

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288387434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Bad News on Decision Problems for PatternsI

Dominik D. Freydenbergera,∗, Daniel Reidenbachb

aInstitut für Informatik, Goethe-Universität, Postfach 111932,
D-60054 Frankfurt am Main, Germany

bDepartment of Computer Science, Loughborough University,
Loughborough, Leicestershire, LE11 3TU, United Kingdom

Abstract

We study the inclusion problem for pattern languages, which – due to Jiang
et al. (Journal of Computer and System Sciences 50, 1995) – is known to be
undecidable. More precisely, Jiang et al. demonstrate that there is no effective
procedure deciding the inclusion for the class of all pattern languages over all
alphabets. Most applications of pattern languages, however, consider classes
over fixed alphabets, and therefore it is practically more relevant to ask for the
existence of alphabet-specific decision procedures. Our first main result states
that, for all but very particular cases, this version of the inclusion problem is also
undecidable. The second main part of our paper disproves the prevalent con-
jecture on the inclusion of so-called similar E-pattern languages, and it explains
the devastating consequences of this result for the intensive previous research
on the most prominent open decision problem for pattern languages, namely
the equivalence problem for general E-pattern languages.

1. Introduction

A pattern – a finite string that consists of variables and of terminal symbols
(or: letters) – is a compact and natural device to define a formal language.
It generates a word by a substitution of all variables with arbitrary words of
terminal symbols (taken from a fixed alphabet Σ) and, hence, its language is
the set of all words under such substitutions. More formally, a pattern language
thus is the (typically infinite) set of all images of the pattern under terminal-
preserving morphisms, i. e. morphisms which map each terminal symbol onto
itself. For example, if we consider the pattern

α := x1 ax2 bx1

IA preliminary version of this work was presented at DLT 2008.
∗Corresponding author.
Email addresses: freydenberger@em.uni-frankfurt.de (Dominik D. Freydenberger),

D.Reidenbach@lboro.ac.uk (Daniel Reidenbach)

Preprint submitted to Elsevier April 16, 2009

(where the symbols x1 and x2 are variables and a and b are terminal symbols)
then the language generated by α exactly contains those words that consist of
an arbitrary prefix u, followed by the letter a, an arbitrary word v, the letter
b and a suffix which equals u again. Consequently, the pattern language of α
includes, amongst others, the words w1 := a a b b b a, w2 := a b a b a b a b and
w3 := a a a b a a, and it does not cover the words w4 := b a, w5 := b a b b b a and
w6 := a b b a. It is a well-known fact that pattern languages in general are not
context-free.

Basically, two types of pattern languages are considered in literature: NE -
pattern languages and E -pattern languages. The definition of the former was
introduced by Angluin [1], and it disallows the variables to be substituted with
the empty word (hence, “NE” is short for “nonerasing”). The latter kind of
pattern languages additionally consider those substitutions which map one or
more variables onto the empty word (so “E” stands for “erasing” or “extended”);
this definition goes back to Shinohara [26]. Thus, in our above example, the
word w3 is contained in the E-pattern language of α, but not in its NE-pattern
language. Surprisingly, this small difference in the definitions leads to significant
differences in the characteristics of the resulting (classes of) languages.

As a consequence of their simple definition, which comprises nothing but
finite strings and (a particular type of) morphisms, pattern languages show
numerous connections to other fundamental topics in computer science and dis-
crete mathematics, including classical ones such as (un-)avoidable patterns (cf.
Jiang et al. [9]), word equations (cf. Mateescu and Salomaa [13], Karhumäki
et al. [11]) and equality sets (and, thus, the Post Correspondence Problem, cf.
Reidenbach [19]) as well as emerging ones such as extended regular expressions
(cf. Câmpeanu et al. [3]) and the ambiguity of morphisms (cf. Freydenberger et
al. [7], Reidenbach [19]). In terms of the basic decision problems, pattern lan-
guages show a wide range of behaviors: trivial (linear time) decidability (e. g.,
the equivalence of NE-pattern languages), NP-completeness (e. g., the member-
ship in NE- and E-pattern languages) and undecidability (e. g., the inclusion of
NE- and E-pattern languages); furthermore, the decidability of quite a num-
ber of these problems is still open (e. g., the equivalence problem for E-pattern
languages). Surveys on these topics are provided by, e. g., Mateescu and Salo-
maa [14] and Salomaa [24].

Among the established properties (and even among all results on pattern
languages), the proof for the undecidability of the inclusion problem by Jiang,
Salomaa, Salomaa and Yu [10] is considered to be one of the most notable
achievements, and this is mainly due to the very hard proof, which answered a
longstanding open question, and the fact that the result remarkably contrasts
with the trivial decidability of the equivalence problem for NE-pattern lan-
guages. Furthermore, the inclusion problem is of vital importance for the main
field of application of pattern languages, namely inductive inference. Inductive
inference of pattern languages – which deals with an approach to the important
problem of computing a pattern that is common to a given set of strings – is a
both classical and active area of research in learning theory; a survey is provided
by Ng and Shinohara [17]. It is closely connected to the inclusion problem for

2

pattern languages since, according to the celebrated characterization by An-
gluin [2], the inferrability of any indexable class of languages largely depends on
the inclusion relation between the languages in the class. Consequently, many
(both early and recent) papers on inductive inference of classes of pattern lan-
guages nearly exclusively deal with questions related to the inclusion problem
for these classes (see, e. g., Mukouchi [16], Reidenbach [20, 22], Luo [12]).

Unfortunately, from this rather practical point of view, the inclusion prob-
lem for E- and for NE-pattern languages as understood and successfully tackled
by Jiang et al. [10] is not very significant, since they prove that there is no
single procedure which, for every terminal alphabet Σ and for every pair of pat-
terns, decides on the inclusion between the languages over Σ generated by these
patterns. Hence, and slightly more formally, Jiang et al. [10] demonstrate that
the inclusion problem is undecidable for (a technical subclass of) the class of
all pattern languages over all alphabets, and the requirement for any decision
procedure to handle pattern languages over various alphabets is extensively uti-
lized in the proof. Contrary to this, in inductive inference of pattern languages
– and virtually every other field of application of pattern languages known to
the authors – one always considers a class of pattern languages over a fixed
alphabet. Consequently, it seems practically more relevant to investigate the
problem of whether, for any alphabet Σ, there exists a procedure deciding the
inclusion problem for the class of (E/NE-)pattern languages over this alphabet
Σ.

In the present paper we study and answer this question (or rather: these
infinitely many questions). Our considerations reveal that, for every finite al-
phabet Σ with at least two letters, the inclusion problem is undecidable for the
full classes of E-pattern languages over Σ. Furthermore, with regard to the
class of NE-pattern languages over any Σ, we prove the equivalent result, but
our reasoning does not cover binary and ternary alphabets. Although we thus
have the same outcome as Jiang et al. [10] for their variant of the inclusion
problem, the proof for our much stronger statement considerably differs from
their argumentation; consequently, it suggests that there is no straightforward
way from the well-established result to ours. Moreover, we feel that our insights
(and our uniform reasoning for all alphabet sizes) are a little surprising, since
the inferrability of classes of pattern languages is known to be discontinuous
depending on the alphabet size and the question of whether NE- or E-pattern
languages are considered (cf. Reidenbach [22]).

