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Abstract 

This two-part paper presents the development of an improved airport risk assessment 

methodology aimed at assessing risks related to aircraft accidents at and in the 

vicinity of airports and managing Airport Safety Areas (ASAs) as a risk mitigation 

measure.   The improved methodology is more quantitative, risk-sensitive, flexible 

and transparent than standard risk assessment approaches.   As such, it contributes to 

the implementation of Safety Management Systems at airports, as stipulated by the 

International Civil Aviation Organisation. 

 

The second part of the paper presents the analysis of accident locations, including the 

plotting of Complementary Cumulative Probability Distributions for the relevant 

accident types.   These were then used in conjunction with the improved accident 

frequency models to produce Complementary Cumulative Frequency Distributions 

that could be used to assess risks related to specific runways and determine Airport 

Safety Area (ASA) dimensions necessary to meet a quantitative target level of safety.   

The approach not only takes into account risk factors previously ignored by standard 

risk assessments but also considers the operational and traffic characteristics of the 

runway concerned.   The use of the improved risk assessment technique and risk 

management strategy using ASAs was also demonstrated in two case studies based on 

New York LaGuardia Airport and Boca Raton Airport in Florida.      

 
 
1. Introduction 

The previous part of this paper has described the development of improved models for 

assessing the frequency of aircraft accidents occurring at and in the vicinity of 

airports.   Nonetheless, without considering where in relation to the runway these 
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accidents are likely to occur, the frequency models, i.e. knowing the frequency of 

accident occurrence, are of limited use.   This paper describes the analysis of accident 

locations and shows how it could be used in conjunction with the accident frequency 

models for practical airport risk assessment in two case studies.   The case studies 

were carried out based on New York LaGuardia Airport and Boca Raton Airport in 

Florida.   Other than demonstrating the application of the novel risk assessment 

techniques, the exercise also revealed important findings on the need of ASAs at the 

two airports. 

 

2. Location Coordinate System 

With the comprehensive accident database developed as described in part II of this 

paper, a more complete understanding of accident locations could be obtained versus 

previous airport risk assessment studies.   The accidents’ crash locations were 

recorded systematically using a coordinate system as shown in Figure 1.    

 

Figure 1 Location coordinate system 
 

 

 

 

 

 

The origin of the coordinate system is where the runway centreline intersects the 

runway threshold for landing accidents and the start-of-roll threshold for take-off 

accidents.   Positive x is the distance from the threshold towards the end of the 

runway and negative x is the distance before the runway threshold.   y measures the 

distance from the runway centreline.   The measurement system is similar to those 

used by most risk assessment studies in the area, such as the British NATS and FAA’s 

crash location studies (Cowell et al. 1997, David 1990). 

 

A number of Dutch studies such as (Ale & Piers 2000) referenced accident locations 

to flight paths rather than the extended centreline.   Although intuitively more 

accurate, the lack of accessibility to relevant flight path information from airlines or 

air traffic control authorities as well as the tendency of landing aircraft to align with 
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the extended runway centreline at considerable distance from the threshold limit the 

benefits of referencing accident locations to flight paths (Davies & Quinn 2004).  

 

3. Point of First Impact 

Another innovation of the current research involves recording the point of first impact 

(POFI) for landing undershoots and crashes after take-off in addition to their final 

wreckage sites.   For these classes of accidents, there is often a significant distance 

between the location where an ASA was first challenged, e.g. obstacle hit before the 

runway threshold, and the final wreckage site.   If only the latter was considered, the 

dimensional needs of ASAs would be substantially underestimated.   When 

considering the longitudinal ASA dimensional needs for landing undershoots and 

crashes after take-off, then, the concept of the ‘critical x distance’ was used.   The 

critical x distance is the larger of the x distances as measured from the final wreckage 

site and the POFI.   This allows a better assessment of true ASA infringements and 

needs.    When only POFI or final wreckage location was known, it was treated as the 

critical x distance.   The equivalent critical y distances were computed for landing 

undershoots and crashes after take-off correspondingly. 

 

4. Crash Scenarios 

The current analysis considered a total of six possible scenarios under which the 

longitudinal length of ASAs (x distance) could be challenged. 

4.1 Scenario 1 – landing overrun 

Figure 2 depicts accident location scenario 1.   After a landing overrun, the aircraft’s 

final wreckage site lies beyond the runway end.  

Figure 2 Scenario 1 
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Figure 3 depicts accident location scenario 2.   Before reaching the runway threshold, 

the aircraft undershoots and challenges an ASA.   The x distances to the runway 

threshold from the POFI and final wreckage site were both measured.   Critical x is 

the one with the largest negative x figure. 

 

Figure 3 Scenario 2 
 

 

 

 

 

 

 

4.3 Scenario 3 – take-off overrun 

Figure 4 depicts accident location scenario 3.   After a take-off overrun, the aircraft’s 

final wreckage site lies beyond the runway end.  

 

Figure 4 Scenario 3 
 

 

 

 

 

 

4.4 Scenario 4 – crash after take-off  

Figure 5 depicts accident location scenario 4.   The x distances from the start-of-roll 

threshold to the POFI and final wreckage site were both measured.   Critical x is the 

one with the largest x figure. 

