

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288387438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Set Theoretic View of the ISA Hierarchy

Yee Chung Cheung, Paul Wai Hing Chung and Ana Sălăgean

Department of Computer Science
Loughborough University

Loughborough, UK
P.W.H.Chung@lboro.ac.uk, A.M.Salagean@lboro.ac.uk

Abstract. The ISA (is-a) hierarchies are widely used in the classifi-
cation and the representation of related objects. In terms of assessing
similarity between two nodes, current distance approaches suffer from
its nature that only parent-child relationships among nodes are captured
in the hierarchy. This paper presents an idea of treating a hierarchy as
a set rather than as a tree in the traditional view. The established set
theory is applied to provide the foundation where the relations between
nodes can be mathematically specified and results in a more powerful
and logical assessment of similarity between nodes.

Keywords: fuzzy matching, information retrieval, knowledge representation.

1 Introduction

The ISA hierarchies are widely used to classify and represent domain concepts.
In its tree structure, the root represents the most general concept and its child
nodes represent more specific concepts. Each node can be further decomposed
as necessary. In a hierarchy the parent-child relation is the only one that is ex-
plicitly represented between nodes. The mainstream approaches to assess the
similarity between nodes in a hierarchy are developed based on the idea of con-
ceptual distance. The conceptual distance between two nodes is defined in terms
of the length of the shortest path that connects the nodes in a hierarchy (Rada,
[5]). However, similarity assessment based on conceptual distance does not al-
ways provide satisfactory results. This paper describes an alternative approach
that views a hierarchy as a set which enables richer information to be specified.
In this view the established set theory can be applied to both hierarchy speci-
fication and similarity assessment. The next section gives a brief description of
similarity assessment based on conceptual distance. The third section presents
the set theoretic approach. The application of the set theoretic view to similarity
assessment is demonstrated in section four. A number of examples of capability
matching are used throughout the paper. The paper ends with a discussion and
conclusion section.

2 Conceptual Distance Approaches

Figure 1 is a simple capability ontology of programming skills represented as a
hierarchy. For example, the term Object-Oriented represents the general con-
cept of object-oriented programming skills; the term VB means Visual Basic
programming skills. The parent-child relation between Object-Oriented and VB
can be interpreted as VB programming skill is a kind of Object-Oriented pro-
gramming skill. This capability ontology can be used to describe the skills of
agents and the required capability to perform specific tasks.

C++ Java VB

Logic Object-Oriented Structure

Prolog COBOL RPG

{Programming}

MS C++Borland C++ VB.NetVB6

Architect Developer ProfessionalStandard

VB5

Fig. 1. A simple ISA hierarchy of programming skills

To identify the most appropriate agent for a given task, it is required to assess
the goodness of fit (GOF) of an agent’s skills against the required capability. The
GOF is represented as a number in the interval [0, 100] where the upper limit
100 implies a perfect match. In the following examples, oa refers to the capability
of an available agent and or refers to the required capability for performing a
task. The following equation, taken from [4], defines GOF based on the distance
approach:

GOF =
(

1− IP + EP

IR + ER

)
× 100

where IP is the number of edges on the path between or and the common
ancestor of or and oa; EP is the number of edges of the path between oa and the
common ancestor of or and oa; IR is the number of edges on the path between
or and the root of the hierarchy; ER is the number of edges on the path between
oa and the root of the hierarchy.

Table 1 shows the results of applying this equation to a few examples based
on Figure 1. From these examples, it can be seen that this approach does not
always produce appropriate GOF values. Consider examples 2 and 3: if the
required capability is Java, both available capabilities VB and C++ have the
same GOF with value 50. However, an agent who knows C++ may require less
effort to learn Java than another agent who knows VB. Another problem can be
found in examples 4 and 5. In example 5, the required capability is C++ and the
availability is general capability in Object-Oriented. However, it has the same
GOF as example 4 where the required capability is any Object-Oriented skills
and the available capability is C++. Finally, examples 6 and 7 show a serious
problem: when either oa or or is the root, the GOF value is always 0.

