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Abstract

Fourier transforms of functions of several variables invariant under certain symmetry groups are
studied, with particular reference to functions f(x1 · · ·xN) of N three-component vectors invariant
under rigid rotations. Here we use symmetry to enhance the efficiency of evaluation of the integrals.
The Fourier transform can be written as an integral F (k) =

R

dµ(x)K(k, x)f(x) over rotationally
invariant quantities x. The kernel K, the average of exp(i

P

ki · xi) over the rotation group SO(3),
is reduced to a single integral,

R

1

0
J0( 1

2
(Axx + Ayy)u)J0( 1

2
(Axx −Ayy)(1− u)) exp(iAzz(2u− 1))du, a

function of the eigenvalues of the dyadic A =
PN

i=1
kixi. For N = 1 the familiar Hankel transform

is recovered. For N = 2 the kernel reduces to a single integral of elementary functions, equal to the
local spin-flip propagator in a one-dimensional tight-binding antiferromagnet. A variety of forms is
given, and useful asymptotic forms are found in various limits. Recent numerical methods for the
evaluation of irregular oscillatory integrals are applied to the kernel in the N = 2 case.
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1 Introduction

The symmetry of the integrand in multivariate Fourier transforms often allows reduction of the number
of integrations, enhancing numerical efficiency. For example, the d-dimensional Fourier transform of a
spherically symmetric function in R

d reduces to a one-dimensional Hankel transform[1]:
∫

ddx eik·xf(x) =

∫ ∞

0

dxxd−1K(kx)f(x) (1)

where the kernel K(kx) is the average of eik·x over the unit hypersphere:

K(kx) =

∫

Sd−1

dΩ eikx cos θ = (2π)d/2(kx)1−d/2Jd/2−1(kx). (2)

[We recognise this as the spherically symmetric term in the general solution of the d-dimensional Helmholtz
equation −∇2K(x) = k2K(x).] As the d − 1-dimensional angular integral is known in closed form, we
are left with a single radial integral over x. This is the process we wish to generalise; such generalisation
does not seem to be well known in the literature.

The Fourier transforms considered here are of functions of N d-vectors,

F (tk) =

∫ N
∏

i=1

ddxie
it

PN
i=1 ki·xif(x) (3)
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where we write k ≡ {ki ∈ R
d, i = 1 . . .N} and x ≡ {xi ∈ R

d, i = 1 . . .N}; the factor t is introduced to
aid later asymptotic analysis. Suppose f(x) is invariant under a group G, which in the present work is
the group SO(d) of proper rigid rotations of the frame of N vectors {xi} in R

d. Thus we have

f ({gxi}) = f ({xi})∀g ∈ G (4)

and
F ({gki}) = F ({ki})∀g ∈ G. (5)

Let us separate x (hence also k) into a set of “radial” or “shape” components x ∈M (k ∈M), invariant
under rotations, and a set of “angular” components g ∈ G. The group G is d(d − 1)/2 dimensional; the
shape space M = R

Nd/G can be parameterised in a variety of ways[2]. We therefore wish to write the
Fourier transform (3) as

F (k; t) =

∫

x∈M

dµ(x)K(k, x; t)f(x) (6)

where the kernel

K(k, x; t) =

∫

g∈G

dµ(g)eit
PN

i=1 ki·gxi (7)

generalises the Hankel kernel (2), with the measures dµ to be defined.
The integrals discussed here arose in an attempt to generalise the Wigner function of a single spin[3]

to two or more coupled spins. However, other applications spring to mind, such as calculation of the
momentum wave function φ(p1,p2) in a 1S0 state of the helium atom, given the real-space wave function
ψ(x1,x2) in Hylleraas-type[4] coordinates {|xi|, |xi − xj |}. Similar manipulations appear in the study of
scattering of polarised light from orientationally disordered uniaxial ellipsoidal particles[5].

The kernel cannot in general be expressed in closed form in terms of elementary functions (or indeed
any special functions known to the authors). Our aim is therefore to reduce it into a numerically tractable
form. In three dimensions (with an arbitrary number N of vectors) we reduce the triple integral (7) to a
single integral (28) involving Bessel functions. With N = 2 (as in the helium atom) the integral simplifies
further to a single oscillatory integral of elementary functions, given in Eqs. (33–34). Recent numerical
methods for irregular oscillatory integrals allow efficient evaluation of these forms.