The second main part of our paper addresses the other major topic in [10]:
we discuss the extensibility of a positive decidability result given in [10] on the
inclusion problem for the class of terminal-free E-pattern languages (generated
by those patterns that consist of variables only) to classes of so-called similar
E-pattern languages. This question is intensively discussed in literature (e. g. by
Ohlebusch and Ukkonen [18]) as it is linked to the still unresolved equivalence
problem for the full class of E-pattern languages. We demonstrate that, in con-
trast to the prevalent conjecture, the inclusion of similar E-pattern languages
does not show an analogous behavior to that of terminal-free E-pattern lan-
guages, and we explain the fatal impact of this insight on the previous research

3

dealing with the equivalence problem.

2. Preliminaries

This paper is largely self-contained. For notations not explicitly defined,
Rozenberg and Salomaa [23] can be consulted.

Let N := {1, 2, 3, . . .} and N0 := N ∪ {0}. The symbol ∞ stands for infinity.
For an arbitrary alphabet A, a string (over A) is a finite sequence of symbols
from A, and λ stands for the empty string. The symbol A+ denotes the set of
all nonempty strings over A, and A∗ := A+ ∪{λ}. For the concatenation of two
strings w1, w2 we write w1 ·w2 or simply w1w2. We say that a string v ∈ A∗ is a
factor of a string w ∈ A∗ if there are u1, u2 ∈ A∗ such that w = u1vu2. If u1 = λ
(or u2 = λ), then v is a prefix of w (or a suffix, respectively). The notation |x|
stands for the size of a set x or the length of a string x. For any w ∈ Σ∗ and any
n ∈ N0, wn denotes the n-fold concatenation of w, with w0 := λ. Furthermore,
we use · and the regular operations ∗ and + on sets and strings in the usual
way.

For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies
h(vw) = h(v)h(w) for all v, w ∈ A∗. Given morphisms f : A∗ → B∗ and
g : B∗ → C∗ (for alphabets A, B, C), their composition g ◦ f is defined as
g ◦ f(w) := g(f(w)) for all w ∈ A∗. A morphism h : A∗ → B∗ is nonerasing if
h(a) 6= λ for all a ∈ A.

Let Σ be a (finite or infinite) alphabet of so-called terminal symbols (or:
letters) and X an infinite set of variables with Σ ∩ X = ∅. Unless specified
differently, we assume X = {xi | i ∈ N}, with xi 6= xj for all i 6= j. A pattern is
a string over Σ ∪X, a terminal-free pattern is a string over X and a word is a
string over Σ. The set of all patterns over Σ∪X is denoted by PatΣ, the set of
terminal-free patterns by Pattf . For any pattern α, we refer to the set of variables
in α as var(α) and to the set of terminal symbols as term(α). In accordance
with Ohlebusch and Ukkonen [18], we say that two patterns α, β ∈ PatΣ are
similar if their factors over Σ are identical and occur in the same order in the
patterns. More formally, α, β are similar if α = α0u1α1u2 . . . αn−1unαn and β =
β0u1β1u2 . . . βn−1unβn for some n ∈ N0, αi, βi ∈ X+ for each i ∈ {1, . . . , n−1},
α0, β0, αn, βn ∈ X∗ and uj ∈ Σ+ for each j ∈ {1, . . . , n}.

A morphism σ : (Σ ∪X)∗ → (Σ ∪X)∗ is called terminal-preserving if σ(a) =
a for every a ∈ Σ. A terminal-preserving morphism σ : (Σ ∪X)∗ → Σ∗ is called
a substitution. The E-pattern language LE,Σ(α) of a pattern α ∈ PatΣ is given
by

LE,Σ(α) := {σ(α) | σ : (Σ ∪X)∗ → Σ∗ is a substitution};

accordingly, the NE-pattern language LNE,Σ(α) of α is given by

LNE,Σ(α) := {σ(α) | σ : (Σ ∪X)∗ → Σ∗ is a nonerasing substitution}.

The term pattern language refers to any of the definitions introduced above. Two
pattern languages are called similar if they have generating patterns that are
similar. Accordingly, we call a pattern language terminal-free if it is generated

4

by a terminal-free pattern. We denote the class of all E-pattern languages over
Σ with ePATΣ and the class of all NE-pattern languages over Σ with nePATΣ.

For any alphabet Σ and any class PAT?,Σ ⊆ ePATΣ (or PAT?,Σ ⊆ nePATΣ)
of pattern languages over Σ, the inclusion problem is said to be decidable if
and only if there exists a total computable function χ such that, for every pair
of a patterns α, β ∈ PatΣ with LE,Σ(α), LE,Σ(β) ∈ PAT?,Σ (or, alternatively,
LNE,Σ(α), LNE,Σ(β) ∈ PAT?,Σ), χ decides on whether or not LE,Σ(α) ⊆ LE,Σ(β)
(or, alternatively, LNE,Σ(α) ⊆ LNE,Σ(β)). The inclusion problem for PAT?,Σ
is undecidable if it is not decidable, i. e. the said function χ does not exist.
Decidability of the equivalence problem is defined analogously.

A vital part of our considerations relies on the following concepts: A non-
deterministic 2-counter automaton without input (cf. Ibarra [8]) is a 4-tuple
A = (Q, δ, q0, F), consisting of a state set Q, a transition relation δ : Q ×
{0, 1}2 → Q×{−1, 0,+1}2, the initial state q0 ∈ Q and a set of accepting states
F ⊆ Q. A configuration of A is a triple (q,m1,m2) ∈ Q × N0 × N0, where q
indicates the state of A and m1 (or m2) denotes the content of the first (or
second, respectively) counter. The relation `A on Q× N0 × N0 is defined by δ
as follows: Let p, q ∈ Q, m1,m2, n1, n2 ∈ N0. Then (p,m1,m2)`A(q, n1, n2) if
and only if there exist c1, c2 ∈ {0, 1} and r1, r2 ∈ {−1, 0,+1} such that

(i) ci = 0 if mi = 0 and ci = 1 if mi ≥ 1 for i ∈ {1, 2},
(ii) ni=mi + ri for i ∈ {1, 2}, and

(iii) (q, r1, r2) ∈ δ(p, c1, c2).

Furthermore, for i ∈ {1, 2}, we assume that ri 6= −1 if ci = 0. Intuitively, in
every state A is only able to check whether the counters equal zero, change each
counter by at most one and switch into a new state.

A computation is a sequence of configurations, and an accepting computation
of A is a sequence C1, . . . , Cn ∈ Q × N0 × N0 (for some n ∈ N0) with C1 =
(q0, 0, 0), Cn ∈ F × N0 × N0 and Ci `A Ci+1 for all i ∈ {1, . . . , n − 1}. In
order to encode configurations of A, we assume that Q = {q0, . . . , qs} for some
s ∈ N0 and define a function enc : Q×N0×N0 → {0,#}∗ by enc(qi,m1,m2) :=
0i+1#0m1+1#0m2+1 and extend this to an encoding of computations by defining

enc(C1, C2, . . . , Cn) := ## enc(C1) ## enc(C2) ## . . .## enc(Cn)##

for every n ≥ 1 and every sequence C1, . . . , Cn ∈ Q×N0×N0. Furthermore, let
VALC(A) := {enc(C1, . . . , Cn) | C1, . . . , Cn is an accepting computation of A},
and INVALC(A) := {0,#}∗ \ VALC(A). As the emptiness problem for 2-
counter automata with input is undecidable (cf. Minsky [15], Ibarra [8]), it is
also undecidable whether a nondeterministic 2-counter automaton without input
has an accepting computation.