Example oa or GOF(oa, or)

1 Java Java 100

2 VB Java 50

3 C++ Java 50

4 C++ Object-Oriented 66

5 Object-Oriented C++ 66

6 MS C++ Programming 0

7 Programming MS C++ 0

Table 1. Examples GOF using traditional distance approach

Chung and Jefferson suggested in [3] that different types of relationship be-
tween two nodes in a hierarchy have to be dealt with appropriately. They identi-
fied four different categories in matching domain concepts in a hierarchy, which
are:

1. oa is the same as or;
2. oa is a descendant of or in the hierarchy;
3. oa is an ancestor of or in the hierarchy;
4. oa and or are on different branches in the hierarchy.

In category 1, as oa is the same as or, i.e. oa = or, it is obvious that
GOF(oa, or) = 1. In category 2, oa is a concept of or. Therefore, if a task re-
quires or then someone who knows oa is suitable, and thus GOF(oa, or) = 1. In
category 3, oa is more general than or. It means that oa may or may not be what
the user is required. A general rule for the domain is required. In category 4, oa

and or are on different branches in the hierarchy. Their investigation concludes
that it is inappropriate to apply a general rule to determine the GOF value in
this category. Nodes on different branches in a hierarchy may or may not be
related. It is up to the domain experts to determine how closely two nodes are
related or not related at all.

On the other hand, in [6] Sussna identified that besides the length of the
path, the specificity of two nodes in the path (measured by the depth in the

hierarchy) is an important parameter that affects the distance measure. In his
work, a weight is assigned to each edge in the hierarchy and the total weight
of the path between two nodes is calculated. The weights try to capture the
fact that for the same path length, nodes lower in the hierarchy seem to be
conceptually closer. In another similar work, [2], Agirre and Rigau took the
density of concepts in the hierarchy into consideration: concepts in a deeper
part of the hierarchy should be ranked closer, and the Conceptual Density [1]
formula is used to provide more accurate results. Although the above works
improve the assessment of similarity, they still suffer from the nature of the ISA
hierarchy where only the parent-child relation is captured.

3 Set Theoretic Approach

We propose to view a hierarchy as a collection of sets and their inclusion rela-
tionships. Namely to each node in the tree we associate a set and each edge from
a parent S to a child A represents the fact that the set A is included in the set S,
i.e. A ⊆ S. This corresponds to the intuition that the notion A is conceptually
included in the more general notion S. Different children of the same parent
may or may not overlap. This also corresponds intuitively to the fact that the
concepts may or may not have some degree of similarity.

We also quantify the “size” of the sets by defining a measure function on the
set of all subsets of the root set. For each such set A its measure is a real number
µ(A) with µ(A) ≥ 0. As usual the measure function will have the properties:

1. µ(∅) = 0 (The empty set has size 0)
2. If A ⊆ B then µ(A) ≤ µ(B)
3. If A and B are disjoint then µ(A ∪B) = µ(A) + µ(B).

We are interested not so much in the sizes of the sets but rather in their rela-
tive sizes. For each set A except the root we define the quantity P (A) representing
the relative size of A against the size of its parent set S, i.e. P (A) = µ(A)/µ(S).
Intuitively this quantifies what proportion of the general concept S is covered by
the concept A. Obviously, since A ⊆ S, we have 0 ≤ P (A) ≤ 1. For each parent S
having children A1, A2, . . . , Ak we assume we are given P (A1), P (A2), . . . , P (Ak)
and P (Ai1 ∩Ai2 ∩ . . . ∩Ait) for all 2 ≤ t ≤ k and 1 ≤ i1 < i2 < . . . < it ≤ k.

