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We propose a mechanism of a vortex nucleation in a flow of a rotating superfluid

4He. The mechanism is related to the creation by critical fluctuations of a ”plasma”

of half-vortex rings located near the wall. The ”plasma” screens the attraction of the

vortex to the wall and permits vortex nucleation. In the spirit of Williams-Shenoy

theory we derive the scaling laws in the critical region and estimate the scaling

relation and the critical exponent p for critical velocity; we find Vc ∼ V0(1 − T/Tc),

so that p = 1. Various applications of the obtained results are discussed.
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The studies of the vortex nucleation in the flow 4He have a long history and many

interesting results. Packard and Sanders [1] first found that the nucleation of the vortices

may be related with the rotation of the 4He. It is, however, recognized that there is a

very large barrier near the wall, which prevents the free vortices from penetrating into the

volume. On the other hand Awshalom and Schwarz [2] have shown the presence of remnant

vortices, pinned by the wall. It was established that the vortex nucleation in a submicron

orifice is related to the activation or tunneling of the half-vortex ring into the volume of the

superfluid and different mechanisms have been proposed [4–7].

However, it was, experimentally, found that the critical velocity has the scaling law of

the type Vc = V0(1 − T/T0) [3–8] or a small deviation from this law [9,10]. For the very

small orifice, the barrier height for vortex nucleation is small. Therefore, activational and

tunneling processes for the single vortex generation are possible. However, when the orifice

radius increases the barrier height increases. The larger barrier height occurs for penetration

of vortices in rotating superfluid [1]. Therefore in these cases both the activational and

the tunneling mechanisms alone for the vortex nucleation are ruled out. To improve a

disagreement in the vortex nucleation rate between experiment and Iordanskii-Langer-Fisher

(ILF) nucleation theory [11,12], Kawatra, Pathria [13] and Volovik [14] suggested that near

the wall there is a microscopical surface vorticity sheet. More emphases to the surface

vorticity sheet has been assigned in next development by Ihas et al [4,6,7] who suggested that

the surface vorticity sheet may aid to tunneling or activation through a velocity dependent

barrier.

We propose a mechanism, which is very different from the one discussed in the literature

[4–8]. The vortex penetrates the barrier near the wall with the aid of critical fluctuations via

a creation of a half-vortex ring ”plasma”( or the surface vorticity sheet ) . There occurs a
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phase transition, in which the width of microscopical the surface vorticity sheet reaches a crit-

ical size Rc, the barrier for the vortex nucleation disappears and vortex generation is started.

The vortex nucleates in a process similar to the Berezinskii-Kosterlitz-Thouless(BKT) phase

transition [15–17], where instead of vortex-antivortex (V-A) pairs there near the wall many

half-vortex rings (fluctuational plasma or the surface vorticity sheet are generated. The

vortex coupling with the wall is screened and the half-vortex rings of a very large radius are

created. The longer half-ring, then, nucleates the vortex and initiates phase slippage. With

the increase of the flow velocity and the temperature, the correlation length of critical fluc-

tuations in the surface vorticity sheet or its thickness increases. This growth is stopped at

some threshold defined both by the temperature and by the flow velocity where the creation

of vortices is started. Sonin [18,19] noticed that ”neither tunneling nor an activation is a

threshold effect, but the vortex nucleation is a threshold effect”. Our mechanism describes

indeed the threshold effect.

As the flow velocity increases the energy of the pinned the half-vortex ring decreases.

This stimulates their activation through thermal fluctuations. In their turn the fluctuational

half-vortex rings of a small radius assist in the creation of half-vortex rings of larger radius

and so on. The picture is reminiscent of the scaling in BKT transition, where the coupling

between the vortex and antivortex decreases as the temperature rises. The similar situation

occurs in the Williams-Shenoy(WS) [20,21] model of the λ−phase transition where the role

of V-A pairs is played by the vortex rings. The role of half-vortex rings in our mechanism are

similar to the role of the vortex-antivortex pairs, whose spontaneous generation is a driving

mechanism of the BKT transition.