3. The inclusion of pattern languages over fixed alphabets

In this section, we discuss the decidability of the inclusion problem for ePATΣ

and nePATΣ. We begin with all non-unary finite alphabets Σ; the special case
|Σ| ∈ {1,∞} is studied separately.

5

As demonstrated by Jiang, Salomaa, Salomaa and Yu [10], the general in-
clusion problem for E-pattern languages is undecidable:

Theorem 1 (Jiang et al. [10]). There is no total computable function χE that,
for every alphabet Σ and for every pair of patterns α, β ∈ PatΣ, decides on
whether or not LE,Σ(α) ⊆ LE,Σ(β).

Technically, Jiang et al. show that, given a nondeterministic 2-counter au-
tomaton without input A, one can effectively construct an alphabet Σ and
patterns αA, βA ∈ PatΣ such that LE,Σ(αA) ⊆ LE,Σ(βA) if and only if A has
an accepting computation. As this problem is known to be undecidable, the
general inclusion problem for E-pattern languages must also be undecidable.

In their construction, Σ contains one letter for every state of A, and six
further symbols that are used for technical reasons. Quite obviously, we cannot
use such an approach to prove undecidability of the inclusion problem for ePATΣ

with some fixed alphabet Σ, since we had to limit the number of states of the
automata under consideration. This step, in turn, would lead to a finite class of
possible automata, and, hence, we had a trivially decidable emptiness problem
for that class. Consequently, as mentioned by Reidenbach [19] and Salomaa [25],
there seems to be no straightforward way from the undecidability result by Jiang
et al. [10] to the undecidability of the inclusion problem for ePATΣ, especially
when Σ is comparatively small. Nevertheless, our first main theorem states:

Theorem 2. Let Σ be a finite alphabet with |Σ| ≥ 2. Then the inclusion problem
for ePATΣ is undecidable.

The proof of this theorem is rather complex and can be found in Section 3.1.
It is in principle based on the construction by Jiang et al. [10], with two key
differences. First, the problem of an unbounded number of states (and therefore
the number of letters necessary to encode these states) is handled by using a
unary encoding instead of special letters to designate the states in configura-
tions; second, the special control symbols are encoded over a binary alphabet or
removed. These modifications enforce considerable changes to the patterns and
the underlying reasoning. But before we go into these details, we first discuss
the immediate consequences of Theorem 2. In fact, the proof demonstrates a
stronger result:

Corollary 1. Let Σ be a finite alphabet with |Σ| ≥ 2, and let a ∈ Σ. There
is no total computable function χ that, for every pair of patterns α ∈ PatΣ and
β ∈ ({a} ∪X)∗, decides on whether or not LE,Σ(α) ⊆ LE,Σ(β).

This corollary is the alphabet specific version of Jiang et al.’s Corollary 5.1
in [10] that is used to obtain the following result on the general inclusion problem
for NE-pattern languages:

Theorem 3 (Jiang et al. [10]). There is no total computable function χNE that,
for every alphabet Σ and for every pair of patterns α, β ∈ PatΣ, decides on
whether or not LNE,Σ(α) ⊆ LNE,Σ(β).

6

In our terminology, the proof of Theorem 3 in [10] reduces the inclusion
problem for ePATΣ (for patterns of a restricted form as in Corollary 1) to the
inclusion problem for nePATΣ∪{?,$}, where ? and $ are two extra letters that are
not contained in Σ. If we consider the reasoning on Theorem 3 as given by Jiang
et al. and substitute our Corollary 1 for their Corollary 5.1, we immediately
obtain the following result:

Theorem 4. Let Σ be a finite alphabet with |Σ| ≥ 4. Then the inclusion problem
for nePATΣ is undecidable.

As the construction used in the reduction heavily depends on the two extra
letters, we do not see a straightforward way to adapt it to binary or ternary
alphabets. Therefore, the decidability of the inclusion problem for NE-pattern
languages over these alphabets remains open:

Open Problem 1. Let Σ be an alphabet with |Σ| = 2 or |Σ| = 3. Is the
inclusion problem for nePATΣ decidable?

We conclude this section with a brief look at the special cases of unary and
infinite alphabets. Here we can state that the inclusion of pattern languages is
less complex than in the standard case:

Proposition 1. Let Σ be an alphabet, |Σ| ∈ {1,∞}. Then the inclusion problem
is decidable for ePATΣ and for nePATΣ.

Proof. It is a well-known fact that every pattern language over a unary alphabet
is regular (cf. Salomaa [24] or Reidenbach [19]) and that, e. g., an NFA accepting
such a pattern language can be effectively constructed. Therefore the decidabil-
ity of the inclusion problem for the full classes of these languages follows from
the decidability of the inclusion problem for NFA (see, e. g., Rozenberg and
Salomaa [23]).

With regard to an infinite alphabet, we initially discuss the problem for
NE-pattern languages. In this regard, it is sufficient to prove the following
statement: For every α, β ∈ PatΣ, LNE,Σ(α) ⊆ LNE,Σ(β) if and only if there
exists a terminal-preserving morphism φ : (Σ ∪ X)+ → (Σ ∪ X)+ such that
φ(β) = α. From this insight we then can directly conclude that our claim
on nePATΣ is correct, since the existence of φ is decidable (by just checking
the finitely many candidates for such a morphism). Moreover, it can be easily
verified that the existence of a morphism φ : (Σ ∪ X)+ → (Σ ∪ X)+ with
φ(β) = α is a sufficient condition for LNE,Σ(α) ⊆ LNE,Σ(β) (cf. Lemma 3.1
by Angluin [1]). Consequently, the verification of the if direction of the above
statement is straightforward, and therefore we only have to prove the only if
direction.

Hence, let α, β ∈ PatΣ with LNE,Σ(α) ⊆ LNE,Σ(β). Let τiso : (Σ∪X)+ → Σ+

be any substitution such that, for every x ∈ var(α), | τiso(x)| = 1 and τiso(x) /∈
term(α) ∪ term(β) and, for every y ∈ var(α) with x 6= y, τiso(x) 6= τiso(y).
The existence of τiso is granted by the condition |Σ| = ∞. Since w := τiso(α)

7

is actually nothing but a “renaming” of α, it is obvious that there exists an
inverse morphism τ -1

iso : Σ+ → (Σ ∪ X)+ such that τ -1
iso(w) = α. Furthermore,

the definition of τiso implies that, for every A ∈ term(w), we have τ -1
iso(A) ∈ X if

and only if A /∈ term(α) ∪ term(β).
As LNE,Σ(α) ⊆ LNE,Σ(β), there is a substitution τ ′ : (Σ ∪X)+ → Σ+ such

that w = τ ′(β). We now define φ := τ -1
iso ◦ τ ′. Then φ is terminal-preserving

because τ ′ is a substitution (which implies that it is terminal-preserving) and,
for every letter A in w that is mapped by τ -1

iso onto a variable, A /∈ term(β).
Furthermore, φ is a morphism mapping a string in (Σ ∪ X)+ onto a string in
(Σ ∪X)+ and, evidently, φ(β) = α. This proves the claim on nePATΣ.

Using a morphism φ : (Σ ∪X)∗ → (Σ ∪X)∗, an analogous reasoning proves
the statement on E-pattern languages.