We make an important simplifying assumption, namely that each child is,
in a sense “uniformly distributed” throughout its parent set. More precisely, if
a node S has children A1 and A2 which are not disjoint (i.e. A1 ∩ A2 6= ∅)
and furthermore A1 has children B1 and B2, then say B1 appears in the same
proportion in A1 ∩ A2 as in A1, that is µ(B1 ∩ A1 ∩ A2)/µ(A1 ∩ A2) = P (B1).
In the sequel we will call this assumption “the uniformity property”.

We are now ready to define GOF(oa, or) for our model. Intuitively, we want
to measure what proportion of the required notion or is covered by the available
notion oa. Therefore, we define

GOF(oa, or) = 100
µ(oa ∩ or)

µ(or)
. (1)

We will look in more detail at how can this be computed according to the
positions of oa and or in the hierarchy. A summary will be given in Table 2.

If or = oa or or ⊂ oa then oa ∩ or = or so (1) becomes GOF(oa, or) = 100.
This fits well with the intuition that we have a perfect match in this case.

If oa ⊂ or then oa ∩ or = oa so (1) becomes GOF(oa, or) = 100µ(oa)/µ(or).
This can be computed as follows: assume the path in the tree from oa to its
ancestor or consists of the sets oa ⊆ B1 ⊆ B2 ⊆ . . . ⊆ Bu ⊆ or. Then

GOF(oa, or) = 100
µ(oa)
µ(or)

=
µ(oa)
µ(B1)

· µ(B1)
µ(B2)

· · · · · µ(Bu)
µ(or)

hence
GOF(oa, or) = 100P (oa)P (B1) · · ·P (Bu)

Finally we have the case when none of oa and or are included in the other.
We look first at the situation where oa and or are siblings, i.e. both are children
of the same parent S. We have:

GOF(oa, or) = 100
µ(oa ∩ or)

µ(or)
= 100

µ(oa∩or)
µ(S)

µ(or)
µ(S)

= 100
P (oa ∩ or)

P (or)

For the more general case when none of oa and or are included in the other
and they are not siblings, GOF(oa, or) can be computed as follows: let S be
the common ancestor of oa and or and let the path from oa to S consist of
the sets oa ⊆ B1 ⊆ B2 ⊆ . . . ⊆ Bu ⊆ S and the path from or to S consist
of the sets or ⊆ C1 ⊆ C2 ⊆ . . . ⊆ Cv ⊆ S. Then, as before, we have µ(oa)

µ(Bu) =
P (oa)P (B1) · · ·P (Bu−1). Due to the uniformity property, oa occupies uniformly
a proportion µ(oa)/µ(Bu) of any subset of Bu, in particular of Bu ∩ or. This
means

µ(oa ∩ or)
µ(Bu ∩ or)

=
µ(oa ∩Bu ∩ or)

µ(Bu ∩ or)
=

µ(oa)
µ(Bu)

so µ(oa ∩ or) = µ(Bu ∩ or)µ(oa)/µ(Bu). We still have to compute µ(Bu ∩ or).
Since or ⊆ Cv we have µ(Bu ∩ or) = µ(Bu ∩ Cv ∩ or). Again by the uniformity
property, Bu ∩ Cv occupies uniformly a proportion µ(Bu ∩ Cv)/µ(Cv) of any
subset of Cv, in particular of or. Hence

µ(Bu ∩ or)
µ(or)

=
µ(Bu ∩ Cv ∩ or)

µ(or)
=

µ(Bu ∩ Cv)
µ(Cv)

so µ(Bu ∩ or) = µ(or)µ(Bu ∩ Cv)/µ(Cv). So we can compute

GOF(oa, or) = 100
µ(oa ∩ or)

µ(or)
= 100

µ(Bu ∩ or)µ(oa)
µ(Bu)µ(or)

= 100
µ(Bu ∩ Cv)µ(oa)

µ(Cv)µ(Bu)

and finally

GOF(oa, or) = 100
P (Bu ∩ Cv)

P (Cv)
P (oa)P (B1) · · ·P (Bu−1).