We derive scaling relations associated with two relevant operators: the temperature and

the flow velocity. In this derivation we will follow the WS approach [20,21]. We start with

3



an assumption that the half-vortex rings are pinned by the wall and are polarized by the

flow. To create a half-vortex ring in the external flow of the velocity u0 one needs the energy

E = E0 − pu0 cos θ (0.1)

where E0, p are the energy and the impulse of the half-vortex ring . The angle between the

flow velocity u0 and the normal to the vortex ring plane is θ. The energy is equal to the

half of the energy of the vortex ring [22]

E0 = π2RK0(ln
R

ac

+ C) (0.2)

where R is the radius of the loop; C and ac are core energy and radius, respectively. The

constant K0 is proportional to superfluid density. The half- impulse is equal to p = kπR2/2,

where k is a vorticity. The probability to find a single half-vortex ring on a scale R in the

area πR2dRd cos θ is dn(R, θ) = πR2dRd cos θ exp(−E(R, θ)).

In the low fugacity limit [20] the interaction between vortex rings is neglected. The

effective susceptibility is equal to χ =
∫ Rc

1 dn(R, θ)α∆, where α∆ is a polarizability of these

half-vortex rings , which is estimated to be a quarter of the polarizability of a vortex ring

α∆ = βp2/12 . The scale is measured in units of ac. Following Williams and Shenoy one

may introduce the dielectric constant ǫ = 1 + 4πχ and the screened density as Kr = K0/ǫ.

As the result we arrive to the recursion equation:

1

Kr

=
1

K
+ (A/2)

∫ Rc

1
dRd cos θR6 exp(−E(R, θ)) (0.3)

where A is a some constant. Following Ref. [20] we introduce the fugacity as y =

exp[−π2K ln
√

gK + C]; then after an angular integration the recursion relation takes the

general BKT-WS form:
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1

Kr

=
1

K
+ A

∫ Rc

1
dRR4yR exp(−π2KR ln R) sinh(uR2)/u, (0.4)

where we introduced the notations as u = kπu0/2. With the aid of the vortex core rescaling

technique by Jose et al [23] which consists of integrating over small distances and then

rescaling as R → Rb, we get the following relation:

1

Kr

=
1

K
+ Ay ln b

sinh u

u
+ Ab5

∫ Rc

1
dRR4ybR exp(−π2KbR ln bR)

sinh(ub2R2)

u
(0.5)

By introducing the new variables

1

K ′
=

1

b
(

1

K
+ Ay ln b

sinh u

u
) (0.6)

A′y′ = Ab6yb exp(−π2Kb ln b) (0.7)

as well as Kr
′ = bKr and u′ = b2u we get the same relation as eq(0.4). These rescaling eqs

may be represented in differential form similar to that of Williams [20]

d

dl
(

1

K
) = − 1

K
+ A0Ky

sinh u

u
(0.8)

dy

dl
= [6 − K(ln

√

Kg + C + 1)]y (0.9)

with the initial value g0 = 1/K0 or in the form similar to that of Shenoy for 3DXY model:

dK

dl
= K − A0yK2 sinh u

u
(0.10)

dy

dl
= (6 − π2KL)y (0.11)

du

dl
= 2u (0.12)

where L = ln a
ac

+ 1 and a, ac are an effective size of the loop and of its core, respec-

tively(above ac = 1) [21]. One sees that the difference with Williams-Shenoy equations lies

in the coefficient A0 and in the strong (exponential) dependence on the flow velocity, which
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appears in the second term of the first equations. In other words when u = 0 the equations

coincide with WS equations, but with the difference that Shenoy got the value A0 = 4π3

3
,

while Williams — the value A0 = π5

6
. Because of the wall, the half-rings are created on a half

space, so the coefficient in our equations is equal to 1/8 of the Williams one, A0 = π5/48.

The dependence of scaling on the superfluid flow velocity u arises because of the spontaneous

generation of half-vortex rings induced by the flow. This diminishes the effective coupling

K and stimulates the vortex nucleation. One sees from this equation that the flow velocity

is very important for the behavior of K [24].

There are two types of a behavior of the system. The first one is the superfluid or the

low temperature one, which is characterized by growing ul = u0e
2l, Kl = K0e

l and vanishing

fugacity y = y0e
−

a
ξ0 , where ξ0 = 1

(π2K0L)
and valid when A0Ky sinhu

u
≪ 1. The second one

is a high-temperature solution, which is characterized by growing the fugacity y. One sees

that the transition of the vortex nucleation depends explicitly from the flow velocity, while

the transition temperature does not.

Between these two low- and high-temperature phases there is a critical point, which is

associated with the nontrivial fixed point of the rescaling equations: u = 0,

(6 − π2KL)y = 0 (0.13)

K − A0yK2 sinh u

u
= 0 (0.14)

The nontrivial solution is K1 = 6
π2L

and y1 = π2L
6A0

.

