and psychological disorders and may need to be treated by mental health 

professionals along with earthquake victims (Uemoto, et al., 1996). Awareness is adopted as a 

way to reduce stress and help medical staff to deliver high quality medical service. At present, 

many facilities throughout the globe are provided with emergency manuals (EMs) and regular 

trainings, to reduce stress and help towards a better emergency response. These manuals are 

often prepared based on previous experience and best practices; actions may vary between 

medical departments and type of disaster but they usually consider pre-, during and post disaster 

actions. To help with pre-disaster activities, Hirouchi (2009) recommends the use of Earthquake 

Early Warning (EEW) systems in hospitals to “prevent surgical errors, e.g., stopping surgery 
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and moving equipment away from the patient within the few seconds after the EEW”. A number 

of publications focused on hospital evacuation strategies such as in Schultz et al. (2003) who 

suggested that even after a moderate earthquake, hospitals may need to evacuate immediately 

because of non-structural or delayed structural damage. The aforementioned initiatives are 

important for staff resuming duties, but a major problem is how to increase the number of 

attendees among staff members? This requires further investigation and shall be considered in 

future work. 

LEGISLATIONS AND STANDARDS FOR HEALTHCARE RESILIENCE TO 

EARTHQUAKE 

Impact of previous experience 

“If we see the technology and political system, particularly after Kobe Earthquake, a lot of 

financial resources were allocated for disaster prevention…it is amazing!” stated one of the 

interviewees commenting on the impact of previous disasters on Japanese disaster prevention. 

The poor performance of medical facilities pushed researchers, engineers and decision makers to 

investigate in depth the causes of failure and take decisions to mitigate future risks. 

Consequently, new techniques were developed and implemented, and thus protected structural 

and non-structural components from failure. Interestingly, the implementation of base isolation, 

for example, ensures the continuity of medical services with relatively low cost: the Chilean 

Military Hospital spent 0.9% ($US1million) of the total hospital cost for the installation of its 

base isolation (Boroschek and Retamales, 2002). A week after the 1995 Hyogo-Nambu 

Earthquake, the WHO Kobe Centre was opened despite the “wrenching trauma” of the event, 

this was highly admired by the WHO and is perceived as a contribution “to health research as 

meaningful investment” (WHO Kobe Centre, 2007). Despite this significant improvement in 

techniques and practices, many newly built Chinese schools and hospitals collapsed following 

the 2008 Sichuan Earthquake, mainly due to poor design and poor structure quality thus killing 

thousands of people (Miyamoto, et al., 2009); and the inadequate detailing and irregularities in 

design were the cause of the 9 year old L‟Aquila Hospital to suffer severe damage in Italy 

following the 2009 L‟Aquila Earthquake (EEFIT, 2009). These cases show that there are 

strategic problems and authorities are urged to make sure that codes are up to date and enforced 

in practice. Countries such as Turkey realized this and started conducting comprehensive 

retrofitting activities to reduce the vulnerability and enhance the resilience of their infrastructure 

including hospitals, school and bridges (IPDED, 2007).  

Legislations 

“The purpose of building codes is to promote and protect the public welfare” (Hamburger, 

2002), thus they are designed to provide a guide for engineers and designers; and are supported 

by legislations for enforcement. The enforcement of codes is crucial for the resilience of 

buildings, many countries such as Algeria, Japan and Taiwan recognized the importance of code 

enforcement for the protection of welfare: interviewees stated that Japanese and Taiwanese 

“building codes were improved in terms of implementation as we believe that structural design 

was strong enough to cope with earthquakes”, and the Algerian code RPA 99 (2003) recognizes 

that code implementation and poor construction quality are the cause of damage to new buildings 

after the 2003 Boumerdes Earthquake. Code implementation can be done by enforcing the 

designers and architects to follow the law, but also it can be done by spreading awareness. For 
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example, Taiwanese authorities use awareness and legislations to push architects and contractors 

to design and construct resilient buildings; one of the interviewees stated that at present, 

architects and contractors “are more willing to comply with seismic detail and willing to pay 

more attention to what structural engineers suggest”. 