2 Analytical evaluation of kernel

The general problem is to evaluate the integral (7). The exponent is linear in the rotation matrix Rµν(g):

S(g) ≡
N
∑

i=1

ki · (gxi) =

d
∑

µ=1

d
∑

ν=1

RµνAνµ (8)

where

Aνµ =
N
∑

i=1

(ki)µ(xi)ν . (9)

[For N sufficiently large and suitably chosen vectors, any real d×d matrix A can be expressed as a dyadic
of this form.] We shall henceforth assume summation over repeated Greek indices µ, ν = 1 . . . d (labelling
components) and Roman indices i, j = 1 . . .N (labelling vectors).

There is some gauge freedom here[2]. We choose the initial relative orientation of the x and k frames
to maximise S:

S+ ≡ max
g∈G

S(g) = S(e) = ki · xi = TrA, (10)

where e is the identity element of G. This defines a unique relative orientation almost everywhere in
shape space; any degeneracies are of no relevance to the subsequent derivation.
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2.1 N vectors in three dimensions

Having formulated the general case, we now specialise to d = 3. The integration (7) is then over the
three-dimensional manifold of SO(3). There are two well-known parameterisations of this group: in terms
of axis and angle of rotation, and in terms of the Euler angles. The latter leads to a more useful form,
but we give both for completeness.

We first parameterise the group by the angles θ and φ (the axis of rotation n in spherical polar
coordinates), and ψ, the angle of rotation about this axis, with 0 ≤ θ ≤ π, 0 ≤ φ < 2π, 0 ≤ ψ ≤ π. The
normalised invariant measure [6] is

dµ(g) =
1

4π2
sin θdθdφ(1 − cosψ)dψ (11)

and the rotation matrix is

Rµν(θ, φ, ψ) = nµnν + (δµν − nµnν) cosψ − ǫµνξnξ sinψ. (12)

The condition (10) for d = 3 implies the “zero-torque” condition

ki × xi = 0, (13)

which ensures that the coefficient of sinψ in S(g) vanishes. The matrix A (9) is therefore symmetric, its
eigenvectors defining an orthogonal coordinate system. We shall order the eigenvalues as

Azz ≤ Ayy ≤ Axx. (14)

We now proceed to compute the kernel. The exponent is given by

S(g) = w(n) + (S+ − w(n)) cosψ (15)

where
w(n) = nµnνAµν (16)

is a linear combination of l = 2 spherical harmonics:

w(n) = Axx sin2 θ cos2 φ+Ayy sin2 θ sin2 φ+Azz cos2 θ

= Azz + [ 1
2 (Axx + Ayy − 2Azz) + 1

2 (Axx −Ayy) cos 2φ] sin2 θ. (17)

The kernel (7) is

K(k, x; t) =
1

4π

∫ π

0

sin θdθ

∫ 2π

0

dφκ(tw(n)). (18)

where the integrand κ(tw(n)) is

κ(tw) =
1

π
eitw

∫ π

0

eit(S+−w) cosψ(1 − cosψ)dψ (19)

= eitw [J0(t(S+ − w)) − iJ1(t(S+ − w))] (20)

=
−i
t

∂

∂w

[

eitwJ0(t(S+ − w))
]

(21)

We proceed by computing the density of w,

ρ(W ) =
1

4π

∫ π

0

sin θdθ

∫ 2π

0

dφ δ(W − w(n)), (22)

to reduce the kernel to a single integral over W . Integrating first over φ and then over cos θ, we obtain
(in the non-degenerate case Azz < Ayy < Axx)

ρ(W ) =



























































0, W < Azz

Kc

„
r

(Axx−Ayy)(W−Azz)

(Ayy−Azz)(Axx−W )

«

π
√

(Ayy−Azz)(Axx−W )
, Azz < W < Ayy

Kc

„r

(Ayy−Azz)(Axx−W )

(Axx−Ayy)(W−Azz)

«

π
√

(Axx−Ayy)(W−Azz)
, Ayy < W < Axx

0, Axx < W

(23)
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where Kc is the complete elliptic integral of the first kind. This density has finite discontinuities at
W = Azz and W = Axx, and a logarithmic singularity at W = Ayy. Similar results for the density of
other combinations of spherical harmonics have appeared elsewhere[5]. We obtain the kernel as