 

Figure 5 Scenario 4 
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4.5 Scenario 5 – landing undershoot (beyond runway end) 

There are some cases of landing undershoots with POFIs and/or final wreckage sites 

beyond the runway threshold.   These are classed as landing undershoots because their 

POFIs are off-runway.   Scenario 5 considers such cases with POFIs or final wreckage 

locations beyond the runway end (Figure 6).   This scenario also includes cases which, 

after a POFI before the runway threshold, the aircraft continued to a final wreckage 

site beyond the runway end.    

 

Figure 6 Scenario 5 
 

 

 

 

 

 

4.6 Scenario 6 – crash after take-off (before start-of-roll threshold) 

Depicted in Figure 7, there are potentially cases of crashes after take-off that have 

POFIs and/or final wreckage locations with negative x distances.   This is likely for 

flights that have made a sharp turn after lift-off towards the start-of-roll runway 

threshold before crashing. 

Figure 7 Scenario 6 
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5. Complementary Cumulative Probability Distributions 

For each of the accident scenarios described above, complementary cumulative 

probability distributions (CCPD) of the relevant x and y distances were plotted for the 

accident sample used in Part I of this paper.   Eddowes et al. (2001) also used CCPDs 

to analyse overrun and undershoot distances.   These CCPDs are essential to the 

application of the accident frequency models.   The various CCPDs were be fitted into 

exponential functions as listed in Table 1 (see Section 6).   The functions are also 

plotted in the relevant graphs (Figures 8-11) and labelled as ‘Trendline’.    

5.1 CCPD scenario 1 x distance 

For scenario 1, the cases that challenge longitudinal ASAs are landing overruns with 

final wreckage sites beyond the runway end.   Out of 133 landing overruns with 

known wreckage locations, 71 cases involved x locations beyond the runway end.   

The x distances from the runway end to the final wreckage sites were measured.   One 

case that involved an x distance of over 19000ft was considered as an outlier and was 

removed.   The remaining 70 cases were used to plot the CCPD, as shown in Figure 8.    

Figure 8 Scenario 1 x distance  CCPD 
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The CCPD shows that 80 percent of cases involve overrun distances of more than 

150ft beyond the runway end.   The plot also shows that 40 percent of cases involve 

overrun distances of 500ft or more beyond the runway end.    
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5.2 CCPD scenario 2 x distance 

For scenario 2, the cases that challenge longitudinal ASAs are landing undershoots 

with POFIs and/or final wreckage sites before the runway threshold.   Out of 105 

landing undershoots with known wreckage information, 78 cases involved x locations 

before the runway threshold   The critical x distances from the POFI/final wreckage 

site to the runway threshold were measured.   All 78 cases were used to plot the 

CCPD, as shown in Figure 9.    

 

Figure 9 Scenario 2 x distance  CCPD 
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The CCPD shows that approximately 80 percent of cases involve undershoot 

distances of more than 100ft from the runway threshold.   The plot also shows that a 

significant proportion of cases involve very large x distances.   Roughly a third of 

cases involve undershoot distances of 10,000ft or more.   The greater x distances 

compared to landing overruns were expected due to the airborne nature of 

undershoots.   The trend line better fits data points closer to the runway threshold and 

tends to overestimate the proportion of events at large distances from the threshold.       

5.3 CCPD scenario 3 x distance 

For scenario 3, the cases that challenge longitudinal ASAs are take-off overruns with 

final wreckage sites beyond the runway end.   Out of 37 take-off overruns with known 

wreckage locations, 21 cases involved x locations beyond the runway end.   The x 

distances from the runway end to the final wreckage sites were measured and used to 
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plot the corresponding CCPD.   The CCPD shows that 80 percent of cases involve 

overrun distances of more than 245ft beyond the runway end.   The greater overruns 

distances compared to landing overruns are probably due to the high energy nature of 

many take-off overruns.   The plot also shows that roughly half of all cases involve 

overrun distances of 500ft or more.    

5.4 CCPD scenario 4 x distance 

For scenario 4, the cases that challenge longitudinal ASAs are crashes after take-off 

with POFIs and/or final wreckage sites beyond the runway end.   Out of 57 crashes 

after take-off with known wreckage information, 26 cases involved x locations 

beyond the runway end.   The critical x distances from the runway end to the 

POFI/final wreckage site were measured and the corresponding CCPD plotted.   It 

shows that 80 percent of cases involve x distances of more than 1180ft beyond the 

runway end.   Similar to landing undershoots, the plot also shows a significant 

proportion of accidents involve very large x distances.   Roughly 15.4 percent of cases 

involve distances of 10,000ft or more.   The greater x distances compared to take-off 

overruns were expected due to the airborne nature of crashes after take-off.    

5.5 CCPD scenario 5 x distance 

For scenario 5, the cases of concern are landing undershoots with positive x distances 

beyond the runway end.   Out of 105 landing undershoots with known wreckage 

information, thirteen cases fall into this category.   The critical x distances from the 

POFI/final wreckage site to the runway end were measured and used to plot the 

corresponding CCPD.   It shows that approximately 80 percent of cases involve x 

distances of more than 3300ft beyond the runway end.   The large x distances suggest 

that the majority of the cases involve occurrences far from the airports’ immediate 

surroundings, where both POFIs and final wreckage sites are a distance away from the 

runway.    