Obviously, Proposition 1 implies that the equivalence problem is decidable,
too, for ePATΣ and nePATΣ over unary or infinite alphabets Σ. Furthermore,
with regard to 2 ≤ |Σ| <∞, it is shown by Angluin [1] that two patterns gener-
ate the same NE -pattern language if and only if they are the same (apart from
a renaming of variables). Thus, the equivalence problem for nePATΣ is trivially
decidable for every Σ, a result which nicely contrasts with the undecidability of
the inclusion problem established above. The equivalence problem for ePATΣ,
however, is still an open problem in case of 2 ≤ |Σ| <∞. In Section 4 we present
and discuss a result that has a significant impact on this widely-discussed topic.

3.1. Proof of Theorem 2
We begin with the case |Σ| = 2, so let Σ := {0,#}. Let A := (Q, δ, q0, F)

be a nondeterministic 2-counter automaton; w. l. o. g. let Q := {q0, . . . , qs} for
some s ∈ N0. Our goal is to construct patterns αA, βA ∈ PatΣ such that
LE,Σ(αA) ⊆ LE,Σ(βA) if and only if VALC(A) = ∅. We define

αA := v v #4 v x v y v #4 v u v,

where x, y are distinct variables, v = 0#30 and u = 0##0. Furthermore, for a
yet unspecified µ ∈ N that shall be defined later, let

βA := (x1)2 . . . (xµ)2#4β̂1 . . . β̂µ#4β̈1 . . . β̈µ,

with, for all i ∈ {1, . . . , µ}, β̂i := xi γi xi δi xi and β̈i := xi ηi xi, where x1, . . . , xµ
are distinct variables and all γi, δi, ηi ∈ X∗ are terminal-free patterns. The
patterns γi and δi shall be defined later; for now, we only mention:

1. ηi := zi(ẑi)2zi and zi 6= ẑi for all i ∈ {1, . . . , µ},
2. var(γiδiηi) ∩ var(γjδjηj) = ∅ for all i, j ∈ {1, . . . , µ} with i 6= j,
3. xk /∈ var(γiδiηi) for all i, k ∈ {1, . . . , µ}.

Thus, for every i, the elements of var(γiδiηi) appear nowhere but in these three
factors. Let H be the set of all substitutions σ : (Σ ∪ {x, y})∗ → Σ∗. We
interpret each triple (γi, δi, ηi) as a predicate πi : H → {0, 1} in such a way

8

that σ ∈ H satisfies πi if there exists a morphism τ : var(γiδiηi)∗ → Σ∗ with
τ(γi) = σ(x), τ(δi) = σ(y) and τ(ηi) = u – in the terminology of word equa-
tions (cf. Karhumäki et al. [11]), this means that σ satisfies πi if and only if the
system consisting of the three equations γi = σ(x), δi = σ(y) and ηi = u has a
solution τ . Later, we shall see that LE,Σ(αA) \LE,Σ(βA) exactly contains those
σ(αA) for which σ does not satisfy any of π1 to πµ, and choose these predicates
to describe INVALC(A). The encoding of INVALC(A) shall be handled by π4

to πµ, as each of these predicates describes a sufficient criterium for member-
ship in INVALC(A). But at first we need a considerable amount of technical
preparations. A substitution σ is of good form if σ(x) ∈ {0,#}∗, σ(x) does
not contain #3 as a factor, and σ(y) ∈ 0∗. Otherwise, σ is of bad form. The
predicates π1 and π2 handle all cases where σ is of bad form and are defined
through

γ1 := y1,1(ẑ1)3y1,2, γ2 := y2,

δ1 := ŷ1, δ2 := ŷ2,1 ẑ2 ŷ2,2,

where y1,1, y1,2, y2, ŷ1, ŷ2,1, ŷ2,2, ẑ1 and ẑ2 are pairwise distinct variables.
Recall that ηi = zi(ẑi)2zi for all i. It is not very difficult to see that π1 and π2

characterize the morphisms that are of bad form:

Lemma 1. A substitution σ ∈ H is of bad form if and only if σ satisfies π1 or
π2.

Proof. We begin with the only if direction. If σ(x) = w1#3w2 for some w1, w2 ∈
Σ∗, choose τ(y1,1) := w1, τ(y1,2) := w2, τ(ẑ1) := #, τ(ŷ1) := σ(y) and τ(z1) :=
0. Then τ(γ1) = σ(x), τ(δ1) = σ(y) and τ(η1) = u; thus, σ satisfies π1.

If σ(y) = w1#w2 for some w1, w2 ∈ Σ∗, let τ(y2) := σ(x), τ(ŷ2,1) := w1,
τ(ŷ2,2) := w2 and τ(ẑ2) := #, and τ(z2) := 0. It is easy to see that σ satisfies
π2.

For the if direction, if σ satisfies π1, then there exists a morphism τ with
τ(γ1) = σ(x) and τ(η1) = 0#20. Thus, τ(ẑ1) = # and τ(z1) = 0 must hold.
Consequently, σ(x) contains #3, and σ is of bad form.

Analogously, if σ satisfies π2, then σ(y) contains the letter #, and σ is of
bad form.

This allows us to make the following observation, which serves as the central
part of the construction and is independent from the exact shape of π3 to πµ:

Lemma 2. For every substitution σ ∈ H, σ(αA) ∈ LE,Σ(βA) if and only if σ
satisfies one of the predicates π1 to πµ.

Proof. We begin with the if direction. Assume σ ∈ H satisfies some predicate
πi. Then there exists a morphism τ : var(γiδiηi)→ Σ∗ such that τ(γi) = σ(x),
τ(δi) = σ(y) and τ(ηi) = u. We extend τ to a substitution τ ′ defined by

1. τ ′(x) := τ(x) for all x ∈ var(γiδiηi)
2. τ ′(xi) := 0#30 = v,

9

3. τ ′(0) := 0 and τ ′(#) := #,
4. τ ′(x) := λ in all other cases.

By definition, none of the variables in var(γiδiηi) appears outside of these fac-
tors. Thus, τ ′ can always be defined in this way. We obtain

τ ′(β̂i) = τ ′(xi γi xi δi xi)
= v τ(γi) v τ(δi) v
= v σ(x) v σ(y) v,

τ ′(β̈i) = τ ′(xi ηi xi)
= v τ(η) v
= v u v.

As τ ′(γj) = τ ′(δj) = τ ′(ηj) = τ ′(β̂j) = τ ′(β̈j) = λ for all j 6= i, this leads to

τ ′(βA) = τ ′
(

(x1)2 . . . (xµ)2#4β̂1 . . . β̂µ#4β̈1 . . . β̈µ

)
= τ ′

(
(xi)2

)
#4τ ′(β̂i)#4τ ′(β̈i)

= v v #4 v σ(x) v σ(y) v #4 v u v

= σ(αA).

This proves σ(αA) ∈ LE,Σ(βA).
For the other direction, assume that σ(αA) ∈ LE,Σ(βA). If σ is of bad form,

then by Lemma 1, σ satisfies π1 or π2. Thus, assume σ(x) does not contain #3

as a factor, and σ(y) ∈ 0∗. Let τ be a substitution with τ(βA) = σ(αA).
Now, as σ is of good form, σ(αA) contains exactly two occurrences of #4, and

these are non-overlapping. As σ(αA) = τ(βA), the same holds for τ(βA). Thus,
the equation σ(αA) = τ(βA) can be decomposed into the system consisting of
the following three equations:

0#30 0#30 = τ
(
(x1)2 . . . (xµ)2

)
, (1)

0#30 σ(x) 0#30 σ(y) 0#30 = τ(β̂1 . . . β̂µ), (2)

0#30 u 0#30 = τ(β̈1 . . . β̈µ). (3)

First, consider equation (1) and choose the smallest i for which τ(xi) 6= λ. Then
τ(xi) has to start with 0, and as

τ
(
(xi)2 . . . (xµ)2

)
= 0#30 0#30,

it is easy to see that τ(xi) = 0#30 = v and τ(xj) = λ for all j 6= i must hold.
Note that u does not contain 0#30 as a factor, and does neither begin with

#30, nor end on 0#3. But as τ(β̈i) begins with and ends on 0#30, we can use
equation (3) to obtain 0#30 u 0#30 = τ(β̈i) and τ(β̈j) = λ for all j 6= i. As
β̈i = xiηixi and τ(xi) = 0#30, τ(ηi) = u must hold.