Most codes focus exclusively on structural components and when non-structural components are 

considered, they are limited to architectural, mechanical and electrical components (FEMA, 

2007); although these components are important, they are not sufficient to ensure the operation 

of hospitals. The investigation of Algerian (RPA 99, 2003), Iranian (BHRC, 2007), European 

(EuroCode 8, 2005) and Californian (SB 1953, 1994) codes demonstrates that the level of 

exposure to seismic activities and the quality of post earthquake hospital investigations were 

clear on the development of these codes. The 2003 Boumerdes (Algeria) and the 2003 Bam 

(Iran) earthquakes caused structural and non-structural damage to hospitals, yet the RPA 99 and 

the Iranian standards consider only structural and architecture resistance although they were 

updated recently, after these events. The investigation established that the Californian code is the 

most comprehensive amongst all investigated codes because it went through a long history of 

improvement and modification (see Table 3). Engineering investigations after the 1971 San 

Fernando Earthquake demonstrated that seismic forces in the Veteran‟s Administration (VA) 

Hospital site were under-estimated by codes (Holmes, 1976); and that the proper detailing and 

the beneficial effects of nonlinear soil-structure interaction helped one structure to withstand 

damage, although two neighboring structures collapsed (Rutenberg, et al., 1980). As a result of 

this earthquake, the first „Hospital Seismic Safety Act‟ was developed (California Seismic Safety 

Commission, 2001), with a focus on structural and nonstructural resistance (Meehan, 1984); however, the 

1994 Northridge Earthquake demonstrated that the Act was successful in protecting structures but damage 

to non-structural components, such as plumbing and ceiling systems, was still extensive in post-1973 

buildings (California Seismic Safety Commission, 2001). The Act was amended by Senate Bill 1953 after 

the Northridge Earthquake to require seismic evaluations; if hospitals were then found to have structural 

or nonstructural vulnerabilities, retrofits or replacements were also required. In essence, the legislation in 

California has been developed on lessons learned from previous experience and reflected the complexity 

of hospitals systems. There is a need therefore for other regions of the world that are threatened by 

earthquakes to develop and enforce hospital resilience legislation based in part on lessons learned from 

Iran, Algeria, Japan, Taiwan, California and other regions. 

Assessment methodologies 

There are two types of assessment, pre- and post-disaster. Post-disaster assessment is carried 

out for safety reasons and is done in several countries differently. For example, in Japan and 

California a three-level damage tagging system: “Inspected”, “Limited Entry” and “Unsafe” 

(FEMA, 2007); and in Algeria, authorities adopted a five-level assessment scale to assess 242 

facilities as shown in Table 4. The pre-disaster assessment defines vulnerabilities to enhance 

authorities, managers and engineers‟ decision to retrofit and reduce risk of damage. The 

application of assessment defines the assessment methodology (AM) to follow, which can be 

qualitative or quantitative based on observed vulnerability, expert opinions, simple analytical 

models, score assignment or detailed analysis procedure (Lang, 2002). There are many AMs, 
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some of which are generic and others are specific for healthcare facilities: Johnson et al. (1999) 

suggest a scoring generic methodology based on defining systems, evaluating individual 

components and systems; the WHO (2006, 2007b) and the PAHO (2008) suggest preliminary 

assessment methods based on visual screening combined with screener opinion; and Achour 

(2007) suggests also a hospital focused methodology based on modeling and simulation 

combined with theoretical models and case studies. Unlike codes and legislation AMs are not 

obligatory for facilities; thus there is a risk that they will be neglected. The previous section 

underlined problems of „code‟ implementation; there is a need therefore to investigate how to 

encourage hospital managers to evaluate the performance of their facilities. 

Table 3. Seismic codes and legislations 

Code/legislation 

 

Structural 

elements 

Architectural and 

filling components 

Equipment 

and Utilities 

Retrofittin

g 
Comments 

SB 1953 

(California) 
√ √ √ √ 

Specific for 

hospitals 

Iranian 3
rd

 

Edition 2007 
√ √ - - Generic 

RPA 99 V2003 

(Algeria) 
√ √ - - Generic 

EuroCode 8 

(French Edition) 
√ √ - - Generic 

 