5.6 CCPD scenario 6 x distance 

For scenario 6, the cases of concern are crashes after take-off with negative x 

distances, i.e. POFIs and/or final wreckage sites before the start-of-roll runway 

threshold.   Out of 57 crashes after take-off with known wreckage information, only 

two cases fall into this category.   Their critical x distances are 3252ft and 9504ft 

respectively from the runway threshold.   The large distances again suggest that the 
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events were altogether removed from the immediate surroundings of the airport.   The 

small number of data points prevents a CCPD to be plotted with confidence.    

5.7 CCPD landing overrun y distance 

The lateral deviations of all landing overruns were plotted in a single CCPD.  Of the 

133 cases with known y distances, 26 were recorded as zero2.   These were removed 

for the purpose of plotting the CCPD.   The plot, based on the remaining 107 cases, is 

shown in Figure 10. 

Figure 10 Landing overrun y distance  CCPD 
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The CCPD shows that 80 percent of cases involve lateral deviations exceeding 65ft 

from the runway centreline.   For a runway 150ft wide, the plot shows that 76.6 

percent of landing overruns with non-zero y have final wreckage sites beyond the 

widths of the runway, i.e. y distances of over 75ft.  Many runways, however, are 

legitimately less than 150ft wide.   It is interesting to note that there is a clear 

discontinuity in data points approximately 300ft from the centreline, which is the strip 

width requirement for Code 4 runways.   Whether the rule was derived from a similar 

analysis cannot be confirmed due to the opacity of current regulations. 

 

 

                                                 
2 A disproportionate number of cases recorded zero lateral deviation due to the lack of accurate data in 
the accident files.   Cases believed to involve minimal lateral deviation were entered as y=0.   Where 
such an assumption could not be confidently made, y was considered unknown. 
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5.8 CCPD landing undershoot y distance 

The lateral deviations of all landing undershoots were plotted in a single CCPD.  Of 

the 91 cases with known y distances, 22 were recorded as zero.   These were removed 

for the purpose of plotting the CCPD.   The critical y distances were identified and 

based on 69 cases the CCPD was obtained, as shown in Figure 11. 

 

Figure 11 Landing undershoot y distance  CCPD 
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The CCPD shows that approximately 80 percent of cases involve lateral deviations 

exceeding 100ft from the runway centreline.   For a runway 150ft wide, the plot 

shows that 85.5 percent of landing overruns have final wreckage sites beyond the 

widths of the runway.   The greater lateral deviation of landing undershoots compared 

to overruns is in line with expectations.     

5.9 CCPD take-off overrun y distance 

The lateral deviations of all take-off overruns were similarly plotted in a single 

CCPD.  Of the 37 cases with known y distances, eleven were recorded as zero.   

These were removed for the purpose of plotting the CCPD.   It shows that 

approximately 80 percent of cases involve lateral deviations exceeding 53ft from the 

runway centreline.   For a runway 150ft wide, the plot shows that approximately 75.3 

percent of landing overruns have final wreckage sites beyond the widths of the 

runway.   The findings are broadly similar with those of landing overruns, albeit based 

on far fewer data points.      
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5.10 CCPD crash after take-off y distance 

The lateral deviations of all crashes after take-off were also plotted in a single CCPD.  

Of the 57 cases with known y distances, five were recorded as zero.   These were 

removed for the purpose of plotting the CCPD.   The critical y distances were 

identified and based on 52 cases the CCPD was obtained.   It shows that 

approximately 80 percent of cases involve lateral deviations exceeding 150ft from the 

runway centreline.   For a runway 150ft wide, the plot shows that approximately 94.2 

percent of landing overruns have final wreckage sites beyond the widths of the 

runway.   As such, crashes after take-off showed the largest lateral deviations.   This 

is probably related to the high-energy and airborne nature of the accident type.    

Attempts to follow curved missed approach procedures may be a factor too. 

 

6. CCPD Equations 

The equations and corresponding R2 values of the CCPDs are indicated in Table 1.   It 

can be observed that the trend lines better fit data points that are close to the runway 

threshold/end/centreline than those that are far away.   This conforms to the 

expectation that occurrences further away from the runway would be more ‘scattered’ 

than those with small deviation distances.    The simple trend lines presented here are 

therefore more suited to assessing risk in an airport’s vicinity. It is inherently difficult 

to fit trend lines to a small number of scattered data points.   Even more sophisticated 

trend line equations would only give a false sense of accuracy.   The trend lines 

should therefore only be taken as indicative only for assessing a larger area such as in 

town or city level planning.  
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107653.1000923.0 xe−

491355.001308.0 xe−

342743.1000132.0 xe−

860267.0000663.0 xe−

277474.1000008.0 xe−

965.0006.0 ye−

468.0003.0 ye−

840.0008.0 ye−

687.0008.0 ye−

Table 1 CCPD Equations 
x/y distance Scenario Equation R2 

x 1 Fraction of landing overruns with an overrun distance 

beyond the runway >x =  

 