K =

∫ Axx

Azz

ρ(w)κ(tw)dw. (24)

This integral is not yet in a form convenient for numerical integration.
We now obtain an equivalent result by integration over the Euler angles 0 ≤ α ≤ 2π, 0 ≤ β ≤ π.0 ≤

γ ≤ 2π. The rotation matrix is[7]

R =





















cosβ cosα cos γ
− sinα sin γ

cosβ sinα cos γ
+ cosα sin γ

− sinβ cos γ

− cosβ cosα sinγ
− sinα cos γ

− cosβ sinα sinγ
+ cosα cos γ

sinβ sin γ

sinβ cosα sinβ sinα cosβ





















(25)

and the normalised invariant measure is[2]

dµ(g) =
1

8π2
d cosβdαdγ. (26)

The kernel is therefore

K =

∫

g∈SO(3)

dµ(g)eit[
1
2 (Axx+Ayy)(1+cos β) cos(α+γ)+ 1

2 (Axx−Ayy)(−1+cosβ) cos(α−γ)+Azz cos β]. (27)

Changing variables to α± γ and u = (1 + cosβ)/2 reduces the integral to

K =

∫ 1

0

J0(t(Axx +Ayy)u)J0(t(Axx −Ayy)(1 − u))eitAzz(2u−1)du. (28)

Numerical tests confirm the equivalence of the integrals (24) and (28), although the latter is easier to
evaluate. Expanding this kernel in a power series in t gives

K = 1 −1

6

(

A2
xx +A2

yy +A2
zz

)

t2

− i

6
AxxAyyAzzt

3

+
1

120

[

2
(

A2
xx +A2

yy +A2
zz

)2 −
(

A4
xx +A4

yy +A4
zz

)

]

t4 +O(t5). (29)

The real part of the kernel is invariant under the cubic symmetry group; the imaginary part changes sign
under inversion.

2.2 Two vectors in three dimensions

We now further specialise to the case d = 3, N = 2. Figure 1 illustrates the rigid rotation of the pair
(gx1, gx2) with respect to the pair (k1,k2), with g ∈ SO(3). The torque-free condition (13) requires the
four vectors (k1,k2,x1,x2) to be coplanar, and the choice of axes (14) constrains them to lie in the xy
plane. The angle between k1 and x1 is

γ = arctan

(

k2x2 sin(Θ − χ)

k1x1 + k2x2 cos(Θ − χ)

)

, (30)

where χ is the angle between x1 and x2 and Θ the angle between k1 and k2 (with 0 ≤ χ ≤ π and
0 ≤ Θ ≤ π). The eigenvalues of A are then Azz = 0, Ayy = 1

2 (S+ − S−), Axx = 1
2 (S+ + S−), where we

define

S± =
√

k2
1x

2
1 + k2

2x
2
2 + 2k1k2x1x2 cos(Θ ∓ χ) (31)

=
√

k2
1x

2
1 + k2

2x
2
2 + 2(k1 · k2)(x1 · x2) ± 2(k1 × k2) · (x1 × x2);
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k1

k2
x2

x1

n
ψ

χ
Θγ

x

z

y

Figure 1: Geometry of integration for d = 3, N = 2

The definition (31) of S+ can easily be shown to agree with the earlier definition (10).
The integral (28) further simplifies in this case to a number of equivalent forms:

K(tS+, tS−) =

∫ 1

0

J0(tS+u)J0(tS−(1 − u))du (32)

=
2

πt

∫ S+

S−

sin tz
√

(S2
+ − z2)(z2 − S2

−)
dz, (33)

=
2

π

∫ π/2

0

sin t
√

S2
− + (S2

+ − S2
−) sin2 p

t
√

S2
− + (S2

+ − S2
−) sin2 p

dp (34)

=

∫ 1

0

J0

(

t(S+ + S−)
√

1 − z2

2

)

J0

(

t(S+ − S−)
√

1 − z2

2

)

dz (35)

=

∫ 1

0

[

J0

(

1
2 t
√

S2
+ − S2

−

√

1 − z2

)]2

cos(tS−z)dz. (36)

[All but the first form, which comes from equation (28), were obtained by rotating x1 around x2, then
rotating x2 around k1, and finally integrating over the angle between x2 and k1. The resulting integrals,
functions of k1x1, k2x2, Θ and χ, are then simplified by noting that they must depend only on the two
variables S− and S+ and using various standard results[8].] Numerical tests confirm that all these forms
are indeed equivalent to each other and to the result (24) for N = 2 (Azz = 0), although we have found
no closed form expression in terms of known functions[8]. We note that these expressions are real. For
N > 2 the kernel is not in general real, as rotations in SO(3) preserve the handedness of the frames.
Figure 2 shows the form of the kernel for N = 2.