GOF(oa, or) Explanations

General formula 100µ(oa∩or)
µ(or)

oa = or 100

oa ⊃ or 100

oa ⊂ or 100P (oa)P (B1) · · ·P (Bu) oa ⊆ B1 ⊆ . . . ⊆ Bu ⊆ or

oa and or siblings 100P (oa∩or)
P (or)

oa and or arbitrary 100P (Bu∩Cv)
P (Cv)

P (oa)P (B1) · · ·P (Bu−1) oa ⊆ B1 ⊆ . . . ⊆ Bu ⊆ S

or ⊆ C1 ⊆ . . . ⊆ Cv ⊆ S

Table 2. Formulae for GOF in the set approach

Table 2 summarises the formulae for computing GOF using the set approach.
Examples of computations of GOF using this definition will be given in the next
section.

We note that storing at each node all the quantities P (Ai1∩Ai2∩. . .∩Ait) for
all 1 ≤ t ≤ k and 1 ≤ i1 < i2 < . . . < it ≤ k can lead to excessive memory usage.
It also provides a level of detailed information that often will be neither available
nor needed. We can simplify the representation as follows. For each parent S
having children A1, A2, . . . , Ak we assume we are given P (A1∩A2∩. . .∩Ak) and,
optionally P (A1), P (A2), . . . , P (Ak) and P (Ai1 ∩Ai2 ∩ . . .∩Ait) for all 2 ≤ t < k
and 1 ≤ i1 < i2 < . . . < it ≤ k. If we are not given P (Ai1 ∩ Ai2 ∩ . . . ∩ Ait)
for some t and some 1 ≤ i1 < i2 < . . . < it ≤ k, we assume by default that
Ai1 ∩Ai2 ∩ . . .∩Ait = A1∩A2∩ . . .∩Ak, and therefore P (Ai1 ∩Ai2 ∩ . . .∩Ait) =
P (A1∩A2∩ . . .∩Ak). If P (A1), P (A2), . . . , P (Ak) are not given then we assume
by default that P (A1) = P (A2) = . . . = P (Ak) and S = A1 ∪ A2 ∪ . . . Ak. We
can then deduce the values P (Ai) using the inclusion-exclusion formula:

µ(A1 ∪A2 ∪ . . . Ak) =
k∑

i=1

µ(Ai)−
∑

1≤i1<i2≤k

µ(Ai1 ∩Ai2) + . . . +

+(−1)t+1
∑

1≤i1<i2<...<it≤k

µ(Ai1 ∩ . . . ∩Ait) + . . . +

+(−1)k+1µ(A1 ∩A2 ∩ . . . ∩Ak)

Dividing by µ(S) we obtain

1 =
k∑

i=1

P (Ai)−
∑

1≤i1<i2≤k

P (Ai1 ∩Ai2) + . . . +

+(−1)t+1
∑

1≤i1<i2<...<it≤k

P (Ai1 ∩ . . . ∩Ait) + . . . +

+(−1)k+1P (A1 ∩A2 ∩ . . . ∩Ak) (2)

When only P (A1 ∩ A2 ∩ . . . ∩ Ak) is given we have therefore 1 = kP (A1) −
(k − 1)P (A1 ∩A2 ∩ . . . ∩Ak), hence for all i we have

P (Ai) =
1 + (k − 1)P (A1 ∩A2 ∩ . . . ∩Ak)

k
. (3)

4 Example

The hierarchy given in Figure 1 can be enriched using some sample similarity
figures, obtaining the hierarchy given in Figure 2.