0.993 

x 2 Fraction of landing undershoots with an undershoot 

distance from the runway threshold >x =  

 

0.980 

x 3 Fraction of take-off overruns with an overrun distance 

beyond the runway >x =  

 

0.986 

x 4 Fraction of crashes after take-off with an x distance 

from the runway end >x =  

0.984 

x 5 Fraction of landing undershoots with an x distance 

beyond the runway end >x = 

0.944 

y LDOR Fraction of landing overruns with a y distance from 

the runway centreline >y =  

0.958 

y LDUS Fraction of landing undershoots with a y distance from 

the runway centreline >y =  

0.975 

y TOOR Fraction of take-off overruns with a y distance from 

the runway centreline >y =  

  

0.984 

y TOC Fraction of crashes after take-off with a y distance 

from the runway centreline >y =  

  

0.970 
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7. Complementary Cumulative Frequency Distributions  

With CCPDs, the fraction of accidents involving locations exceeding a given distance 

from the runway end or threshold could be estimated.   When the CCPD is multiplied 

by the frequency of accident occurrence, a complementary cumulative frequency 

distribution (CCFD) is obtained.   The latter quantifies the overall frequency of 

accidents involving locations exceeding a given distance from the runway end or 

threshold.   In other words, multiplying the CCPDs by the accident frequency 

probabilities, as obtained using the accident frequency models, yields CCFDs with 

which ASA needs could be assessed.   Eddowes et al. (2001) also used CCFDs to 

draw conclusions on Norwegian aerodrome design rules. 

 

8. Case Study Airports 

Two case studies were carried out to demonstrate the application of the overall risk 

assessment methodology developed in this paper and to illustrate the difference in 

ASA needs at different airports and runways.   New York LaGuardia Airport (LGA) 

and Boca Raton Airport in Florida (BCT) were selected for their contrasting 

characteristics.   LGA is a two-runway primary commercial airport in the eastern 

region with 11,352,248 enplanements in 2001 and is a FAA large hub.   BCT is a non-

hub, single-runway non-commercial service airport in the southern region mainly 

serving air taxi and general aviation services.   Due to the differences in location, 

operational characteristics, traffic type and level, it is expected that the risk exposure 

of the two airports differ significantly, which should be reflected in ASA 

requirements. 

 

9. Model Application Demonstration – ASA Length 

The length of ASA needed for each runway end was considered in turn, taking into 

account their specific accident frequency risk exposure, runway use patterns as well 

as traffic levels.   The various stages involved are summarised in Figure 12.  
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Figure 12 Stages in model application  
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The model application process is described in detail below for assessing the length of 

ASA at the end of runway 4 at LGA.    

9.1 Identification of relevant crash scenarios (step 1) 

In assessing the ASA needs of a specific runway end, each of the crash scenarios that 

challenge ASA length should be taken into account.   Table 2 shows the crash 

scenarios that should be considered for the end of runway 4. 

 

Table 2 Relevant crash scenarios to end of runway 4 risk assessment 
Crash Scenario No. Crash Scenario 

1 Overrun of landing on runway 4 

2 Undershoot of landing on runway 22 

3 Overrun of take-off on runway 4 

4 Crash after take-off on runway 4 

5 Undershoot of landing on runway 4 with location beyond 

runway 

6 Crash after take-off on runway 22 with location behind start-

of-roll threshold   

 

9.2 Calculation of crash scenario probabilities (Step 2-4) 

The average probability for each of these scenarios were then calculated.   This 

involved applying the accident frequency models as defined in part II of this paper to 

a representative sample of flights at the airport and runway concerned and finding the 

average probability per landing or take-off.   In this case, the NOD sampled for model 

building was used, i.e. 5,758 landings and 5,796 take-offs at LGA and 160 landings 

and 191 take-offs at BCT.    

 

Table 3 shows the relevant crash scenario probabilities.   The probability of each 

crash scenario is the product of two distinct probabilities.   The first is the probability 

of accident occurrence (the initial event) and the second is the probability of the 

specific ASA being challenged given the initial event occurred.   The latter probability 

must be considered because the location CCPDs were calculated based only on cases 

that challenged ASAs, e.g. overrun wreckage sites beyond the runway end.   Certain 
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accidents would remain within the runway length, e.g. veer-offs with x distances 

smaller than the runway length. 

 

Table 3 Crash scenario probabilities for ASA length assessment 
Crash 

scenario 

No. 