COMPARISON OF HEALTHCARE PERFORMANCE POST EARTHQUAKES 

Structural and architectural components 

The European Microseismic Scale 98 (EMS-98, 1998) classifies damage to buildings into 

five grades as shown in Table 5. Wenzel et al. (2008) allocated to each grade a “damage ratio” 

and a “central damage factor (CDF)” expressed in percentage of structural and architectural 

damage. Grades 1 and 2 do not present a threat to the structure and therefore their severity is 

assumed as „Slight‟; Grade 3 presents a threat to structure which may affect the operation of the 

facility, its severity is „Moderate‟. The last two grades illustrate a severe damage; or a total 

collapse, their severity is assumed as „Major‟. Hospital structural and architectural damage data 

were distilled from various sources (see Table 2), and damage severity was classified according 

to Table 5. The severity of damage was classified descriptively, through the description of 

previous investigations to structural/architectural damage, and visually, through the site visits 

carried following each event. 

Table 4. Algerian post-earthquake assessment scale 

Level Description Number of facilities 

Green 1 Displacement of furniture, equipment 37% 

Green 2 Slight damage to non-structural elements 36% 

Orange 3 
Slight damage to structural elements and severe damage to 

non-structural elements 
14% 

Orange 4 
Considerable damage to structural elements 

Very severe damage to non-structural elements 

9% 
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Cracks on X shape for RC walls, bursting of joint beam-

column 

 

Red 5 

Total collapse 

Very severe deformation  

Repair cost higher than the building itself 

4% 

 

 

 

Most of the investigated facilities went through structural and or architectural damage, the 

severity varied from slight to major (see Table 6). One of the interviewees stated that, following 

the 1999 Chi-Chi Earthquake, “failed structures were mostly due to inappropriate design (old 

buildings did not have seismic design, new buildings had structural system problem of soft 

storey); construction flaw (the 135 degree stirrup hook is particularly difficult to construct); and 

inappropriate dismantling of structures (owners changed the structure system for remodeling)”. 

Poor construction quality has always been a major challenge, but when combined with the age of 

the structure and the lack of retrofitting the building cannot withstand earthquake shaking such as 

the case of the Thenia Hospital (BM2) which experienced severe damage during the 2003 

Boumerdes Earthquake. The facility comprises two sets of buildings: the first set includes several 

unreinforced masonry (URM) buildings built in 1870, never undergone anti-seismic retrofitting; 

whilst the second set includes a few buildings built in recent years (was not investigated). The 

Veteran‟s Administration Hospital complex comprises many buildings, some of which collapsed, 

whilst others performed well, during the 1971 San Fernando Earthquake, due to the proper 

detailing and “the beneficial effects of non-linear soil-structure interaction” (Rutenberg, et al., 

1980).  

Despite the significant amount of guidance to improve structural behavior, many recent 

facilities such as the Italian L‟Aquila and the Chinese Hanwang (9 years old) hospitals were 

damaged. Investigations concluded that irregularities (in plan and elevation), poor detailing (steel 

bars were exposed), and design (a beam is larger than columns) were the main reasons for 

L‟Aquila Hospital‟s structural failure (EEFIT, 2009); whilst lack of stiffness (i.e. soft storey) was 

the cause of the Hanwang facility post the 2008 Sichuan Earthquake (Miyamoto, et al., 2009). 

Furthermore, the impact of culture on the construction industry (Mahmood, et al., 2006, Ngowbi, 

2000) and the failure of implementing codes and standards increase the diversity of structural 

and architectural components resilience, which leads us to conclude that the structural and 

architectural performance depends on the state of each building (i.e. construction quality, design, 

site effects, code and guidance implementation and others). 

Table 5. Classification of damage severity 

Damage Grade (EMS-

98) 
Description 

Damage 

ratio (%) 

CDF 

(%) 
Severity 

Grade 1: Negligible to 

slight damage 

- No structural damage 

- Slight non-structural damage 
0-1 0.5 

Slight 
Grade 2: Moderate 

damage 

- Slight Structural damage 

- Moderate non-structural 

damage 

1-20 10 

Grade 3: Substantial to 

heavy damage 

- Moderate structural damage 

- Heavy non-structural damage 
20-60 40 Moderate 

Grade 4: Very heavy - Heavy structural damage 60-100 80 Major 
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damage - Very heavy non-structural 

damage 

Grade 5: Destruction - Very heavy structural damage 100 100 

Utility supplies 

Continued operation of healthcare facilities after earthquakes depends on utility systems, the 

