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Abstract 

This paper reports the results of a study conducted to evaluate the influence of 

cement alkalinity on the pore solution chemistry and chloride-induced reinforcement 

corrosion in ordinary and sulfate resisting Portland cement concretes.  To evaluate the 

influence of cement alkalinity on the pore solution chemistry, cement paste 

specimens were prepared and admixed with fixed quantity of sodium chloride and 

various dosages of alkalinity (in the range of 0.4 to 1.4% Na2O equivalent).  The pore 

solution was extracted and analyzed to determine the OH-, Cl- and SO4
-- 

concentrations.  The influence of cement alkalinity on chloride-induced 

reinforcement corrosion was also assessed by measuring corrosion potentials and 

corrosion current density at regular intervals.  The results indicated that the OH-, Cl- 

and SO4
-- concentrations of the pore solution increased with increasing alkali content 

of the cement.  Further, the Cl-/OH- ratio decreased with increasing alkali content up 

to 0.8% Na2O and then increased with a further increase in the alkalinity.  

Furthermore, an improvement in the corrosion-resistance of the SRPC and OPC 

concrete specimens was noted with increasing alkali content of cement. However, the 

highest improvement was noted when the alkalinity was 0.8% Na2O equivalent. 

Keywords: Alkalinity, Chloride, Corrosion, Corrosion potentials, corrosion 

current density and Pore solution. 
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1. Introduction 

Cement chemistry significantly influences the pore solution composition and 

hence the mechanisms of reinforcement corrosion.  The two chemical properties of 

cements that affect its chloride-binding capacity are the C3A content and alkalinity.  

While considerable research has been conducted on the effect of C3A phase of cement 

on its chloride-binding capacity and reinforcement corrosion, meager data exist on 

the effect of alkalinity of cement on chloride-binding and pore solution chemistry.  

The influence of cement alkalinity on reinforcement corrosion is not very well 

documented and no data are available regarding the effect of cement alkalinity on 

time-to-initiation of reinforcement corrosion and corrosion current density in 

concrete. Limited studies [1-2] conducted to date have concentrated on the effect of 

cement alkalinity on the pore solution chemistry. 

The alkaline pore solution of concrete protects the reinforcing steel from 

corrosion by forming a sub-microscopically thin protective film of gamma ferric 

oxide (γ-Fe2O3) on the steel surface.  However, high alkalinity of cement may 

adversely affect its chloride-binding capacity thereby influencing the kinetics of 

reinforcement corrosion.  Few researchers [3-5] have reported a significant inhibiting 

effect of an alkaline pore solution environment on the chloride-binding capacity of 

cement.  Page and Vennesland [3] reported a substantial decrease in the chloride-

binding capacity of silica fume cements due to a resulting decrease in the alkalinity of 

the pore solution. Gunkel [4] has shown that the effect of alkali on reducing the 

chloride-binding of cement may be greater than that of the sulfate ions.  Tritthart [5] 

has shown that cement alkalinity significantly influences the chloride-binding of 

cement and hence the free chlorides.   
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According to Hausmann [6] both chloride concentration and alkalinity of the pore 

solution affect the corrosion process.  Taking into account the concomitant effect of 

chloride and alkalinity, he suggested that the critical Cl-/OH- to be around 0.6.  Gouda 

[7], using pH values of the electrolyte representative of the concrete pore solution, 

indicated that the threshold Cl-/OH- was 0.3.  Lambert et al. [8] investigated the 

relationship between Cl-/OH- and corrosion current density in various cements.  Their 

investigation indicated that the passive conditions of steel in concrete, characterized 

by corrosion current density (Icorr) substantially lower than 100 nA/cm2, were 

maintained until a threshold Cl-/OH- ratio of approximately 3 was exceeded.  There 

was a considerable scatter in the values of Icorr recorded at Cl-/OH- ratios in excess of 

3 and even at Cl-/OH- ratios as high as 15 to 20, there were instances of bars suffering 

no significant corrosion. Kayyali and Haque [9] emphasized the importance of Cl-

/OH- threshold to predict the time to initiation of reinforcement corrosion.  They 

provided charts giving safe regions of Cl-/OH- values for various concrete.  