Initial event Initial event  

probability 

Location 

condition 

Location 

probability 

Scenario 

probability 

1 Overrun of 

landing on 

runway 4 1.188x10-6  

  

x beyond  

LDA 0.534 6.344 x 10-7

2 Undershoot of 

landing on 

runway 22 5.904 x10-8 

 

 

Negative x 0.743 4.386 x 10-8

3 Overrun of 

take-off on 

runway 4 1.423 x10-7 

 

x beyond 

TODA 0.568 8.074 x 10-8

4 Crash after 

take-off on 

runway 4 1.315 x10-7 

 

x beyond 

TODA 0.456 5.999 x 10-8

5 Undershoot of 

landing on 

runway 4  4.497 x10-7 

 

x beyond  

LDA 0.124 5.567 x 10-8

6 Crash after 

take-off on 

runway 22  4.283 x10-8 

 

 

Negative x 

 

 

0.035 1.503 x 10-9

 

It should be noted that the probabilities for each initial event take into account the 

particular risk exposure characteristics of the runway end concerned.   For example, 

the average overrun probability of a landing on runway 4 is 1.188 x 10-6 whereas the 

equivalent for runway 22 is 1.291 x 10-7.   Further investigation suggests that the 

difference is due to the significant disparity in exposure to adverse weather 

conditions.   There are notable discrepancies in terms of exposure to visibility, ceiling 

height and fog between landings on runway 4 and those on runway 22.   For instance, 

over 30 percent of landings on runway 4 take place in visibility under 2 statute miles 

compared to 1.67 percent on runway 22.      In a related measure, almost 40 percent of 

landings on runway 4 experienced fog versus under 7 percent for runway 22.    39 

percent of landings on runway 4 took place in ceiling height under 1000ft while the 
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equivalent for runway 27 is only 3.9 percent.   These differences are most likely to be 

related to LGA’s runway use policy and the availability of navigational aids.   In fact, 

data on LGA’s runway usage patterns revealed that landings on runway 4 are 

relatively rare.  There are over four times more landings on runway 22 than on 

runway 4.   When runway 13/31 was considered as well, it becomes clear that runway 

4/22 is used mainly for landing on runway 22.   Only 14.5 percent of all landing 

operations at LGA used runway 4.    

 

The above risk exposure breakdown by runway end was made possible by Aviation 

System Performance Metrics (ASPM) data identifying the take-off and landing 

runways in hourly segments.   This information was coupled to the case study’s traffic 

sample to identify the runway and direction used by each flight in the sample.   The 

difference in risk exposure and accident probability between landings on runway 4 

and runway 22 has highlighted the importance of differentiating risk at the runway 

end level, which is not standard international practice in airport risk assessment and 

not considered in the application of safety areas such as the ICAO’s Runway End 

Safety Area or the FAA’s Runway Safety Area.   Unfortunately, ASPM only covers 

relatively large airports and so only average risks and probabilities could be calculated 

for BCT’s runway ends.   This would apply for any of the smaller airports not 

included in ASPM.  

 

Due to the small probability of crash scenario 6 and the lack of related location 

distribution data (only two data points are available), crash scenario 6 was not 

considered hereafter. 

9.3 Basic CCFD (Step 5) 

To obtain the CCFD from which the frequency of accidents involving locations 

exceeding a given distance from the end of runway 4 could be derived, the CCPDs of 

the relevant accident scenarios (given in section 5) were multiplied by the 

corresponding crash scenario probabilities (given in Table 3).   For crash scenario 1, 

then, the CCFD is obtained by multiplying the CCPD equation exp(-0.000923x1.107653) 

by the crash scenario probability 6.344 x 10-7.   Figure 13 plots all the CCFDs related 

to the end of runway 4 up to a distance of 1500ft beyond the runway end. 
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Figure 13 End of runway 4 basic CCFDs  
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The frequencies depicted in Figure 13 relate to individual crash scenarios.   Therefore, 

it is expected that an overrun of a landing on runway 4 entering the ASA beyond the 

runway end (crash scenario 1) occurs at a frequency of 6.34 x 10-7.     By inspecting 

the same plot, it is also estimated that a landing overrun on runway 4 in excess of 

500ft occurs at a frequency of 2.58 x 10-7.   The other plots and frequencies are 

interpreted similarly.   The graph also shows that the frequency of crash scenario 1 is 

several times higher than the other crash scenarios.   The greater distances of airborne 

accidents such as undershoots and crashes after take-off are therefore overshadowed 

by the greater frequency of landing overruns on runway 4 as an initial event.     

9.4 Runway movement CCFD (Step 6 & 7) 

While Figure 13 reveals the CCFDs related to each of the crash scenarios affecting the 

end of runway 4, it does so without considering the runway use characteristics of 

runway 4/22 at LGA.   Since runway 4/22 is principally used for landing on runway 

22, the high frequency of landing overruns on runway 4 may not have as large an 

impact on the risk profile of the end of runway 4 as Figure 13 suggests.   Table 4 

shows the breakdown of operations on runway 4/22. 

 

 

 



 19

Table 4 Breakdown of runway 4/22 movements 
 Landing Take-off

Runway 4 12.85% 17.47%

Runway 22 56.24% 13.44%

Total 69.08% 30.92%

 

In order to take into account the above runway use characteristics, the basic CCFDs of 

Figure13 were further multiplied by the operational breakdown statistics of Table 4, 

yielding a ‘runway movement CCFD’.   For example, the CCFD for crash scenario 1 

was multiplied by 0.1285 to reflect the fact that 12.85 percent of movements on 

runway 4/22 are landings on runway 4.   The runway movement CCFDs are shown in 

Figure 14.   A composite CCFD was also calculated by summing the risks of the five 

crash scenarios at each of the considered distances from the runway end. 