2.3 Tight-binding analogue

We briefly note a connection between the integral (33) and one-electron propagators in a tight-binding

system[9]. Consider a one-dimensional chain with nearest-neighbour hopping matrix element 1
2

√

S2
+ − S2

− =
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K

Axx
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Figure 2: Kernel for d = 3, N = 2 as function of Axx and Ayy with t = 1.

√

AxxAyy and a staggered magnetic field S− = Axx −Ayy:

H = − 1
2

√

S2
+ − S2

−

∑

i

↓
∑

s=↑

(|is〉〈(i+ 1)s| + |is〉〈(i− 1)s|)

−S−
∑

i

(−)i (|i ↑〉〈i ↑ | − |i ↓〉〈i ↓ |) (37)

There are two bands, −S+ ≤ E ≤ −S− and S− ≤ E ≤ S+, and the band structure is

E±(p) = ±
√

S2
− + (S2

+ − S2
−) sin2 p. (38)

The local real-time propagator is defined as Gss′(t) = −iΘ(t)〈0s|e−iHt|0s′〉, the amplitude for an electron
of spin s′ on site 0 at time 0 to propagate to a spin s state on site 0 at time t. The time average of the
amplitude for an electron to remain on site 0, and the spin-flip amplitude for an x-polarised electron, are
both proportional to the kernel:

1

2t

∫ t

0

dt′ (G↑↑(t
′) +G↓↓(t

′)) =
1

2π

∫ π

−π

dp
sinE±(p)t

E±(p)t
= K(tS+, tS−), (39)

and

G←→(t) =
2

π

∫ S+

S−

S− sinEt dE
√

(S2
+ − E2)(E2 − S2

−)
= S−tK(tS+, tS−). (40)

(Compare Eqs. (34) and (33) respectively.) This may suggest other means of calculation of the kernel
although the exact correspondence is not clear.

2.4 Asymptotic analysis

To understand the form of these oscillatory integrals, we investigate the leading large t behaviour of the
integrals (33). In the general case (tS+ − tS− ≫ 1, tS− ≫ 1), we use integral (33) and expand about the
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end-points:
√

(S2
+ − z2)(z2 − S2

−) ≈







√

(S2
+ − S2

−)2S−ξ, ξ = S− + z

or
√

(S2
+ − S2

−)2S+ξ, ξ = S+ − z
. (41)

We can approximate the kernel by a sum of Fresnel integrals to give

K =
2

πt
√

S2
+ − S2

−

(

∫ ∞

0

sin t(S− + ξ)dξ
√

2S−ξ
+

∫ ∞

0

sin t(S+ − ξ)dξ
√

2S+ξ

)

+ o(t−3/2)

=

√

2

πt3(S2
+ − S2

−)

(

sin(tS− + π/4)
√

S−
+

sin(tS+ − π/4)
√

S+

)

+ o(t−3/2), (42)

i.e. t−3/2 times the superposition of two oscillatory functions.
There are two degenerate cases, where the function is O(t−1) for large t. If the two k vectors (or the

two x vectors) are nearly parallel, t(S+ − S−) = 2tAyy will be small). In this case we find

K ∼ sin ts

ts
J0

(

t(S2
+ − S2

−)

4s

)

− (S2
+ − S2

−) cos ts

4ts3
J1

(

t(S2
+ − S2

−)

4s

)

(43)

where s =
√

(S2
+ + S2

−)/2. We recover the d = 3 Hankel kernel

K =
sin tS+

tS+
, (44)

for S− = 0 (compare Eq. 2). In the other degenerate case both k1x1 = k2x2 and Θ +χ = π are satisfied,
giving S− = 0 (or Ayy = Axx). For small S− we find

K =
J0(tS−)

t
√

S2
+ − S2

−

+

√

2

πt3S3
+

sin(tS+ − π/4) + o(t−3/2). (45)

Inspection of the form (35) shows that the kernel is everywhere positive for S− = 0. Figure 3 shows the
asymptotic forms for tS+ ≤ 20. As expected, the generic form (42, thin line) is accurate for S+ = 2S−,
while the other forms (45) and (43) are better approximations for small and large S− respectively.