According to their charts, a Cl-/OH- value of more than 0.6, for concrete with 

admixed chloride is considered unsafe.  Similarly, a Cl-/OH- value of greater than 3.0 

for concrete exposed to external chloride is considered unsafe. 

Mangat and Molloy [10] indicated that a universal threshold Cl-/OH- level is not 

applicable to all concrete.  In their investigation, reinforcing steel corrosion was 

observed in the control matrix when the Cl-/OH- was 13, while at values of 17 and 18, 

in a silica fume cement concrete, reinforcement corrosion was insignificant.  

Similarly, minimal reinforcement corrosion was reported by Al-Amoudi et al. [11] in 

silica fume cement and blast furnace slag cement mortar specimens, placed in an 

aggressive sabkha (highly saline soil) environment, even at Cl-/OH- of 3.3 and 6.5, 
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respectively.  Tests conducted by Arya et al. [12] also indicated that the uptake of 

chlorides is reduced to half when the storage of specimens was changed from 12.5 pH 

environment (saturated calcium hydroxide solution) to a pH environment of 13.7 (0.5 

M NaOH solution).  The inhibiting effect of high alkalinity on chloride binding has 

also been reported by Hussain [1].  Talib [2] investigated the effect of alkali content 

of cement on the chloride concentration in the pore solution.  The proportions of 

unbound chlorides, in both plain and silica fume cements, increased with the alkali 

content of cement. 

The high alkali content of cement while reducing the chloride-binding capacity of 

cement may also accelerate alkali-aggregate reaction, thereby enhancing 

reinforcement corrosion in the environments charged with chloride ions.  However, 

one major contribution of the high alkalinity of cement is a reduction in the Cl-/OH- 

ratio that controls the kinetics of reinforcement corrosion. 

In the studies conducted so far, the effect of cement alkalinity on its chloride 

binding has been evaluated to a limited extent. The effect of cement alkalinity on 

reinforcement corrosion was evaluated by placing steel in electrolyte representative 

of concrete pore solution.  However, the effect of cement alkalinity on reinforcement 

corrosion and the buffering action of an alkaline environment when chloride ions 

diffuse from the external environment have not been investigated. 

This study was conducted to evaluate the effect of cement alkalinity on the pore 

solution chemistry, i.e., OH-, Cl- and SO4
-- concentrations, and chloride-induced 

reinforcement corrosion in sulfate resisting and ordinary Portland cement concerts. 

2 Experimental Program 
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2.1 Pore Solution Chemistry 

2.1.1 Materials and Specimen Preparation 

Cylindrical cement paste specimens, 49 mm in diameter and 75 mm high, were 

cast using sulfate resisting Portland cement (SRPC) and Portland cement (PC) with 

an effective water to cement ratio of 0.45.  The chemical composition of cements is 

shown in Table 1.  All cement paste specimens were admixed with fixed quantity of 

sodium chloride (0.8% Cl- by weight of cement) and the cement alkalinity was 

adjusted to 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4% (Na2O equivalent).  To obtain the required 

quantity of alkalinity or chloride concentration, analar grade of sodium hydroxide and 

sodium chloride salts were dissolved in the mix water, which was added gradually to 

the cement during mixing. The constituents were mixed in a blender till uniform 

consistency was obtained.  The cement paste was poured into plastic cylindrical vials 

in two layers with appropriate consolidation to remove entrapped air.  The vials were 

then tightly sealed and kept at a controlled laboratory temperature of 20 ± 2 °C until 

testing.  Three replicate specimens were cast from each batch.  

2.1.2 Pore Solution Extraction and Analysis 

The pore solution in the cement paste specimens was extracted using a high-

pressure pore solution expression device similar to that used by Longuet et al. [13] 

and Barneyback and Diamond [14].  This technique has the advantage that the pore 

solution can be extracted and its composition known.  Though this is a tedious 

method, the pore solution so extracted has a uniform concentration, while this 

advantage is not available with other techniques, such as determining the pore 

solution composition by water or acid extraction. The pore solution was extracted 

after 100 days of casting.  For this purpose, the specimen was placed on the 
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base of a pore press and pressure was applied through the piston and gradually 

increased to a maximum of 150 MPa. This pressure was sustained until sufficient 

quantity (3 to 4 ml) of the pore fluid was recovered in a hypodermic syringe through 

the fluid drain located at the base of the apparatus.  Care was taken to avoid undue 

exposure of the pore solution to air and it was stored in sealed plastic tubes till the 

time of analysis. The expressed pore solution was analyzed to determine OH-, Cl- and 

SO4
-- concentrations as described below. 