Now let us make an expansion in the vicinity of this critical point as Kl = K1(1+k), yl =

y1(1 + y), and ul = u. Then, the scaling equations take the linear form:

du

dl
= 2u (0.15)

dy

dl
= −6k (0.16)
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dk

dl
= −k − y (0.17)

The behavior of scaling near the fixed point is associated with the three eigenvalues:

λ+ = 2, λ− = −3 and λ3 = 2. The rescaling law for the free energy Fl obeys the relation

Z(K0, y0, u0) = e−(Fl−F0)L3

Z(Kl, yl, ul), (0.18)

which is associated with two relevant operators related to the temperature axis A+eλ+l and

the critical velocity u+eλ3l and one irrelevant associated with the fugacity yl, i.e.

Z(K0, y0, u0) = e−(Fl−F0)L3

Z(A | ǫ | eλ+l, A−eλ
−

l, u+eλ3l) (0.19)

where ǫ is a deviation of the temperature T from Tc: ǫ = (1 − T/Tc) and u+ is the ratio of

critical velocity to the relative one u+ = Vc/V0 [25]. Because of the two relevant operators

it is nontrivial to find where the scaling must be stopped. In order to understand this we

must look into the original recursion relation (0.3). With the scaling the critical velocity ul

and the coherence length ξ are growing, but the critical radius Rcl decreases. The scaling is

stopped, when the critical radius Rcl ∼ ξ, i.e. when l− = ln( ξ

ac
) ≃ ln(Rc

ac
).

It is obvious that l− = ln(Rc

ac
) → ∞ as u+ → 0. On the other hand the scaling constraint

on the temperature is that ln ξ

ac
→ ∞ as ǫ → 0. Setting l = l− → ∞ into the partition

function, we see that it is well defined as only if

Rc
∼= ac(u+)

−
1

λ3 ∼= ξ ∼= ac | ǫ |−
1

λ+ (0.20)

whence we find that the critical velocity

Vc ≃ V0

(

1 − T

Tc

)p

(0.21)

where V0 = h̄/mac and the critical exponent p = λ3

λ+
= 1, that observed in Refs [3–8].
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The proposed mechanism of the vortex nucleation has a very general character. It is

definitely applicable to systems like orifices with different geometry. The latter dictates the

shape of the optimal vortex ring segments fluctuatively generated. For orifice of a square or

a rectangular cross section the relevant will be quarter-vortex ring segments. They prefer to

be nucleated at corners. There a vortex-ring segments ”plasma” is spontaneously generated.

Via this mechanism the barrier for such a nucleation vanishes and the vortex (or a vortex

ring) is nucleated. The scaling relation for critical velocity will again take the derived

universal form(0.21) with p = 1. The vortex nucleation is related to some kind of a phase

transition, which occurs near the surface with the critical width Rc. In the limit when

T → Tc the width Rc increases and this ”near surface phase transition” transforms into the

bulk λ−phase transition driven by a generation of half-vortex rings but not a generation

of full vortex rings as in the WS model. Here the coefficient A0 has also decreased. Such

a change reduces the critical temperature but has no effect on the critical indices. Thus,

our findings offer a new driven mechanism for the λ− phase transition – a generation of

half-vortex rings . Probably, for a complete description of the λ− phase transition both

half-vortex rings and full vortex rings must be taken into account. This may give a more

reasonable value for the coefficient A0.

There is nothing in the theory which restricts it to pure bulk 4He. Our findings give an

explanation for a number of phenomena in Vycor glasses, where there are narrow channels.

Then, one has to take into account the curvature of the walls of these narrow channels.

Therefore, instead of the half-vortex rings for the plane geometry, the optimal shape of fluc-

tuations will be smaller segments of the vortex rings. This shape depends on the curvature,

i.e. on the radius of the narrow channel. Because of this dependence the coefficient A0 in

the scaling equations and the critical temperature of the phase transition decrease while
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the critical indices i.e. the universality class of the phase transition remain the same. This

explains why in Vycor glasses the critical temperature decreases with the decrease of the

diameter of the channels while the character of the λ−phase transition remains the same.

Therefore the critical velocity in the Vycor is described by the same formula as in the ab-

sence of the Vycor [8]. Thus, the theory works equally well for the flow of 4He in Vycor

and probably for Xerogel and Aerogel glasses [8]. However, the fractal structure of Aerogel

glasses may give some peculiarities.