3 Numerical studies

We will concentrate here on the N = 2 kernel. The versions of K in equations (32–36) each exhibit
different numerical difficulties which also depend on the values of the parameters involved. Conventional
quadrature methods may be used on smooth integrands with rapid convergence [10] and such methods
are typified by the classical Gauss-Legendre method and the method of Clenshaw and Curtis[11]. These
methods fail to deliver such rapidly converging results in two major sub-cases which are the subjects
of considerable literature. These are the cases in which the integrand has singularities in the range of
integration, and when the integrand has a highly oscillatory part. This latter case is further sub-divided
into regular oscillatory integrands typified by kernels of the form sinωx for large ω, and irregular cases
which have kernels such as sinωq(x). These cases are further extended if the oscillatory part is non-
trigonometric such as a Bessel oscillation. All these cases arise in computing K. High order methods for
the irregular oscillatory problem have only recently been set up [12].

Hence to return to computing K, consider first version (33). For this example the problem lies
in the end point singularities which, if ignored by the blind application of the open Gauss-Legendre
rule, will yield very slow convergence with around three figure accuracy for around 2000 integration
points for typical values of the parameters. The easiest technique to employ here is to split the range
of integration into two to yield two integrals each with singularities at zero. An application of the
polynomial transformations of Evans, Forbes and Hyslop[13] with a simple quadratic transformation will
give 14 correct digits with just a 16 point Clenshaw-Curtis rule. Hence the integral splits into

K = K1 +K2, (46)
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representing the lower and upper halves of the range of integration. Applying the singularity-removing
transformations z = S−+ω2v2 and z = S+−ω2v2 respectively to each half-range, where ω2 = (S+−S−)/2,
gives

K1 =
4ω

πt

∫ 1

0

sin t(ω2v2 + S−)
√

(ω2v2 + 2S−)(S2
+ − (ω2v2 + S−)2)

dv (47)

and

K2 =
4ω

πt

∫ 1

0

sin t(S+ − ω2v2)
√

(2S+ − ω2v2)((S+ − ω2v2)2 − S2
−)

dv. (48)

In the second case, the integral in (28) is an example of an irregularly oscillatory integrand, and a
powerful approach to this is the direct application of the method of Evans and Webster[12]. The principle
behind this method is to consider a rule of the form

∫ b

a

f(x)eiq(x) dx =

M
∑

i=1

Aif(xi) + E, (49)

where

xi =
b− a

2
cos

πi

M
+
b+ a

2
, (50)

and force this rule to be exact by setting E = 0 for the set of functions given by fj(x) = p′j(x)+ipj(x)q(x),
where pj(x) = Tj(x), j = 0, . . . ,M − 1 is the most effective choice for pj , Tj(x) being the jth Chebyshev
polynomial. For such a choice, (49) yields a set of 2M linear algebraic equations for the real and imaginary

part as the integral on the left hand side of (49) can be integrated exactly to give pj(x)e
iq(x)

∣

∣

b

a
. Though

the linear equations are ill-conditioned, the resulting computed weights can be shown to yield accurate
quadrature rules to high accuracy as the residues of the defining linear equations are zero to machine
accuracy. As in the previous case 14 significant digits are generated in 16 integration points.

The integral (35) is not so easy in that it is a product of two Bessel functions. The method of Evans
and Webster has been extended to deal with kernels of the form Jn(ωq(x)) but not with products of this
type. The final case, namely equation (36), also exhibits a combination of oscillatory terms, and again
the above comments apply.

3.1 Numerical Results

Practical tests were carried out on the four versions of the integral K on a range of values of the defining
parameters. For the first set of tests the value of S+ was fixed at 1.0, and S− was allowed to take the
values 0.01, 0.5 and 0.99, and the scaling factor t the values 0.5, 1.0, 5.0, 10.0 and 15.0. This range
allows conventional Clenshaw-Curtis quadrature to be used, effectively taking no account of any of the
oscillatory factors. This test establishes the equivalence of the four versions of the integral. The form
(33) was integrated in two parts as in (47) and (48) to account for the singularity, but otherwise the
integrals were performed directly.