10

As σ is of good form, σ(0#30 x 0#30 y 0#30) contains exactly three oc-
currences of #3. But there are already three occurrences of #3 in τ(β̂i) =
0#30 τ(γi) 0#30 τ(δi) 0#30. This, and equation (2), lead to τ(β̂j) = λ for all
j 6= i and, more importantly, τ(γi) = σ(x) and τ(δi) = σ(y). Therefore, σ
satisfies the predicate πi.

Thus, we can select predicates π1 to πµ in such a way that LE,Σ(αA) \
LE,Σ(βA) = ∅ if and only if VALC(A) = ∅ by describing INVALC(A) through
a disjunction of predicates on H. The proof of Lemma 2 shows that if σ(αA) =
τ(βA) for substitutions σ, τ , where σ is of good form, there exists exactly one i
(3 ≤ i ≤ µ) such that τ(xi) = 0#30.

Due to technical reasons, we need a predicate π3 that, if unsatisfied, sets a
lower bound on the length of σ(y), defined by

γ3 := y3,1 ŷ3,1 y3,2 ŷ3,2 y3,3 ŷ3,3 y3,4,

δ3 := ŷ3,1 ŷ3,2 ŷ3,3,

where all of y3,1 to y3,4 and ŷ3,1 to ŷ3,3 are pairwise distinct variables. Clearly,
if some σ ∈ H satisfies π3, σ(y) is a concatenation of three (possibly empty)
factors of σ(x). Thus, if σ satisfies none of π1 to π3, σ(y) must be longer than
the three longest non-overlapping sequences of 0s in σ(x). This allows us to
identify a class of predicates definable by a rather simple kind of expression,
which we use to define π4 to πµ in a less technical way.

Let X ′ := {x̂1, x̂2, x̂3} ⊂ X, let G denote the set of those substitutions in H
that are of good form and let R be the set of all substitutions ρ : (Σ ∪X ′)∗ → Σ∗

for which ρ(0) = 0, ρ(#) = # and ρ(x̂i) ∈ 0∗ for all i ∈ {1, 2, 3}. For patterns
α ∈ (Σ ∪X ′)∗, we define R(α) := {ρ(α) | ρ ∈ R}.

Definition 1. A predicate π : G → {0, 1} is called a simple predicate if there
exist a pattern α ∈ (Σ ∪X ′)∗ and languages L1, L2 ∈ {Σ∗, {λ}} such that σ
satisfies π if and only if σ(x) ∈ L1 R(α) L2.

From a slightly different point of view, the elements of X ′ can be understood
as numerical parameters describing (concatenational) powers of 0, with substi-
tutions ρ ∈ R acting as assignments. For example, if σ ∈ G satisfies a simple
predicate π if and only if σ(x) ∈ Σ∗R(#x̂1#x̂20#x̂1), we can also write that
σ satisfies π if and only if σ(x) has a suffix of the form #0m#0n0#0m (with
m,n ∈ N0), which could also be written as #0m#0∗0#0m, as n occurs only
once in this expression. Using π3, our construction is able to express all simple
predicates:

Lemma 3. For every simple predicate πS over n variables with n ≤ 3, there
exists a predicate π defined by terminal-free patterns γ, δ, η such that for all
substitutions σ ∈ G:

1. if σ satisfies πS, then σ also satisfies π or π3,
2. if σ satisfies π, then σ also satisfies πS.

11

Proof. We first consider the case of L1 = L2 = Σ∗. Assume that πS is a simple
predicate, and α ∈ (Σ ∪X ′)∗ is a pattern such that σ ∈ G satisfies πS if and
only if σ(x) ∈ L1R(α)L2. Then define γ := y1α

′ y2, where α′ is obtained from α
by replacing all occurrences of 0 with a new variable z and all occurrences of #
with a different variable ẑ, while leaving all present elements of X ′ unchanged.
Furthermore, let δ := x̂1x̂2x̂3ŷ and (in order to stay consistent with the ηi
appearing in βA) η := z(ẑ)2z. Note that x̂1, x̂2, x̂3, y1, y2, z and ẑ are pairwise
distinct variables.

Now, assume that σ ∈ G satisfies πS . Then there exist words w1, w2 ∈ Σ∗

and a substitution ρ ∈ R such that σ(x) = w1 ρ(α) w2. If σ(y) is not longer
than any three non-overlapping factors of the form 0∗ of σ(x) combined, π3

is satisfied. Otherwise, we can define τ by setting τ(y1) := w1, τ(y2) := w2,
τ(z) := 0, τ(ẑ) := #, τ(x̂i) := ρ(x̂i) for all i ∈ {1, . . . , 3} where x̂i appears in α
and τ(x̂i) := λ where x̂i does not appear in α. Finally, let τ(ŷ) := 0m, where

m := |σ(y)| −
∑

x̂∈var(α)

|σ(x̂)|

(m > 0 must hold, as σ does not satisfy π3). Then τ(α′) = ρ(α), and

τ(γ) = τ(y1) τ(α′) τ(y2)
= w1 ρ(α) w2 = σ(x),

τ(δ) = τ(x̂1x̂2x̂3 ŷ)

= 0|σ(y)| = σ(y),

τ(η) = τ(z (ẑ)2 z)
= 0##0 = u.

Therefore, σ satisfies π, which concludes this direction.
For the other direction, assume that σ ∈ G satisfies π. Then there is a

morphism τ such that σ(x) = τ(γ), σ(y) = τ(δ) and τ(η) = u. As η = z (ẑ)2 z
and u = 0##0, τ(z) = 0 and τ(ẑ) = # must hold. By definition τ(y1), τ(y2) ∈
Σ∗. If we define ρ(x̂i) := τ(x̂i) for all i ∈ {1, 2, 3}, we see that σ(x) ∈ L1R(α)L2

holds. Thus, σ satisfies πS as well.
The other three cases for choices of L1 and L2 can be handled analogously

by omitting y1 or y2 as needed. Note that this proof also works in the case
α = λ.

Roughly speaking, if σ does not satisfy π3, then σ(y) (which is in 0∗, due
to σ ∈ G) is long enough to provide building blocks for simple predicates using
variables from X ′.

Our next goal is a set of predicates that (if unsatisfied) forces σ(x) into a basic
shape common to all elements of VALC(A). We say that a word w ∈ {0,#}∗ is of
good structure if w ∈ (##0+#0+#0+)+ ##. Otherwise, w is of bad structure.
Recall that due to the definition of enc, all elements of VALC(A) are of good
structure, thus being of bad structure is a sufficient criterion for belonging to

12

INVALC(A). In order to cover the morphisms σ where σ(x) is of bad structure,
we define predicates π4 to π13 through simple predicates as follows:

π4 : σ(x) = λ, π9 : σ(x) ends on 0,
π5 : σ(x) = #, π10 : σ(x) ends on 0#,
π6 : σ(x) = ##, π11 : σ(x) contains a factor ##0∗##,
π7 : σ(x) begins with 0, π12 : σ(x) contains a factor ##0∗#0∗##,
π8 : σ(x) begins with #0, π13 : σ(x) contains a factor ##0∗#0∗#0∗#0.