The other relevant systems are superfluid films of finite thickness. Ambegaokar et al

[28] shown that there with the temperature occurs a crossover from 2D to 3D. With this

crossover the character of the vortex nucleation changes. We discuss this here only quali-

tatively. The quantative treatment must include anisotropy effects created by the flow as

it was also indicated by perturbation theory [29,30]. The behavior of the critical velocity

in the films depends on whether the thickness of the film d is bigger (d > Rc) or smaller

(d < Rc) than the critical size Rc of the surface vorticity sheet . When the the thickness of

the film is smaller than the critical size Rc of the surface vorticity sheet, i.e. d < Rc, one

may expect that the BKT 2D V-A pair unbinding process holds [34]. In this case the critical

velocity Vc is estimated from the condition that the coherence length of BKT transition at

T < Tc is equal to a critical radius of the vortex pair separation, i.e. ξ− = rc. The coherence

length estimated in Ref. [28] is ξ− = ac2 exp(b/
√

(1 − T/Tc)), while the critical radius of the

vortex pair separation is rc = h̄/mVc [25]. Whence we find that

Vc =
h̄

mac2

exp(−b/
√

(1 − T/Tc)). (0.22)

where ac2 is a vortex core radius which depends on the thickness of the film [35]. On the

other hand when the film thickness d > Rc the critical velocity obeys eq.(0.21) with p = 1.
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However, the width Rc of the surface vorticity sheet depends on the temperature. The

value of Rc increases when T → Tc. Therefore, there exists the region of the temperatures

(near Tc) where the value Rc > d and the critical velocity in the film is described by the

expression (0.22). With decreasing temperature it may happen that the value Rc becomes

smaller than the value d (Rc < d). Then the critical velocity is described by eq. (0.21) with

p = 1. Therefore, with decreasing temperature, there occurs a crossover in the behavior of

the critical velocity of the film from the regime described by eq.(0.22) to the 3D regime.

Probably, to confirm this picture additional experiments are needed ( see, also, Fig.20 in

Ref. [27]).

Similarly a vortex may be nucleated both in the rotating superfluid 3HeB and in su-

perconductors. Indeed a surprising scaling relation for the critical velocity of the vortex

nucleation in rotating 3HeB has been observed [36]. The huge vortex nucleation barrier

rules out the conventional mechanisms like tunneling and activation. There is only one pos-

sibility here to generate the vortex: i.e. via a creation of a critical the surface vorticity sheet

the attraction of the vortex to the wall is screened, the barrier vanishes and an intrinsic

instability for the vortex creation observed in [36] occurs. However, the core of these 3HeB

vortices proportional to the BCS coherence length is growing to infinity with its critical

exponent when temperature rises. This makes a strong difference with the case considered

in the present paper although in general the proposed physical mechanism of the vortex

nucleation via fluctuative half-vortex rings are also applicable here. The critical exponents

as well as the scaling equations may vary and probably be very different from the obtained

ones.

In summary, we proposed the fluctuative mechanism of the vortex nucleation, which is

similar to the original BKT mechanism. The nucleation of the vortex is usually prevent by
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its attraction to the wall. Loosely speaking, this attraction is due to mirror forces to the

mirror vortex. For the half-vortex ring discussed this will an attraction to the other mirror

part of the vortex ring behind the wall which is a mirror image of this half-vortex ring. If

we consider the single half-vortex ring , its penetration into the volume, goes via transition

through a very high barrier associated with this ”coulomb” attraction to the wall. However

these ”coulomb” forces may be screened if in the neighborhood of the wall a large number

of the half-vortex rings of the small sizes will be created. These half-rings will create a

some kind of ”plasma” located mostly near the wall, which, in turn, screens this attraction

of the nucleated vortices to the wall. As a result of this screening the single vortex may

easily penetrate into the volume. We have also the following main results accomplishing the

proposed mechanism: 1) In a flow near a surface a critical surface vorticity sheet occurs and

then a spontaneous barrierless vortex nucleation is started. It seems that a recent analysis of

various experimental data supports this idea [36]. 2) Because the half vortex rings have half

the energy of the full vortex rings of the same radius, they are more important both for the

vortex nucleation and for λ-phase transition. 3) The theoretical expression for the critical

velocity (main result, eq.(21)) has been obtained for the first time. In the derivation the

renormalization group equations have been used. The proposed mechanism may be further

confirmed or rejected by experimental studies of the critical exponents, which, according to

the scaling hypothesis, obey universal relations.
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