The values obtained at convergence are shown in Table i and the number of function evaluations to
achieve 14 figure accuracy for each of the methods is shown in Table ii, in the order of integrals (33–36).

S−
t 0.01 0.5 0.99

0.5 0.97935894292357 0.97419724283520 0.95925546405373
1.0 0.91972228144312 0.89960076847233 0.84297045100255
5.0 0.14294005363476 -0.081086970535548 -0.19408619166121
10.0 0.10645420869444 -0.011174516638095 -0.050355842266123
15.0 0.07997198470926 0.035996484912053 0.04720017053884

Table i: Numerical values of the kernel. See figure 3

Hence for moderate values of the defining parameters all four methods take a modest number of
quadrature points, where we remember that two integrals are evaluated in the case of equation (33) for
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S−
t 0.01 0.5 0.99

0.5 32,16,8,8 16,16,8,8 8,8,8,8
1.0 32,16,8,8 16,16,8,8 8,8,8,8
5.0 16,32,16,16 8,16,16,16 4,16,16,16
10.0 16,32,32,32 8,32,32,32 4,16,32,32
15.0 16,32,32,32 8,32,32,32 4,16,32,32

Table ii: Number M of function evaluations required to obtain 14-digit accuracy with integrals (33–36).

each value. It is also beginning to appear that the cases (34–36) require increasingly large point numbers
as t increases and the integrands become more oscillatory. The method will become progressively more
untenable as the oscillatory factor t increases. In these regions the special oscillatory methods are used
as illustrated in the next subsection in which the asymptotic formulae are investigated.

The reverse appears to occur for version (33). For this integral the oscillatory factor is tω2 as in
equations (47–48) and hence this factor increases for large t, but decreases as S+ approaches S− which
happens in the right hand column of Table i. Hence again in general, the direct integration of the full
integrand with the singularity suppressed is only viable for non-large t or for S+ close to S−.

3.2 Asymptotic regions

It is of considerable interest to investigate how the asymptotic forms for K behave numerically in the
various asymptotic regions. The first region is for t large and comparison may be made with the asymp-
totic result (42). It is clear that forms (35) and (36) will not be satisfactory with increasingly oscillatory
terms. However cases (33) and (34) can be evaluated for large t using the Evans and Webster algorithm,
as long as the singularity in (33) is suppressed as in (47) and (48). This method holds its accuracy as
the oscillatory factor increases for the same non-oscillatory part.

Table iii shows these results with t taken as large as 104, for S+ = 1 and S− = 0.5.

M for M for quadrature value
t (34) (33) value by (42)
10 32 16 -1.1174516638095(-2) -1.359508816(-2)
500 128 64 -3.573191319899(-5) -3.58733172(-5)
1000 128 64 -3.395355921834(-5) -3.3929922(-5)
5000 128 128 -1.81929623227(-6) -1.819600724(-6)
10000 128 128 -3.4645654920(-7) -3.46530191(-7)

Table iii: Number M of function evaluations required, exact value of the kernel and asymptotic form for
S− = 0.5, S+ = 1.

For these values, the direct application of Clenshaw-Curtis to the full oscillatory integrand yields only
6 correct figures for 256 integration points at t = 1000, and none at all at t = 10000.

A new effect arises for these values, as the attainable accuracy will be below machine accuracy as
the final values become smaller. This is a normal problem with oscillatory integrals where the integrand
involves values of say order unity and the integral is say of order 10−n. Then inevitably the process must
involve subtractive cancellation with the loss of n digits. This effect can be observed in the evaluation
of sinx itself for large arguments. As these high t values will be used with other smaller t results in the
outer integrals, it is only the absolute errors which will be relevant, and these are sufficiently small not
to cause a problem.

It is clear from Table iii that full attainable accuracy is achieved using both versions again remembering
that two integrals are involved in case (33). Note that in both cases the increasing parameter t is not
just an oscillatory factor but also causes the non-oscillatory part of the integrand to become much less
smooth, so requiring a higher point number. There is a balance here between the requirement for less
absolute accuracy as t increases and the effect of large t reducing the smoothness of the non-oscillatory
part of the integrand, so generating less accuracy. Hence it appears that either version could be used
successfully for the numerical evaluation of K throughout the required range. The computations were not
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pursued beyond M = 128 as the associated overheads of the method become significant, being primarily
caused by the solution of 2M simultaneous equations.