 

Figure 14 End of runway 4 runway movement CCFDs 
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Figure 14 presents the CCFDs in the context of runway movements.   These plots are 

more intuitive interpretations of the true risk posed by the crash scenarios.   For 

instance, rather than noting the expected frequency of 2.58 x 10-7 for a landing 

overrun on runway 4 in excess of 500ft per landing on runway 4, Figure 13.3 

provides the frequency of the same event per movement on runway 4/22, which is 

3.31 x 10-8. 
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By considering all scenarios which affect the end of runway 4, the composite plot 

could be used to determine the length of the ASA according to a predefined target 

level of safety.   This is discussed in section 10 below.   The application of the risk 

models to determine ASA width is similar to the process described above for ASA 

length.    

 

10. Setting the Size of ASAs 

10.1 Target level of safety 

Before the appropriate size of ASAs could be determined using the CCFDs obtained, 

a target level of safety (TLS) must be set.   This is the safety level against which the 

size of ASAs are evaluated.   In the assessment of Norwegian aerodrome design rules, 

the benchmark TLS of 10-7 per movement was used with the recommendation of 

improving upon this towards 10-8 per movement where practicable (Eddowes et al. 

2001).   The current study adopts the same standards.   It should be stressed that the 

selection of an appropriate TLS is beyond the scope of risk assessment and concerns a 

socio-political process. 

10.2 ASA lengths (Step 8) 

With the methodology described above, the relevant CCFDs for all runway ends and 

widths at LGA and BCT were computed.   Tables 5 highlights the residual risk at 

ASA lengths of 300ft, 600ft and 1000ft, which corresponds to the FAA Runway 

Safety Area length requirements for Airplane Design Groups II, III and IV 

respectively.   The ASA lengths necessary to achieve a TLS of 10-7 and 10-8 are 

shown. 
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Table 5 ASA length requirements & residual risks  
ASA length 

(ft beyond runway end) 
Residual risk 

within 95% Confidence Interval 
  
LGA end of runway 4  
300 9.605 x 10-8 
600 6.807 x 10-8 
1000 4.676 x 10-8 
267 1.000 x 10-7 
11690 1.000 x 10-8 
  
LGA end of runway 22  
300 6.640 x 10-8 
600 5.216 x 10-8 
1000 4.124 x 10-8 
N.A. 1.000 x 10-7 
16303 1.000 x 10-8 
  
LGA end of runway 13  
300 8.713 x 10-8 
600 6.838 x 10-8 
1000 5.174 x 10-8 
130 1.000 x 10-7 
9872 1.000 x 10-8 
  
LGA end of runway 31  
300 3.156 x 10-8 
600 2.509 x 10-8 
1000 1.975 x 10-8 
N.A. 1.000 x 10-7 
4730 1.000 x 10-8 
  
BCT runway end (average)  
300 1.772 x 10-7 
600 1.311 x 10-7 
1000 9.500 x 10-8 
927 1.000 x 10-7 
25302 1.000 x 10-8 
 

The results show the ASA needs of each runway end differ significantly.   The end of 

runway 22 and runway 31 at LGA exceed the TLS of 10-7 even without ASAs beyond 

the runway end due to the low risk exposure of its operations.    Figure 15 compares 

the average probability of accident occurrence for all accident types and runway ends.   

The principal crash scenarios that affect risk at the ends of runway 22 and 31, such as 
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overruns of landings on runway 22 and 31 and undershoots of landings on runway 4 

are all relatively low.   The largest source of risk for the end of runway 31 is 

undershoots of landings on runway 13.   However, this is offset by the rarity of 

landings on runway 13.      Figure 16 shows the small proportion of landings that used 

runway 13 (0.73 percent). 

 

Figure 15 Average accident occurrence probabilities 

 
 

Figure 16 Breakdown of operations at LGA by runway 
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In contrast, the ends of runway 13 and 4 require ASA lengths of 130ft and 267ft 

respectively in order to achieve a TLS of 10-7.   Figure 14 showed that crash scenario 

1 (overruns of landings on runway 4) contributes most to the composite risk at the end 

of runway 4.   From Figure 15, it could be seen that the probability of overruns on 

runway 4 is the highest except accidents of landings on runway 13.   The ASA 

requirement for the end of runway 4 still exceeds that of runway 13 or runway 31 (the 

runway ends affected by the high overrun and undershoot probabilities of landings on 

runway 13) because there are many more landings on runway 4 than 13.   In fact, 

Figure 16 shows that there are almost 20 times as many landings on runway 4 than 13 

(14.5 percent vs. 0.7 percent).   As a result, the impact of high accident probabilities 

of landings on runway 13 is, to an extent, mitigated3.    

 

The smaller airport BCT has greater ASA requirement on average than any of LGA’s 

runway ends.   This contradicts the FAA’s as well as ICAO’s general policy of 

requiring larger ASAs at airports that serve large aircraft.   The phenomenon can be 

traced to the traffic profile of BCT.   The accident frequency models identify small 

aircraft and general aviation flights as high risk operations.   Since BCT is a non-

commercial service airport, 96 percent of its operations in the sample involve aircraft 

of 12,500 to 41,000lbs and 54 percent of flights are general aviation operations.   As 

such, it would be expected that flights at BCT have a relatively high risk profile.   The 

effect can be seen in Figure 15, where accident probabilities related to flights at BCT 

stand out, apart from the exceptionally high figures for landings on runway 13 and 4 

at LGA.   The appropriateness of providing larger ASAs at smaller airports is further 

discussed in section 10.5 where the level of traffic is considered. 

