

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288387459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Evolving Readable Perl

Mark S. Withall
Department of Computer Science

Loughborough University
Leics. LE11 3TU, UK

m.s.withall2@lboro.ac.uk

Chris J. Hinde
Department of Computer Science

Loughborough University
Leics. LE11 3TU, UK
c.j.hinde@lboro.ac.uk

Roger G. Stone
Department of Computer Science

Loughborough University
Leics. LE11 3TU, UK
r.g.stone@lboro.ac.uk

1 INTRODUCTION

A program is informally deemed readable, for the pur-
pose of this experiment, if it is easy for a person to
follow the steps that the program takes to solve the
problem. In this experiment, readability is achieved
by constraining the available syntax for generating so-
lutions.

The Genetic Programming (GP) system created uses
the target language Perl because it is an interpreted,
untyped, robust procedural language which has good
error handling and recovery.

2 GENETIC PROGRAM

The genotype and phenotype have been separated to
make genetic manipulation simpler. Each program is
represented as a fixed-length integer array and then
mapped onto Backus-Naur Form (BNF). The program
statements used are shown in Figure 1a. The BNF is
designed to minimise the size of the genome that de-
scribes a program. The mapping, between the geno-
type and phenotype, is similar to Grammatical Evolu-
tion[2].

The GP was tested using the symbolic regression prob-
lem X4 + X3 + X2 + X[1]. A population size of 500
and mutation rate of 1 gene in 5000 were used for the
test problem. The population was initialised randomly
and each test run was of 100 generations. The fitness
values for the programs were given as the absolute dif-
ference between the target value and the actual value.

3 RESULTS AND CONCLUSIONS

All results were of the correct order (X4) and 5 out
of the 8 test runs produced entirely correct solutions.
An example of an optimal program is given in Figure
1b.

The results of the experiment were encouraging. As
a comparison the solution evolved by Koza[1] is given
in Figure 1c, which is only really understandable by
LISP users.

STMT FORMAT

Assign X = Y
Add X = Y + Z
Sub X = Y − Z
Mul X = Y × Z
If if(X cmp Y){

For for X(0..Y){
End }

Header
$x = $ARGV[0];
$res = 0;

Evolved Code
$res = $x * $x;
$x = $x + $res;
$res = $x * $res;
$res = $res + $x;

Footer
print "$res";

(a) (b)

(+X(*(+X(*(*(+X(-(COS(-XX))(-XX)))X)X))X))
(c)

Figure 1: (a) List of program statements used. (b) Ex-
ample of code produced to solve the problem. (c) LISP
result from Koza[1].

Acknowledgements

Thanks to everybody and all their friends.

References

[1] Koza J.R. (1992). Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press.

[2] Ryan C. O’Neill M. & Collins J.J. (1998). Gram-
matical Evolution: Evolving Programs for an Ar-
bitrary Language. Lecture Notes in Computer
Science 1391. First European Workshop on Ge-
netic Programming 1998.