The OH- concentration of the pore solution was evaluated by direct titration 

against nitric acid.  For this purpose, 0.2 to 0.5 ml of the pore solution was diluted 

with deionized water to 10 ml and the OH- concentration was measured by direct 

titration against 0.01 M nitric acid using phenolphthalein as an indicator.  A burette 

with a least division of 0.02 ml was used for titration.  The actual molarity of the 

nitric acid was determined by titrating it against 0.01 M NaOH. 

The chloride ion concentration of the pore solution was assessed by the 

spectrophotometric method [15].  For this purpose, 0.2 ml pore solution was diluted 

to 10 ml with distilled water.  To the diluted solution, 2 ml ferric ammonium sulfate 

and 2 ml mercuric thiocynate, saturated in ethanol, were added.  The mixture was 

mixed slowly and continuously by shaking the beaker and then kept undisturbed for 

about 30 minutes before the absorption reading was taken on a Spectronic model 

UV21 spectrophotometer at a wave length of 460 nm against deionized water.  The 

chloride concentration was computed using a computer programme that was based on 

a calibration curve prepared using a standard chloride solution.  Some specimens 

were serially diluted to decrease the chloride concentration to less than 10 μg/L. 
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The sulfate concentration was determined using the spectrophotometric method 

outlined in standard methods for the analysis of water and wastewater, recommended 

by the American Water Works Association (AWWA) [16].  For this purpose, 0.5 ml 

of the pore solution was diluted to 100 ml using deionized water.  To the diluted 

solution, the recommended buffer was added and absorption measured using a 

spectrophotometer at a wave length of 420 nm.  Barium chloride (BaCl2) was then 

added to the solution and mixed by stirring for one minute.  After thorough mixing, 

the solution was placed in the spectrophotometer and the absorption reading taken 

after 5 minutes.  The sulfate concentrations were calculated from the net absorption 

using a calibration curve that prepared using a standard sulfate solution. 

2.2 Chloride-Induced Reinforcement Corrosion 

2.2.1 Materials and Specimen Preparation 

To study the effect of alkalinity on chloride-induced reinforcement corrosion, 

reinforced concrete specimens were prepared and cement alkalinity was adjusted to 

0.4, 0.6, 0.8, 1.0, 1.2 and 1.4% (Na2O equivalent) by adding the required quantities of 

sodium hydroxide.  Analar grade sodium hydroxide was mixed with the mix water to 

obtain the required alkalinity.  Reinforced concrete cylinders, 75 mm in diameter and 

150 mm high, were cast using sulfate resisting Portland cement (SRPC) and ordinary 

Portland cement (OPC) with an effective water to cement ratio of 0.45 and cement 

content of 350 kg/m3.  Crushed limestone with a specific gravity of 2.43 and 

absorption of 3% was used as coarse aggregates and dune sand with a specific gravity 

of 2.53 and absorption of 0.57% was used as fine aggregates. The coarse and fine 

aggregates were clean and free from all types of salts, dust and other fine particles. 

The volume of water in each mix was adjusted to compensate for the absorption 
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of coarse and fine aggregates.  All mixtures have the same water/cementitious ratio to 

be consistent.  

The steel bars were cleaned and coated with cement paste and followed by an 

epoxy coating at the concrete-air interface and bottom of the bar in order to avoid 

crevice corrosion at these locations.  The steel bars were cleaned mechanically with a 

silicon carbide paper, wherever necessary, and degreased with acetone prior to 

casting in concrete.  The concrete specimens were cast in steel moulds.  Before 

casting, the moulds were cleaned and slightly oiled to facilitate the demolding 

process.  The 12 mm diameter steel bar was then fixed centrally at the middle of the 

mould providing a 25 mm clear cover at the bottom. 

The concrete ingredients were mixed in a mechanical mixer and placed in the 

moulds in two layers by consolidation on a vibrating table.  After casting, the 

specimens were covered with polyethylene sheets and allowed to cure at the 

laboratory temperature for 24 hours.  The specimens were then demolded and cured 

in potable water maintained at 25 °C for 28 days.  After this curing period, the 

specimens were dried by keeping them at room temperature for one week and then 

placed in plastic containers containing the test solutions. 