C ++ Java VB

Logic Object - Oriented Structure

Prolog COBOL RPG

{Programming}

MS C ++ Borland C ++ VB . Net VB 6

Architect Developer Professional Standard

VB 5

0 . 16
0 . 06
0 . 41 0 . 41 0 . 41

0 . 42
0 . 16

0 . 53 0 . 53 0 . 53

0 . 57
0 . 71 0 . 71 0 . 71 0 . 71

0 . 66
0 . 83 0 . 83

0 . 4
0 . 11

0 . 56 0 . 56

0 . 08
0 . 38 0 . 38 0 . 38

Legend :
a b

a
b

c

 ⇒P(a∩b)

 ⇒ P(a∩b∩c)

Fig. 2. Enriched hierarchy

The numerical values given in Figure 2 are obtained as follows. Take for exam-
ple the concept Object-Oriented and its three children, the concepts C++, Java
and VB. We assume that the three children have the same size i.e. P (C++) =
P (Java) = P (VB) = x. The amount of overlap of the concepts has to be obtained
from domain experts. Assume the experts indicate that C++ and Java are 40%
similar, i.e. P (C++ ∩ Java) = 0.4P (Java) = 0.4x and that the similarity of all
the three notions is 15%, i.e. P (C++∩ Java∩VB) = 0.15P (Java) = 0.15x. The
similarity of VB with C++ and of VB with Java are not given so it is assumed
that they equal the similarity of all the three concepts, i.e. P (C++ ∩ VB) =

P (Java ∩ VB) = P (C++ ∩ Java ∩ VB) = 0.15x. Using formula (2) we can then
compute

1 = P (C++) + P (Java) + P (VB)− P (C++ ∩ Java)− P (Java ∩VB)−
−P (C++ ∩VB) + P (C++ ∩ Java ∩VB)

= 3x− 0.4x− 0.15x− 0.15x + 0.15x = 2.45x

Hence x = 1/2.45 = 0.41, P (C++ ∩ Java) = 0.4x = 0.16 and P (C++ ∩ Java ∩
VB) = 0.15x = 0.06.

We compute GOF for several combinations of oa and or using the formulae
introduced in the previous section.

GOF(Java, Java) = 100

GOF(VB, Java) = 100
P (VB ∩ Java)

P (Java)
= 100

0.06
0.41

= 15

GOF(C++, Java) = 100
P (C++ ∩ Java)

P (Java)
= 100

0.16
0.41

= 39

GOF(MS C++, Programming) = 100P (MS C++)P (C++)P (Object-oriented)
= 100× 0.83× 0.41× 0.38 = 13

GOF(Prolog, MS C++) = 100
P (Logic ∩Object-Oriented)

P (Object-Oriented)
P (Prolog)

= 100
0.08
0.39

0.4 = 8

GOF(MS C++,Prolog) =
P (Object-Oriented ∩ Logic)

P (Logic)
P (MS C++)P (C++)

= 100
0.08
0.39

0.83× 0.41 = 7

Example oa or GOF(oa, or) GOF(oa, or)
Distance Set view

1 Java Java 100 100

2 VB Java 50 15

3 C++ Java 50 39

4 C++ Object-Oriented 66 41

5 Object-Oriented C++ 66 100

6 MS C++ Programming 0 13

7 Programming MS C++ 0 100

8 Prolog MS C++ 0 8

9 MS C++ Prolog 0 7

Table 3. Examples GOF using the set view approach

These results and a few more are summarised in Table 3. We note that the
results obtained using the set approach are more reasonable than the ones using
distance. Examples 2 and 3 show that in the set theoretic approach we can model
the fact that C++ is more similar to Java than VB is to Java. In examples 4
through to 7, one of the concepts is a descendant of the other. While the distance
approach was unable to differentiate between the situation when the required
concept is a descendant of the available one or the other way around, the set
approach does, yielding a GOF of 100 in the first case and an intermediate GOF
in the converse situation. Also, in the latter situation, the set approach GOF
will be progressively lower as the available concept is further down the tree from
the required concept (compare examples 4 and 6). When one of the concepts is
the root of the tree, the distance approach yields a GOF of 0, which is certainly
not the expected behaviour, while the set theoretic view gives again a GOF of
100 in the case when the required concept is a descendant of the available one,
and an intermediate GOF in the converse situation. Finally, in examples 8 and
9 the common ancestor of the two concepts is the root. The distance approach
produces a GOF of 0 in all such situations, while the set approach produces
some small GOF as intuitively expected, as the two concepts, although distantly
related, do still have some small degree of similarity.