majority are supplied from main grids and networks such as electric power, water supply and 

telecommunications. Previous experience has demonstrated that these grids and networks were 

damaged during earthquakes, and that their damage could initiate other disasters: for example, 

the 1923 Great Kanto Earthquake, Japan, resulted in a fire, which was in the main cause of 

deaths (Guest, 2004). Measures have been adopted to reduce secondary risks such as switching 

off mains supply automatically in earthquakes (ABS-Consulting, 2004). In both cases, damage 

and automatic switch off, the mains supplies are interrupted and thus affects the normal 

operation of medical facilities. Many of the investigated hospitals were provided with alternative 

sources to subsidize the loss of mains. Utilities performance depends on the integrity not only of 

these alternative sources but also of many related components such as pipelines, battery racks, 

electrical connections to control panels and mufflers (FEMA, 2009). Any damage to these 

components affects the continuity of medical supply as was found in many facilities (e.g. 

NR2&6, CC1-3, MH1 and NG1) and can cause the evacuation of facilities such as the Hyogo 

Medical Center (HN2). It is important to reduce the fragility of each system separately, but more 

importantly to reduce the interdependency of these systems on each other: the Olive View 

Medical Center (NR2) had to switch off its power generators due to loss of water used for its 

cooling system (Pickett, 1997). At present, many facilities are provided with less dependent 

backup systems such as the Aflatoonian Hospital (IR1) which benefits from a power generator 

with an air-cooling system (provided a year after the 2003 Bam Earthquake). This represents a 

significant improvement in backup systems manufacturing; however, ignoring utility systems 

resilience in codes and official guidance represents a major contribution to their fragility. Most 

of the investigated codes (Table 2) do not pay attention to utility systems resilience, except the 

SB 1953. Failing to include utility resilience in codes tends to disregard the importance of 

backup systems in facilities such was found in some facilities: BM1-2 and IR1 were not provided 

with any backup systems before the events. In conclusion, utilities could not perform after 

earthquakes whether the facility is provided with alternative sources or not. There is similarity 

between utility systems impact on healthcare facilities; however, the outcome of legislations 

such as SB 1953 and the recent seismic resistance systems (e.g. anti-sloshing tanks) cannot be 

proven until they go through a „real test‟, i.e. an earthquake. 

Equipment 

The continuity of medical services depends on having fully operational equipment to 

diagnose and treat injuries. Any damage or malfunction to equipment will result in low quality 

treatment, which in turn can threaten life. A study concluded that “manpower, medication and 

equipment for injuries of the knee, lower leg,…and injuries involving multiple body regions may 

be the most critically needed immediately after earthquakes” (Zhang, et al., 2009). “Equipment 

can become inoperable due to earthquake shaking even if it remains in place” (ATC, 2008) such 

as the Aflatoonian Hospital (IR1) radiology unit which was damaged because of internal 

mechanical/electrical problems. Achour et al. (2005) demonstrated that acceleration of 200-300 

cm/sec
2
 caused damage to 80% of diagnosis and 40% of treatment equipments in hospitals 
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following the 2004 Niigata-Ken Chuetsu Earthquake (Japan). Unstable equipment damages 

utility installations (Central Sterilization Room of IR1 damaged water pipelines); obstructs 

evacuation routes (Achour, 2007); causes serious injuries and can cause partial or total structural 

collapse (PAHO, 2000). Suggestions were to restrain equipment to reduce their damage (PAHO, 

2004), although researchers demonstrated that even anchored equipment get damaged, and 

suggest that it may be more stable if they are left free standing (Makris and Zhang, 1999). The 

response of equipment to earthquakes can be sliding, slide-rocking, rocking or flying (Housner, 

1963) depending on their geometry, static friction and ground acceleration (Shenton III, 1996), 

although, some researchers believe that frequency is also another factor that affects equipment 

stability (Achour, 2007).  

A characteristic of most healthcare equipment is the excessive use of casters for easy 

movement, which makes nurses tasks easier. Wheeled equipments are easy to move when 

subjected to very low accelerations (as small as 50cm/sec
2
); despite the chaotic movement, they 

stabilize in high accelerations and frequencies (Achour, et al., 2007). 