Due to Lemma 3, the predicates π1 to π13 do not strictly give rise to a charac-
terization of substitutions with images that are of bad structure, as there are
σ ∈ G where σ(x) is of good structure, but π3 is satisfied due to σ(y) being too
short. But this problem can be avoided by choosing σ(y) long enough to leave
π3 unsatisfied, and the following holds:

Lemma 4. A word w ∈ Σ∗ is of good structure if and only if there exists a
substitution σ ∈ H with σ(x) = w such that σ satisfies none of the predicates
π1 to π13.

Proof. We begin with the if direction. Assume σ ∈ H such that there is no
i ∈ {1, . . . , 13} for which σ satisfies πi. Due to Lemma 1, σ is of good form
and, thus, σ(y) ∈ 0∗. As π3 does not hold, σ(y) is also longer than any three
non-overlapping factors 0∗ of σ(x). Thus, the structure of σ(x) can be inferred
by intersecting the complements of the simple predicates given in the definitions
of π4 to π13.

As σ does not satisfy π4, σ(x) 6= λ. Due to π7 and π9, the first and the
last letter of σ(x) is #, and neither is #0 a prefix, nor 0# a suffix of σ(x), as
otherwise π8 or π10 would be satisfied. Therefore, σ(x) has ## as prefix and
suffix, but, as π6 is not satisfied, σ(x) 6= ##. As σ is of good form, σ(x) does
not contain ### as a factor, and

σ(x) ∈ ##0+Σ∗##

must hold. But as π11 is not satisfied, it is possible to refine this observation to

σ(x) ∈ ##0+#0+Σ∗##,

which in turn leads to

σ(x) ∈ ##0+#0+#0+Σ∗##

by considering π12 as well. Now, there are two possibilities. If

σ(x) ∈ ##0+#0+#0+##,

then σ(x) is of good structure, but if

σ(x) ∈ ##0+#0+#0+#Σ∗##,

13

then π13 and σ ∈ G lead to

σ(x) ∈ ##0+#0+#0+##0+Σ∗##.

In this case, we can continue referring subsequently to one of π11, π12 and π13

together with σ ∈ G, and conclude

σ(x) ∈
(
##0+#0+#0+

)+ ##.

Therefore, if σ satisfies none of π1 to π13, then σ(x) has to be of good structure.
Regarding the only if direction, assume some w ∈ Σ∗ is of good structure.

Define σ by σ(x) = w and σ(y) = 0w+1. As σ is of good form, Lemma 1
demonstrates that σ satisfies neither π1 nor π2; and as σ(y) is longer than any
word which results from concatenating any number of non-overlapping factors
of the form 0∗ of w, π3 cannot be satisfied either. By looking at the cases
used above to define π4 to π13, we see that none of these predicates can be
satisfied.

For every w of good structure, there exist uniquely determined n, i1, j1, k1,
. . . , in, jn, kn ∈ N1 such that w = ##0i1#0j1#0k1## . . .##0in#0jn#0kn##.
Thus, if σ ∈ H does not satisfy any of π1 to π13, σ(x) can be understood as an
encoding of a sequence T1, . . . , Tn of triples Ti ∈ (N1)3, and for every sequence
of that form, there is a σ ∈ H such that σ(x) encodes a sequence of triples of
positive integers, and σ does not satisfy any of π1 to π13.

In the encoding of computations that is defined by enc, ## is always a
border between the encodings of configurations, whereas single # separate the
elements of configurations. As we encode every state qi with 0i+1, the predicate
π14, which is to be satisfied whenever σ(x) contains a factor ##00s+1, handles
all encoded triples (i, j, k) with i > s + 1. If σ does not satisfy this simple
predicate (in addition to the previous ones), there is a computation C1, . . . , Cn
of A with enc(C1, . . . , Cn) = σ(x).

All that remains is to choose an appropriate set of predicates that describe
all cases where C1 is not the initial configuration, Cn is not an accepting con-
figuration, or there are configurations Ci, Ci+1 such that Ci `A Ci+1 does not
hold (thus, the exact value of µ depends on the number of invalid transitions in
A).

To ensure C1 = (q0, 0, 0), we define a predicate

1. σ(x) has a prefix of the form ##00,

that is satisfied if C1 has a state qi with i > 0, and the two predicates

2. σ(x) has a prefix of the form ##0∗#00,
3. σ(x) has a prefix of the form ##0∗#0∗#00,

to cover all cases where one of the counters is set to a value other than 0. Next,
we handle the cases where the last state is not an accepting state. For every i
with qi ∈ Q \ F , define a predicate that is satisfied if

14

4. σ(x) has a suffix of the form ## 00i # 0∗ # 0∗ ##.

Thus, if σ ∈ H satisfies none of the predicates defined up to this point, σ(x) =
enc(C1, . . . , Cn) for some computation of A where C1 is the initial configuration
(q0, 0, 0), and Cn is an accepting configuration. Likewise, for every computation
C1, . . . , Cn with C1 = (q0, 0, 0) and Cn ∈ F × N0 × N0, there is a σ ∈ H with
σ(x) = enc(C1, . . . , Cn), and σ satisfies none of these predicates.

All that remains is to define a set of predicates that describe those Ci, Ci+1

for which Ci `A Ci+1 does not hold. To simplify this task, we define the following
four predicates that are satisfied if one of the counters is changed by more than
1:

5. σ(x) contains a factor of the form #0m#0∗##0∗#00 0m for some m ∈ N0,
6. σ(x) contains a factor of the form 0m 00#0∗##0∗#0m# for some m ∈ N0,
7. σ(x) contains a factor of the form #0m##0∗#0∗#00 0m for some m ∈ N0,
8. σ(x) contains a factor of the form 0m00##0∗#0∗#0m# for some m ∈ N0.

Here, the first two predicates cover incrementing (or decrementing) the first
counter by 2 or more; the other two do the same for the second counter. Then,
for all i, j ∈ {1, . . . , s}, all c1, c2 ∈ {0, 1} and all r1, r2 ∈ {−1, 0,+1} for which
(qj , r1, r2) /∈ δ(qi, c1, c2), we define a predicate that is satisfied if σ(x) contains
such a transition. We demonstrate this only for the exemplary case c1 = 0,
c2 = 1, r1 = +1, r2 = 0 without naming i or j explicitly. The predicate
covering non-existing transitions of this form is

9. σ(x) contains a factor of the form ##0i+1#0#000m##0j+1#00#000m##
for some m ∈ N0.

All other predicates for illegal transitions are defined analogously. Note that
we can safely assume that none of the counters is changed by more than 1, as
these errors are covered by the predicates we defined under points 5 to 8. The
number of predicates required for these points and point 9 determine the exact
value of µ.

Now, if there is a substitution σ that does not satisfy any of π1 to πµ, then
σ(x) = enc(C1, . . . , Cn) for a computation C1, . . . , Cn, where C1 is the initial
and Cn a final configuration, and for all i ∈ {1, . . . , n − 1}, Ci `A Ci+1. Thus,
if σ(αA) /∈ LE,Σ(βA), then σ(x) ∈ VALC(A), which means that A has an
accepting computation.