5 Group matching

Supporting group matching that assesses the GOF of a group of objects against
another group is an additional advantage of the set theoretic view. Agent selec-
tion for tasks is an example of such matching. To perform a task an agent may
require multiple capabilities which form a capability set. Similarly, each agent
may possess a set of capabilities. To find out who is the most appropriate agent
for a given task, the capability sets possessed by the agents have to be matched
against the required capability set.

If an agent has capabilities A1, . . . , Ak and the required capabilities are
R1, . . . , Rt then GOF will be defined as the proportion of the union of required
capabilities which is covered by the union of the available capabilities, i.e.

GOF(∪k
i=1Ai,∪t

j=1Rj) = 100
µ((∪k

i=1Ai) ∩ (∪t
j=1Rj))

µ(∪t
j=1Rj)

The computation is in this case more complex and will be the subject of further
work.

6 Discussion and Conclusion

The is-a hierarchy is a useful representation that is widely used. However, in
terms of assessing the similarity between nodes, it is limited by its nature that
the parent-child relation is the only one that is explicitly represented. The set
theoretic view is therefore proposed as a solution to this problem.

The basic idea is viewing a hierarchy as a universal set and the child nodes
are subsets of this universal set. The similarity is represented by the overlapping
between sets. This approach offers a number of advantages over the traditional
hierarchy.

First, well-established set theory can be applied to describe hierarchies and
the relation between nodes. It allows the similarity between the nodes to be
precisely specified while traditional hierarchy only has parent-child connections.

Secondly, the set theory can be used to assess the similarity between any
two nodes for which the similarity is not given directly. The outcomes are more
reasonable as a result of the enrich relation provided in a set-based description.

Thirdly, the set theoretic approach supports group matching. Current dis-
tance based approaches support only one to one matching and lack a theory to
support combining the individual results.

Fourthly, the hierarchy description and set description can both be used
in the same application. The tree view in hierarchy provides a simple visual
explanation to the user and the set description enables a precise assessment at
the back end.

The above sections demonstrate how a set theoretic view can improve the
traditional hierarchy. Providing appropriate similarity figures is critical to gener-
ating a precise set-based description for a hierarchy. Experience shows that rea-
sonable similarity values between different nodes can be obtained from domain
experts. Although the given figures vary slightly between experts, the trends
are similar. For example, there is general agreement that the similarity between
C++ and Java is higher than between C++ and VB.

In conclusion, the set theoretic approach enables more precise description
and accurate assessment over the traditional distance-based approaches. As the
hierarchical and set theoretic views can both be used in the same application,
the simplicity of hierarchies will not be impaired while the set theoretic view
provides additional support.

References

1. E. Agirre and G. Rigau. A proposal for word sense disambiguation using conceptual
distance. In International Conference on Recent Advances in Natural Language
Processing, Tzigov Chark, Bulgaria, September 1995.

2. E. Agirre and G. Rigau. Word sense disambiguation using conceptual density. In
Proceedings of COLING-96, 1996.

3. P.W.H. Chung and M. Jefferson. A fuzzy approach to accessing accident databases.
Applied Intelligence, 9:129–137, 1998.

4. Cognitive Systems Inc., Boston. ReMind Reference Manual, 1992.
5. R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development an application of a

metric on semantic nets. IEEE Transactions on Systems, Man and Cybernetics,
19(1):17–30, 1989.

6. M. Sussna. Word sense disambiguation for free-text indexing using a massive seman-
tic network. In Proceedings of the Second International Conference on Information
and knowledge Management, Arlington, Virginia USA, 1993.