Building contents “are specifically exempted from seismic provisions in model building 

codes. Regulated by the code or not, contents can pose an additional risk to safety and continuity 

of operations after an earthquake…The seismic protection of contents is dependent upon an 

understanding of potential seismic risk followed by action to mitigate that risk on the part of 

business owners, homeowners, and tenants” (ATC, 2008). Considering that most codes do not 

consider equipment stability and that hospital equipments are similar throughout the world, 

equipment performance is expected to be similar in any facility. This investigation demonstrates 

that this is true as most facilities had problems with their equipments (see Table 6). The impact 

of the SB 1953 code on the performance of equipment, however, remains unknown until 

facilities falling under this legislation are tested.  

CONCLUSIONS AND FUTURE WORK 

Previous earthquakes resulted in physical damage, threatened lives and damaged healthcare 

facilities, whose main function is to save lives and reduce the impact of disasters. The 

significance of hospitals lies with the enormous investment for any country: the destruction of a 

hospital and the cost of reconstruction impose a major economic burden; also with the significant 

number of injuries that they treat pre and post disasters. Despite the considerable number of 

assessment methodologies and the seismic resistance technologies, recent events demonstrated 

that hospitals are still vulnerable to seismic activities and that there are many challenges facing 

the continuity of medical service after earthquakes. The performance of healthcare facilities 

depends on the performance of both social and physical components; however, due to 

complexity of these two components and the interconnectivity they have, this study focused only 

on physical components. The investigations demonstrated that the structural and architectural 

components respond differently to earthquake shaking due to the diversity of causes and the 

specification of each building. On the other hand, the findings show that there is a similarity 

between equipment and utility supplies‟ damage because most facilities are equipped with 

similar equipments and installations that are not protected by codes. 

Most seismic resistance codes were developed universally for all types of buildings 

regardless of their occupancy. This resulted in a lack of attention to the specification of 

healthcare facilities and therefore unintentionally „contributing‟ to medical care interruption. 



Earthquake Spectra Vol 27, Issue 3, pp. 617-634, 2011. 
 

628 

There is a need to develop seismic resistance codes for hospitals that provide guidelines for the 

structural and architectural elements (for new and existing buildings); the continuity of utility 

supplies; and the stability of equipments. The efficiency of codes depends on the method of their 

development and the effectiveness of their implementation. Codes should be based on scientific 

evidence (i.e. field investigation, theory and best practice) with consideration of the local culture 

of construction method, but most importantly, they must be provided with implementation and 

enforcement strategies. 

 The California legislation SB 1953 was based on previous experience and complexity of 

hospitals systems. It demonstrates how strict the authorities are to ensure the continuity of 

medical care in earthquakes. The legislation presents an important tool to enhance the physical 

resilience of hospitals but not the social resilience which may be a cause of medical care 

disruption. The literature review brought forward the importance of social resilience for the 

continuity of medical care; this will be investigated in more detail to find out what is the best 

way to enhance the social resilience and suggest methods to include in hospital codes. 
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Table 6. Summary of hospital damage caused by earthquakes 

Hospital 

Code 

PGA 

(cm/sec
2
) 

Structural Damage Lifeline Damage/malfunction Equipment Damage/Malfunction 

Slight Moderate Heavy Unknown Power Water Gas Tel. Anchored 
Free standing/ 

wheeled 

Unknow

n 

NR1 -            

NR2 910            

NR3 1000            

NR4 940            

NR5 490            

NR6 -            

NR7 490            

NR8 -            

HN1 -            

HN2 -            

KC1 225            

KC2 225            

KC3 400            

KC4 400            

CC1 560            

CC2 580            

CC3 480            

BH1 375
*
         Total collapse 

BH2 375
*
         Total collapse 

BH3 375
*
         Total collapse 
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BH4 375
*
         Total collapse 

BH5 375
*
            

BH6 375
*
            

BH7 375
*
            

BM1 340
*
            

BM2 580
**

            

MH1 -            

MH2 -            

IR1 870
***

            

IR2 870
*
         Total collapse 

NG1 790            

NG2 772            

NG3 510            

NG4 549            

* PGA recorded within the same city as hospital 

** PGA recorded 20km from hospital 

*** PGA recorded several kilometers from hospital 
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