Conversely, if there is some accepting computation C1, . . . , Cn of A, we can
define σ through σ(x) := enc(C1, . . . , Cn), and choose σ(y) to be an appropri-
ately long sequence from 0∗. Then σ does not satisfy any of the predicates π1

to πµ defined above, thus σ(αA) /∈ LE,Σ(βA), and LE,Σ(αA) 6⊆ LE,Σ(βA).
We conclude that A has an accepting computation iff LE,Σ(αA) is not a

subset of LE,Σ(βA). Therefore, any algorithm deciding the inclusion problem for
ePATΣ can be used to decide whether a nondeterministic 2-counter automaton
without input has an accepting computation. As this problem is known to be
undecidable, the inclusion problem for ePATΣ is also undecidable.

This proof can be extended to larger (finite) alphabets. Assume that Σ =
{0,#, a1, . . . , an} for some n ≥ 1. We extend H to the set of all substitutions

15

σ : (Σ ∪ {x, y})∗ → Σ∗, but do not extend the definition of substitutions of
good form to our new and larger alphabet. Thus, σ ∈ H is of good form if
σ(x) ∈ {0,#}∗, σ(y) ∈ 0∗ and σ(x) does not contain #3 as a factor. In addition
to the predicates π1 to πµ, for each new letter ai, we define a predicate πµ+2i−1

which implies that σ(x) contains an occurrence of ai, and a predicate πµ+2i

which implies that σ(y) contains an occurrence of ai. To this end, we define

αA := v v #4 v x v y v #4 v u v,

with v = 0#30 and u = 0## a1 a1 . . . an an 0 (instead of u = 0##0), add the
new predicates πµ+1 to πµ+2n (which we still leave unspecified for a moment)
to βA and use

ηi := zi(ẑi)2(z̈i,1)2 . . . (z̈i,n)2zi

instead of ηi = zi(ẑi)2zi, where all zi, ẑi, z̈i,j are pairwise different variables.
Referring to the new shape of u, we can make the following observation:

Lemma 5. Let n ≥ 1, {x1 . . . , xn} ⊂ X and {a1, . . . , an} ⊆ Σ. If

α = x1 (x2)2 . . . (xn)2 x1

and there is a morphism σ : X∗ → Σ∗ with σ(α) = a1 (a2)2 . . . (an)2 a1, then
σ(xi) = ai for each i ∈ {1, . . . , n}.

Proof. Assume σ
(
x1 (x2)2 . . . (xn)2 x1

)
= a1 (a2)2 . . . (an)2 a1. If σ(x1) = λ,

then
σ
(
(x2)2 . . . (xn)2

)
= a1 (a2)2 . . . (an)2 a1

leads to an immediate contradiction. But σ(x1) 6= λ implies σ(x1) = a1. There-
fore,

σ
(
(x2)2 . . . (xn)2

)
= (a2)2 . . . (an)2

must hold. Now, for every i ∈ {2, . . . , n} with σ(xi) 6= λ, |σ(xi)| = 1 must
hold, as σ(α) does not contain squares that are longer than two letters. Thus,
every (xi)2 generates at most one factor (aj)2, and every factor (aj)2 has to
be generated by some (xi)2. We conclude that for every xi there is a j with
σ(xi) = aj . Of course, this is only possible if i = j in all cases; therefore, the
claim holds.

Lemma 5 allows πµ+1 to πµ+2n to be analogously constructed to π2. To this
end, we define

γµ+2i−1 := yµ+2i−1,1 z̈µ+2i−1,i yµ+2i−1,2, γµ+2i := yµ+2i,

δµ+2i−1 := ŷµ+2i−1, δµ+2i := ŷµ+2i,1 z̈µ+2i,i ŷµ+2i,2.

for each i ∈ {1, . . . , n}. Again, all yj,k, ŷj,k, zj , ẑj and z̈j,k are pairwise different
variables. Now Lemma 1 applies (mutatis mutandis) as for binary alphabets,
and since all substitutions of good form behave for Σ as for the binary alphabet,
we can use the very same predicates and the same reasoning as before to prove
undecidability of the inclusion problem for ePATΣ.

This concludes the proof of Theorem 2.

16

4. The inclusion of similar E-pattern languages

It can be easily observed that the patterns αA and βA used in Section 3.1
for establishing the undecidability of the inclusion problem for E-pattern lan-
guages are not similar (see the definition of this term in Section 2). Hence,
our reasoning in Section 3.1 does not provide any insights into the inclusion
of similar E-pattern languages. A promising and substantial first statement on
this natural subproblem is given by Jiang et al. [10]; they show that for the
full class of the simplest similar E-pattern languages, namely those generated
by terminal-free patterns, inclusion is decidable. This directly results from the
following characterization:

Theorem 5 (Jiang et al. [10]). Let Σ be an alphabet, |Σ| ≥ 2, and let α, β ∈
Pattf be terminal-free patterns. Then LE,Σ(α) ⊆ LE,Σ(β) if and only if there
exists a morphism φ : X∗ → X∗ satisfying φ(β) = α.

Note that the decidability of the inclusion problem for terminal-free NE -pattern
languages is still open.

The problem of the extensibility of Theorem 5 to general similar patterns
(replacing φ : X∗ → X∗ by a terminal-preserving morphism φ : (Σ ∪ X)∗ →
(Σ∪X)∗) is not only of intrinsic interest, but it has a major impact on the so far
unresolved equivalence problem for E-pattern languages (see our explanations
below). Therefore it has attracted a lot of attention, and it is largely conjectured
in literature (e. g., Dányi and Fülöp [4], Ohlebusch and Ukkonen [18]) that
the inclusion of arbitrary similar E-pattern languages shows the same property
as that of terminal-free E-pattern languages. Our main result of the present
section, however, demonstrates that this conjecture is not correct:

Theorem 6. For every finite alphabet Σ, there exist similar patterns α, β ∈
PatΣ such that

• LE,Σ(α) ⊂ LE,Σ(β) and

• there is no terminal-preserving morphism φ : (Σ ∪X)∗ → (Σ ∪X)∗ satis-
fying φ(β) = α.

Proof. If Σ is unary, e. g. Σ := {a}, then Theorem 6 is proved by the patterns
α := x1 ax1 and β := x1 ax2x2. We leave the verification of this claim to the
reader.

For the remainder of this proof, we now assume that |Σ| ≥ 2. Hence, let
Σ := {a1, a2, . . . , an} with n ≥ 2 and ai 6= aj for all i, j satisfying i 6= j. If n is
odd then we define

α := α0 a1 α1 a1 α2 a2 α3 a2 α4 . . . α2n−4 an−1 α2n−3 an−1 α2n−2 an α2n−1 an α2n

and

β := β0 a1 β1 a1 β2 a2 β3 a2 β4 . . . β2n−4 an−1 β2n−3 an−1 β2n−2 an β2n−1 an β2n

17

with

αi :=
{
xi+1 , i = 0 or i is even ,
x2 , i is odd ,

and

βi :=

 xi+1 , i = 0 or i is even ,
xi+1xi+3 , i is odd and i 6= 2n− 1 ,
x2nx2 , i = 2n− 1 .