2.2.2 Exposure Solutions 

The concrete specimens were divided into six groups, each group consisted of 

three specimens from each cement.  The specimens in each group were placed in 

solution containing 5% NaCl and varying alkalinity as detailed in Table 2. 

2.2.3 Monitoring of Reinforcement Corrosion 
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Reinforcement corrosion was evaluated by measuring corrosion potentials and 

corrosion current density (Icorr) at regular intervals.  These techniques are non-

destructive in nature and provide both quantitative and qualitative indication of 

reinforcement corrosion.  While corrosion potentials provide a qualitative indication 

of reinforcement corrosion, particularly its initiation, corrosion current density 

measurements provide a quantitative measurement of the rate of reinforcement 

corrosion 

Reinforced concrete specimens were partially immersed in the test solution.  The 

level of the solution was adjusted, so that only 85 to 90 mm of the bottom of the 

specimen was in the solution.  Measurements were conducted on three specimens 

representing similar mix composition and average values were reported.  The 

corrosion potentials were measured using a saturated calomel reference electrode 

(SCE) and a high impedance voltmeter.  The steel bar was connected to the positive 

terminal of the voltmeter while the reference electrode was connected to its negative 

terminal.  The corrosion current density was measured using the linear polarization 

resistance method.  In this technique, steel is polarized to ± 20 mV of the corrosion 

potential and resulting current is measured and the slope of the potential-current 

curve at the open circuit potential is obtained. Corrosion current density is then 

calculated using the following formula proposed by Stern and Geary [17]: 

Icorr = B/Rp 

Where: 

Icorr = corrosion current density, µA/cm
2
 

Rp = polarization resistance, KΩ.cm
2  
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B = 
β a * β c 

2 . 3 ( β a + β c )  

Where: βa and βc  are the anodic and cathodic Tafel constants, mV/decade, 

respectively. 

The Tafel constants are normally obtained by polarizing the steel to ±250 mV of 

the corrosion potential (Tafel plot).  However, in the absence of sufficient data on βa 

and βc, a value of B equal to 26 mV for steel in active condition and 52 mV for steel 

in passive condition is used [18].  In this investigation, Tafel constants of 120 

mV/decade were used.  In another study, Dehwah et al. [19] conducted 

potentiodynamic experiments on concrete specimens and the results indicated that, 

the Tafel constants are close to 120 mV/decade.  Lambert et al. [8] reported a good 

correlation between corrosion rate determined using these values and the gravimetric 

weight loss method. 

3.   Results 

3.1 Pore Solution Chemistry 

The OH- concentration in the SRPC and OPC paste specimens admixed with 

0.8% Cl- and various dosages of alkalinity is plotted in Figure 1. The OH- 

concentration increased almost linearly with increasing alkalinity of cement. The OH- 

concentrations in the OPC paste specimens were slightly more than those in the 

SRPC paste specimens up to an alkalinity of 1.2%.  However, they were similar when 

the alkalinity was 1.4%. 

Figure 2 depicts the chloride concentration in the SRPC and OPC paste specimens 

admixed with sodium chloride and different alkali contents. The chloride 
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concentration increased with the alkalinity content in both the cements.  The values in 

the SRPC paste specimens were slightly more than those in the OPC specimens up to 

an alkali content of 1%. Beyond this alkalinity, the chloride concentration in both the 

cements was almost similar. 

The Cl-/OH- ratio of the pore solution in the SRPC and OPC paste specimens 

admixed with 0.8% Cl- and varying alkali contents is plotted in Figure 3.  These 

values decreased with increasing alkali content of up to 0.8% Na2O, beyond which 

the Cl-/OH- increased slightly with increasing alkali content. The Cl-/OH- values in 

the SRPC paste specimens were slightly higher than those in the OPC paste 

specimens.  The decrease in the Cl-/OH- ratio, with increasing alkalinity of cement, 

up to 0.8%, may be attributed to an increase in the OH- concentration. Beyond 0.8% 

alkalinity, the increase in both OH- and Cl- is very marginal. This results in a slight 

increase in the Cl-/OH- ratio. 