 

The exercise has highlighted the importance of assessing the divergent risk exposure 

of flights using different airports and runways as well as the need to attune ASA sizes 

accordingly so as to achieve a risk-sensitive ASA strategy.   The influence of runway 

operational patterns has also been emphasised.  

 
                                                 
3 Further investigation revealed that difference in adverse weather exposure is a key factor behind the 
particularly high accident probabilities of landings on runway 13.   For example, all landings on 
runway 13 experienced fog. 
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10.3 ASA widths 

Table 6 shows the results for ASA widths.   The figures in the column on the left 

show the entire width of the ASA centred on the runway centreline.    The middle 

column shows the associated residual risk on either side of the centreline.   Since all 

runways at LGA and BCT are currently 150ft wide, the column furthest right 

indicates the additional ASA width required from the runway edge on either side of 

the runway to achieve the associated residual risk.    

Table 6 ASA width requirements & residual risks  
 

Total ASA width 
(ft) 

Residual risk  
either side of the centreline 

(within 95% Confidence 
Interval) 

 

Width either side from edge 
of 150ft wide runway (ft) 

   
LGA runway 4/22   
100 1.186 x 10-7 N.A. 
150 1.083 x 10-7 0 
200 1.987 x 10-7 25 
197 1.000 x 10-7 24 
6180 1.000 x 10-8 3015 
   
LGA runway 13/31   
100 9.306 x 10-8 N.A. 
150 8.701 x 10-8 0 
200 8.177 x 10-8 25 
52 1.000 x 10-7 N.A. 
5542 1.000 x 10-8 2696 
   
BCT runway 5/23   
100 2.632 x 10-7 N.A. 
150 2.413 x 10-7 0 
200 2.222 x 10-7 25 
849 1.000 x 10-7 350 
13045 1.000 x 10-8 6448 
 

As with the ASA length results, Table 6 shows the dissimilar risks associated with 

each of the three runways.    With no ASA and just the runway width of 150ft, runway 

4/22 at LGA is close to meeting the TLS of 10-7 and runway 13/31 exceeds it.   On the 

other hand, a simple runway of 150ft at BCT falls short of the same TLS.   The key 

difference in risk between runway 4/22 and 13/31 lies chiefly in the crash location 

distributions of their associated operations.   Even though runway 4/22 is the principal 
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landing runway and is thus at risk from landing overruns which have the highest 

probabilities amongst accident types, the larger y distances of crashes after take-off 

dominate risks at runway 13/31, the main take-off runway, to the extent of eclipsing 

the relatively low probabilities of take-off accidents.     The greater ASA width needs 

at BCT is attributed to the generally higher accident probabilities at the facility. 

 

Once more, the results highlight the inconsistent margin of safety currently provided, 

at least in terms of accident frequency and location.    Eliminating this mismatch 

between risk and safety margin would result in BCT having vastly wider ASAs than 

LGA, which again is contradictory to ICAO and FAA aerodrome design principles.   

Section 10.5 examines an additional factor that is pertinent to the subject. 

10.4 ASA diagrams 

The computed ASA sizes were also visually compared with the existing ASAs.   The 

dimensions of ASAs necessary to achieve a TLS of 10-7 were overlaid in red onto 

maps of LGA and BCT as available from Google Earth in February 2007.   Figure 17 

shows the ASA requirements for LGA.   It can be seen that current ASAs mostly 

exceed the TLS of 10-7 except the end of runway 4 where extra ASA length is needed, 

as shown in Figure 18.   This would involve additional reclamation of Eastchester 

Bay.   
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Figure 17 LGA ASA Requirements (TLS 10-7) 

 
(Background map source: Google Earth) 
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Figure 18 LGA end of runway 4 ASA requirement (TLS 10-7) 

 
(Background map source: Google Earth) 

 

Figure 19 shows and compares the calculated and existing ASAs at BCT.    Unlike 

LGA, current ASAs at BCT fail to provide a TLS of 10-7.   The required ASA would 

cover the parallel taxiway, parts of the airport apron, a building near the end of 

runway 5 as well as parts of the NW Spanish river boulevard and airport road.   Figure 

20 offers a close-up view of the area around the end of runway 5 with noticeable ASA 

infringements circled in black. 
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Figure 19 BCT ASA Requirements (TLS 10-7) 

 
(Background map source: Google Earth) 
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Figure 20 BCT end of runway 5 ASA requirement (TLS 10-7) 

 
(Background map source: Google Earth) 

10.5 Impact of traffic level (Step 9-12) 

A TLS of 10-7 translates into an accident occurrence rate of one per ten million 

movements.   Given the large difference in traffic volume between LGA and BCT, the 

expected number of years between accident occurrences varies greatly too.   From the 

Terminal Area Forecast, the volume of relevant traffic in 2005 was calculated to be  

398,681 movements and 11,631 movements for  LGA and BCT respectively.   If all 

ASAs were designed to meet the TLS of 10-7, an accident involving locations beyond 

the ASAs would be expected to occur once every 25.1 years at LGA and every 859.8 

years at BCT, assuming that the annual traffic level stays unchanged. 