The second asymptotic test involved using formula (43) for the case when S+ and S− are close
together. For this example, t was taken as unity and S− was ranged from 0.9 to 0.999 with S+ = 1.
These results are shown in Table iv.

M for M for quadrature value
S− (34) (33) value by (43)
0.9 64 32 0.8558818751252 0.856112785
0.95 128 64 0.8488396689284 0.84888201
0.99 128 64 0.84297045100255 0.842971673
0.995 64 128 0.84222231359635 0.84222260464
0.999 > 128 64 0.84162150547562 0.84162151666

Table iv: Number M of function evaluations required, exact value of the kernel and asymptotic form for
t = 1, S+ = 1.

In Table iv the numerical method is seen to agree with the asymptotic estimates to greater and greater
accuracy as the value of S− approaches S+. Because of this proximity, the numerical integrations can
be achieved using Clenshaw-Curtis across the whole set of parameters in 32 integration points. The test
was repeated for t = 10 and t = 100, and as t increases the accuracy of the asymptotic estimate falls off
as the crucial factor to be kept small is t(S+ − S−).

The third asymptotic formula is (45), and for this test, S+ and t are fixed at 1 and 1000 respectively,
and small values of S− are used. These comparisons appear in Table v. The use of integral (34) in
this regime proves increasingly difficult as the non-oscillatory part of the integrand approaches a root
singularity as S− → 0.

M for quadrature value
S− (33) value by (45)
0.01 64 -2.4124452500934(-4) -2.41229045676(-4)
0.005 64 -1.7289459328368(-4) -1.72879974829(-4)
0.001 64 7.6990137203799(-4) 7.69917085643(-4)
0.0005 128 9.431733851343(-4) 9.43188941036(-4)
0.0001 128 1.002205085(-3) 1.00222058354(-3)

Table v: Number M of function evaluations required, exact value of the kernel and asumptotic form for
t = 1000, S+ = 1

3.3 Numerical conclusions

In the region for which S+, S− and t all have modulus less then say 20, the direct application of Clenshaw-
Curtis to the full integrand proves accurate and efficient on either of the four possible integrands. Versions
(33) or (34) are preferred as this avoids the evaluation of Bessel functions. This region may be extended
into large t as long as t(S+ − S−) remains small as in Table iv.

As soon as large values of t or S+ occur then either version (34), or (33) with the singularities
suppressed, are required and the irregular integrator of Evans and Webster becomes the effective tool.
If in addition S− is small then the integrand in (34) is closing in on a singularity and only (33) will be
effective. An alternative is to use Clenshaw-Curtis on the range near to zero (say from 0 to 10π/(S+t))
and Evans and Webster to complete the range to π/2. This device then combines the sin function and
the denominator to remove the singularity. Using these regions, it is possible to compute K throughout
its range.

4 Conclusions

The results obtained here, which we believe to be novel, provide a general framework for Fourier trans-
forms of functions of several variables with symmetry. For N vectors in three dimensions the rotational
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average of the exponential eiki·xi is given by the kernel (28). We have concentrated on the specific case of
functions of two three-dimensional vectors, invariant under rigid rotations of the triangle defined by the
vectors. Eqs. (32–36) list a number of forms for the kernel; different forms are appropriate in different
parameter regions. For large values of the parameter t, the integrands are highly oscillatory, although
accurate asymptotic expressions exist in the appropriate regions. Similar numerical techniques might be
applicable to the general form of the kernel (28) for N three-dimensional vectors, although we have not
succeeded in reducing this to an integral of elementary functions. Finally, we note that although we have
only reduced the number of integrations from 3N to 3N−2, the oscillatory kernel for large wave numbers
tk falls off as O(t−3/2) in almost all directions, allowing faster convergence.
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Figure 3: Kernel for d = 3, N = 2 as function of t for S+ = 1 and three values of S−. Bold line: numerical
evaluation of integral (36); thin line: general asymptotic form (42); dashed line: asymptotic form (45)
for small S−; dotted line: asymptotic form (43) for S− ≈ S+. For S− = 0.99S+ the error in the latter
approximation is much smaller than the thickness of the lines.