The sulfate concentration in the SRPC and OPC paste specimens is depicted in 

Figure 4.  The sulfate concentration increased almost linearly with increasing alkali 

content of cement.  The sulfate concentration in the control specimens (Na2O 

equivalent of 0.4%) was the same in both the cements. However, the sulfate 

concentration in the OPC specimens with other alkali contents was slightly higher 

than that in the SRPC specimens with similar alkali contents.  

3.2 Chloride-Induced Reinforcement Corrosion 

3.2.1 Corrosion Potentials 

The corrosion potentials on steel in the SRPC concrete specimens admixed with 

alkalinity of 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4% Na2O equivalent and exposed to 5% NaCl 
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solution containing similar alkalinity are plotted against the period of exposure in 

Figure 5.  The corrosion potentials were initially high (less negative). However, they 

decreased with the period of exposure and then these values were more or less 

similar. 

The corrosion potentials on steel in the OPC concrete specimens admixed with 

alkalinity of 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4% Na2O and exposed to 5% NaCl 

containing similar alkali contents are shown in Figure 6. These data also indicate a 

trend similar to that noted in the SRPC concrete specimens. 

The corrosion potential curves, discussed in Figures 5 and 6, were utilized to 

evaluate the time to initiation of reinforcement corrosion based on the ASTM C876 

criterion of -270 mV SCE. The time to initiation of reinforcement corrosion is plotted 

against alkalinity in Figure 7. These values, in both the cements increased with 

increasing alkali content of up to 0.8% Na2O. However, it decreased in the concrete 

specimens with alkalinity of more than 0.8% Na2O. This indicates that cement 

alkalinity of up to 0.8% Na2O is beneficial from corrosion initiation point of view. 

However, a further increase in alkalinity does not indicate ant improvement in the 

corrosion-resistance of both OPC and SRPC. 

3.2.2 Corrosion Current Density 

The variation of Icorr on steel in the SRPC concrete specimens with varying 

alkalinity is depicted in Figure 8.  The Icorr values were initially very low and similar 

up to 100 to 120 days of exposure in all the concrete specimens.  After this time, the 

Icorr started to deviate and increased with increasing period of exposure.  The Icorr on 

steel in the control specimens (cement with Na2O equivalent of 0.4%) was more 
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than that in the concrete specimens with higher alkalinity.  However, the Icorr on steel 

in the concrete specimens with an alkalinity of 0.8% was the lowest.  The Icorr on steel 

in the OPC concrete specimens with varying alkalinity is plotted against period of 

exposure in Figure 9.  These data also exhibited a trend similar to that noted in the 

SRPC concrete specimens.  

The Icorr on steel in the SRPC and OPC concrete specimens is plotted against 

alkalinity in Figure 10.  The Icorr decreased with increasing alkali content of up to 

0.8% Na2O, beyond which a slight increase in the Icorr was noted.  These results 

together with those in Figure 7 indicate that the corrosion-resistance of concrete is 

improved up to an alkali content of 0.8%.  However, when the alkalinity is more than 

0.8% this improvement is insignificant. 

4. Discussion 

4.1 Pore Solution Chemistry 

The data in Figures 1 through 4 indicate that the OH-, Cl- and SO4
-- concentrations 

in the pore solution increased almost linearly with increasing alkali content in the 

cement.  The OH-, Cl- and SO4
-- concentrations were almost similar in the SRPC and 

OPC paste specimens when the cement alkalinity was high.  The increase in the OH- 

concentration may be attributed to the NaOH added through the mix water.  The 

increase in the chloride concentration with increasing alkalinity may be ascribed to the 

solubility of calcium chloro-aluminate hydrate (Friedel’s salt) due to increasing 

alkalinity. The SO4
-- concentration in the SRPC and OPC paste specimens also 

increased linearly with the alkalinity.  This increase in the sulfate concentration may be 

attributed to the formation of Na2SO4 due to the reaction between the added sodium 
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hydroxide and gypsum available in the cement. In other words, both calcium 

chloroaluminate and calcium sulpho-aluminate hydrates are unstable in a highly 

alkaline environment. 