 

The current FAA and ICAO regulations do not take into account the level of traffic as 

a factor but certain land-use planning rules do, e.g. PSZ policy in the UK.   The risk 

assessment methodology developed in this study can also be used to assess the impact 

of traffic level on accident frequency. 
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For airports with multiple runways such as LGA, the use pattern between runways 

would affect the overall frequency of accident occurrence at the airport since the risk 

exposure of each runway end differs.   ‘Airport movement CCFDs’ could be obtained 

by multiplying the basic CCFDs by the breakdown of airport movements.   The 

breakdown of airport movements for LGA is given in Table 7. 

 

Table 7 Breakdown of LGA movements 
 Landing Take-off

Runway 4 7.23% 9.83%

Runway 22 31.64% 7.56%

Runway 13 0.36% 22.12%

Runway 31 10.60% 10.65%

Total 49.84% 50.16%

 

Using the breakdown of Table 7 and the basic CCFDs of each runway end, the airport 

movement CCFDs for all runway ends could be obtained and summed to give an 

overall CCFD for the airport.   Figure 21 compares the overall CCFDs for LGA and 

BCT.    

 

Figure 21 Overall airport movement CCFDs for LGA & BCT 
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Figure 21 indicates the frequency of accidents that exceed a certain distance from the 

runway end.   Given the traffic volumes of the airports, the frequency in terms of 

years between accident occurrences could be obtained, as shown in Figure 22.    

 

Figure 22 Frequency of accident occurrence in years 
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An accident that challenges the ASA length of any runway end at LGA is estimated to 

occur once every 12.8 years.   On the other hand, ASA length is only expected to be 

challenged once every 174.6 years at BCT.   For an accident in excess of 500ft of the 

runway end, the frequencies are 21.2 years and 297.8 years for LGA and BCT 

respectively.   The calculations assume constant 2005 traffic levels. 

 

The impact of traffic levels on the frequency of accident occurrence is evident.   The 

much higher accident frequency in terms of years between occurrences of busy 

airports may not be acceptable despite the low accident rates as measured by flight 

movements.   By requiring larger ASAs for airports handling larger aircraft, which are 

likely to be the busier airports, the FAA and ICAO may have implicitly considered the 

effect of large traffic volumes.   However, the current research allows an explicit 

quantification of the diverse influences of risk and facilitates the assessment of 

accident frequencies in terms of movements as well as years between occurrences.   
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ASA dimensional needs could therefore be adjusted with consideration for both 

criteria4. 

    

11. Conclusions 

By considering the location of previous accidents and using the improved accident 

frequency models developed, this paper showed how a more systematic and risk-

sensitive approach to airport risk assessment could be realised.   This was 

demonstrated in two case studies.   They showed that the methodology developed can 

be successfully applied to airports to quantify risk levels at individual runway ends, 

which form the basis for determining appropriate ASA dimensions.   The case studies 

also illustrated the comprehensive approach of the proposed technique, in addition to 

its transparency and independence from qualitative judgements.    

 

A number of advances that improve the effectiveness of airport risk assessment were 

made.   Firstly, the dynamic interactions between diverse sources of risk are explicitly 

accounted for throughout the risk assessment process.   Not only are the risks of 

individual flights assessed according to their respective risk exposure levels, but the 

usage pattern of the runway concerned is also considered.   This is necessary so that 

the final ASA dimensions reflect not only the risk exposure but also the operational 

characteristics of the airport.   For example, high risk landings are of less concern for 

a runway used predominantly for take-offs.   These operational considerations have 

not featured in previous risk assessments but are intrinsic elements of the technique 

developed.   Secondly, the proposed risk assessment methodology accounts for 

multiple dimensions of risk.   Whereas the accident frequency models consider the 

frequency dimension of airport risk, accident locations are also incorporated through 

Complementary Cumulative Probability Distributions in the risk assessment process.   

ICAO and FAA ASA regulations may account for these separate aspects of risk 

implicitly but the current research does so explicitly and quantitatively. 

 

The proposed risk assessment methodology allows the length and width of ASAs to 

be tailored according to the residual risk at individual runways, such that the margin 

of safety provided meets the Target Level of Safety (TLS).   In terms of ASA size, the 
                                                 
4 Additional factors also play a role in determining the acceptable TLS and ASA dimensions, such as 
fatality and injury rates, which fall under the consequence modelling of airport risk assessment.  
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case studies found that the TLS of 10-7 could be achieved and even exceeded 

relatively easily.   However, the goal of attaining a TLS of 10-8 seems rather remote, 

especially if only on-airport ASAs were considered.   The recommended ASA-sizing 

methodology also points to innovative solutions such as displacing runway thresholds 

and altering runway use patterns.   The resulting change in risk exposure could be 

quantified with the proposed methodology to ensure that the residual risk does not 

exceed the risk budget afforded by the ASA available.   This paper hence offers a far 

more dynamic and flexible approach to risk control and management than standard 

techniques.     
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