These results confirm the hypothesis presented in the work conducted by Dehwah 

[20] on the effect of alkalinity on chloride- and sulfate-binding of cement.  An 

increase in the alkalinity of cement, particularly when the alkaline materials are 

added as contaminants, influences the chloride and sulfate binding of cements. While 

a decrease in chloride-binding of cements may accelerate reinforcement corrosion, 

the reduction in the sulfate binding is beneficial as it reduces the chances of delayed 

ettringite formation and hence reduce concrete deterioration due to sulfate attack.  

Another concern with regards the increase in alkalinity of cements is the acceleration 

of the alkali-aggregate reaction when reactive aggregates are used.  

4.2 Chloride-Induced Reinforcement Corrosion  

The data developed in the present study have indicated that the alkalinity of 

cement plays an important role in the kinetic of reinforcement corrosion. The 

corrosion potentials in the SRPC and OPC concrete specimens decreased with 

increasing alkalinity of cement. The time to initiation of reinforcement corrosion in 

both the cements also increased with increasing alkalinity content of up to 0.8%.  

However, the time to initiation of reinforcement corrosion decreased with further 

increase in the cement alkalinity. Similarly, the Icorr on steel in the SRPC and OPC 

concrete specimens decreased with increasing cement alkalinity of up to 0.8%. 

Beyond this alkalinity no appreciable change in the Icorr, was noted.  However, the 

Icorr in the specimens with alkalinity of 1.0, 1.2 and 1.4 was also lower than that in the 

concrete specimens prepared with an alkalinity of 0.4 and 0.6%.  The results of 
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this study indicate that, alkalinity improves the resistance to reinforcement corrosion 

of both SRPC and OPC, the highest improvement occurring when the alkalinity was 

0.8%. 

The improvement in corrosion-resistance of concrete due to increasing alkalinity 

may be attributed to an increase in the pH of the pore solution, which stabilizes the 

protective layer on the steel bar.  However, a slight decrease in the corrosion- 

resistance was noted when alkalinity was more than 0.8%.  This may be attributed to 

a decrease in the chloride-binding due to high alkalinity.  Goni and Andrade [21] 

reported that as the alkalinity increases the pH also increases and the Icorr decreases.   

The other important factor to which the corrosion resistance improvement may be 

attributed, is the Cl-/OH- ratio of the pore solution.  The Cl-/OH- ratio of the pore 

solution in the cement paste specimens admixed with sodium chloride and alkalinity 

decreased with increasing alkali content of cement up to 0.8% Na2O, and then 

increased slightly with increasing alkali content up to 1.4% Na2O.  The Icorr exhibited 

a similar behavior.  The results of the Cl-/OH- ratio of the pore solution together with 

those reported by Goni and Andrade [21] support the results of the Icorr obtained in 

this study.  Further, the concrete specimens were investigated visually by splitting 

them and the bars were taken out which indicated that the corrosion on steel bars in 

both cements exhibited a trend similar to that noted in the Cl-/OH- ratio of the pore 

solution in Figure 3. The corrosion was the highest in the control specimens while it 

was the lowest in the specimens admixed with 0.8% Na2O equivalent. 

A maximum limit of 0.6% cement alkalinity, expressed as Na2O equivalent, is 

normally imposed by many international standards, such as ASTM and BS.  This 
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limitation is purely adopted to avoid alkali-aggregate reaction, when alkali-reactive 

aggregates are utilized in concrete. The results of this study show that the alkali 

content can be increased to 0.8%, to enhance the corrosion-resistance of concrete. 

This will be beneficial if it is known that the aggregates are not reactive. Therefore, 

the limits on alkali content in cement should be case specific as suggested below: 

Limitations on cement alkalinity (Na2O equivalent): 

Potentially alkali-reactive aggregate: < 0.6% 

Inert aggregate: 0.6 to 0.8% 

5. Conclusions 

The OH-, Cl-, and SO4
-- concentrations in the pore solution of the SRPC and OPC 

increased with increasing alkali contents of cement.  The increase in the chloride and 

sulfate concentration due to increasing alkalinity indicates that both calcium 

chloroaluminate and calcium sulphoaluminate hydrates are not stable at high alkalinity. 

The chloride-binding capacity was influenced significantly by the cement alkalinity. 

The chloride concentration increased with increasing alkali content of cement.  The Cl-

/OH- ratio decreased with increasing alkali content up to 0.8% Na2O and then 

increased with further increase in the alkalinity. 

The time-to-initiation of reinforcement corrosion in the SRPC and OPC concretes 

increased with increasing alkalinity of up to 0.8% Na2O equivalent. However, when 

the alkalinity was more than 0.8% Na2O equivalent, a decrease in the time-to-

initiation of reinforcement corrosion was noted.   
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The Icorr on steel in the SRPC and OPC concrete specimens, with varying alkali 

content, was initially very low and similar in all the specimens.  However, it changed 

with alkali content and period of exposure. The Icorr was the lowest in both SRPC and 

OPC concrete specimens when the alkalinity was 0.8% Na2O equivalent.  However, it 

increased with further increase in the alkalinity.  

The corrosion resistance of SRPC and OPC concrete specimens improved with 

increasing alkali content of cement.  However, the highest improvement was noted 

when the alkalinity was 0.8% Na2O equivalent.  The alkali content of cement can be 

increased to 0.8% (Na2O equivalent) to increase the corrosion-resistance of concrete.  

However, the present limit of 0.6% should be adhered to when it is expected that the 

aggregates are alkali-reactive. 
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Figure 1:  Variation of OH- concentration with alkalinity (Na2O equivalent) in the 
SRPC and PC paste specimens. 
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Figure 2:  Variation of Cl- concentration with alkalinity (Na2O equivalent) in the 
SRPC and PC paste specimens. 
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Figure 3:  Variation of Cl-/OH- with alkalinity (Na2O equivalent) in the SRPC and PC 
paste specimens. 
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Figure 4:  Variation of SO4
-- concentration with alkalinity (Na2O equivalent) in the 

SRPC and PC   paste specimens. 
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Figure 5:  Variation of corrosion potentials with time on steel in the SRPC concrete 
specimens exposed to 5% NaCl plus solution admixed with Na2O. 
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Figure 6:  Variation of corrosion potentials with time on steel in the PC concrete 
specimens exposed to 5% NaCl plus solution admixed with Na2O. 
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Figure 7:  Variation of time to initiation of reinforcement corrosion with alkalinity in 
the SRPC and PC concrete specimens. 
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 Figure 8:  Variation of Icorr with period of exposure in the SRPC concrete specimens 
exposed to 5% NaCl solution admixed with Na2O.  
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 Figure 9:  Variation of Icorr with period of exposure in the SRPC concrete specimens 
exposed to 5% NaCl solution admixed with Na2O. 
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Figure 10:  Variation of Icorr with alkalinity (Na2O equivalent) in the SRPC and PC 
concrete specimens 
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Table 1: Chemical composition of cements. 

 

Constituent         
(Wt %) 

SRPC1 PC2 

SiO2 22.00 20.52 

Al2O3 4.08 5.64 

Fe2O3 4.24 3.80 

CaO 64.07 64.35 

MgO 2.21 2.11 

SO3 1.96 2.10 

Loss on ignition 0.80 0.70 

K2O 0.31 0.36 

Na2O 0.21 0.19 

Na2O equivalent 0.41 0.43 

C3S 54.57 56.70 

C2S 21.91 16.05 

C3A 3.64 8.52 

C4AF 12.90 11.56 

1 Sulfate-resisting Portland cement (C3A: 3.6%) 
2 Portland cement (C3A: 8.5%) 
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Table 2:  Composition of the Test Solution 

 
Group Composition of exposure solution 

1 5%NaCl + 0.4% Na2O equivalent (control) 

2 5% NaCl + 0.6% Na2O equivalent 

3 5% NaCl + 0.8% Na2O equivalent 

4 5% NaCl + 1.0% Na2O equivalent 

5 5% NaCl + 1.2% Na2O equivalent 

6 5% NaCl + 1.4% Na2O equivalent 

 
Table 3. Time to initiation of reinforcement corrosion in concrete specimens 

with varying alkalinity. 

 

Exposure solution 

Time-to-initiation of reinforcement 
corrosion, Days 

 SRPC PC 

5% NaCl + 0.4% Na2O 101 110 

5% NaCl + 0.6% Na2O 125 131 

5% NaCl + 0.8% Na2O 168 175 

5% NaCl + 1.0% Na2O 127 135 

5% NaCl + 1.2% Na2O 114 113 

5% NaCl + 1.4% Na2O 100 105 

 

 