If n is even then

α := α0 a1 α1 a1 α2 a2 α3 a2 α4 . . . α2n−4 an−1 α2n−3 an−1 α2n−2 an α2n−1 an α2n

an α2n+1 an α2n+2

and

β := β0 a1 β1 a1 β2 a2 β3 a2 β4 . . . β2n−4 an−1 β2n−3 an−1 β2n−2 an β2n−1 an β2n

an β2n+1 an β2n+2

with

αi :=
{
xi+1 , i = 0 or i is even ,
x2 , i is odd ,

and

βi :=

 xi+1 , i = 0 or i is even ,
xi+1xi+3 , i is odd and i 6= 2n+ 1 ,
x2n+2x2 , i = 2n+ 1 .

This means that, e. g., for Σ := {a, b, c, d, e} the patterns read

α = x1 ax2 ax3 bx2 bx5 cx2 cx7 dx2 dx9 ex2 ex11,

β = x1 ax2x4 ax3 bx4x6 bx5 cx6x8 cx7 dx8x10 dx9 ex10x2 ex11,

and, for Σ := {a, b, c, d, e, f}, our definition leads to

α = x1 ax2 ax3 bx2 bx5 cx2 cx7 dx2 dx9 ex2 ex11 fx2 fx13 fx2 fx15,

β = x1 ax2x4 ax3 bx4x6 bx5 cx6x8 cx7 dx8x10 dx9 ex10x12 ex11 fx12x14 fx13

fx14x2 fx15.

It follows by definition that, for every n ≥ 2, the corresponding patterns α and
β are similar.

We first prove that, for every n ≥ 2, there is no terminal-preserving mor-
phism φ mapping β onto α. Assume to the contrary that there is such a φ.
If n is odd then the variable x2 has n occurrences in α. This means that φ
maps the pattern β1β3β5 . . . β2n−1 onto the pattern xn2 . Since each variable in
β1β3β5 . . . β2n−1 has an even number of occurrences, this is a contradiction. If
n is even then the variable x2 has n + 1 occurrences in α. Consequently, φ
maps the pattern β1β3β5 . . . β2n+1 onto the pattern xn+1

2 . Since each variable
in β1β3β5 . . . β2n+1 again has an even number of occurrences, this leads to the
same contradiction.

18

We now demonstrate that, for every finite alphabet Σ, the corresponding
patterns α and β satisfy LE,Σ(α) ⊆ LE,Σ(β). To this end, let v be an arbitrary
word in LE,Σ(α); hence, there is a substitution τ : (Σ∪X)∗ → Σ∗ with τ(α) = v.
We now define a substitution τ ′ with τ ′(β) = v.

Case 1 : If τ(x2) = λ then, for every xk ∈ var(β),

τ ′(xk) :=
{

λ , k is even ,
τ(xk) , k is odd .

Case 2 : If, for aj ∈ Σ and u ∈ Σ∗, τ(x2) = aj u then we introduce a set
ERASE ⊂ var(β) by

ERASE := var(β) ∩ {xs | s = 2j − 4t or s = 2j + 2 + 4t for a t ∈ N0},

and, for every xk ∈ var(β), we define τ ′ by

τ ′(xk) :=

aj u , k is even and xk /∈ ERASE ,
λ , xk ∈ ERASE ,

τ(xk) , k is odd and k 6= 2j + 1 ,
u aj τ(xk) , k = 2j + 1 .

Note that, due to our definition of the set ERASE, it is guaranteed that in
Case 2 both variables in β2j−1 (which is the factor that is surrounded by the two
occurrences of aj in β) are mapped by τ ′ onto the empty word, whereas, for each
i with i 6= j, the factor β2i−1 contains exactly one such variable (and the same
holds for the factor β2n+1 which is contained in β for an even n only). Referring
to this observation, in both Case 1 and Case 2 the verification of τ ′(β) = v is
straightforward. Therefore, we merely illustrate the correctness of our claim for
the case τ(x2) 6= λ and an odd alphabet size n with n ≥ 3 and 1 < j < n by
the following diagram:

v = τ(x1)︸ ︷︷ ︸
τ ′(x1)

a1 aj u︸︷︷︸
τ ′(x2x4)

a1 τ(x3)︸ ︷︷ ︸
τ ′(x3)

. . . τ(x2j−1)︸ ︷︷ ︸
τ ′(x2j−1)

aj λ︸︷︷︸
τ ′(x2jx2j+2)

aj u aj τ(x2j+1)︸ ︷︷ ︸
τ ′(x2j+1)

. . .

τ(x2n−1)︸ ︷︷ ︸
τ ′(x2n−1)

an aj u︸︷︷︸
τ ′(x2nx2)

an τ(x2n+1)︸ ︷︷ ︸
τ ′(x2n+1)

.

Consequently, v ∈ LE,Σ(β) and, thus, LE,Σ(α) ⊆ LE,Σ(β).
Finally, we show that LE,Σ(α) 6= LE,Σ(β). To this end, we consider the

substitution σ : (Σ ∪X)∗ → Σ∗ given by, for every xk ∈ var(β),

σ(xk) :=
{

a2 , k = 2 ,
λ , else .

We assume to the contrary that there is a substitution σ′ satisfying σ′(α) =
σ(β). By definition, the word w := σ(β) is of length 2n + 2 if n is odd and

19

2(n+ 1) + 2 if n is even. Moreover, w contains the factor a1 a2 a1, and these are
the only occurrences of letter a1 in w. Therefore, σ′ has to satisfy σ′(x2) = a2.
However, since the variable x2 has at least 3 occurrences in α this implies
that |σ′(α)| ≥ 2n + 3 if n is odd and |σ′(α)| ≥ 2(n + 1) + 3 if n is even.
This is a contradiction. Consequently, w ∈ LE,Σ(β) \ LE,Σ(α), and therefore
LE,Σ(α) 6= LE,Σ(β).

We expect that the patterns α and β introduced in the proof are the short-
est examples showing such a property. Alternatively, for any alphabet Σ :=
{a1, a2, . . . , an} with |Σ| ≥ 3, the proof of Theorem 6 could use the following
pattern β′ instead of β:

β′ := x1 a1 x2x4 . . . x2n−2 a1

x3 a2 x2x4 . . . x2n−4x2n a2

x5 a3 x2x4 . . . x2n−6x2n−2x2n a3

. . .

x2n−1 an x4x6 . . . x2n an x2n+1 .

E. g., for Σ := {a, b, c, d, e}, this means that

β′ = x1 ax2x4x6x8 ax3 bx2x4x6x10 bx5 cx2x4x8x10 cx7 dx2x6x8x10 dx9

ex4x6x8x10 ex11

and, for Σ := {a, b, c, d, e, f},

β′ = x1 ax2x4x6x8x10 ax3 bx2x4x6x8x12 bx5 cx2x4x6x10x12 cx7

dx2x4x8x10x12 dx9 ex2x6x8x10x12 ex11 fx4x6x8x10x12 fx13 .

Note that if β′ is chosen instead of β for the proof of Theorem 6 then this
decision implies that, for both odd and even alphabet sizes, the corresponding
pattern α needs to have the shape as introduced for odd alphabet sizes.

The relevance of Theorem 6 for the research on the equivalence problem for
E-pattern languages follows from a result by Jiang et al. [9], which says that,
for alphabets with at least three letters, two patterns need to be similar if they
generate the same E-pattern language:

Theorem 7 (Jiang et al. [9]). Let Σ be an alphabet, |Σ| ≥ 3, and let α, β ∈ PatΣ.
If LE,Σ(α) = LE,Σ(β) then α and β are similar.

Consequently, in literature the inclusion problem for similar E-pattern lan-
guages is mainly understood as a tool for gaining a deeper understanding of the
equivalence problem, and the main conjecture by Ohlebusch and Ukkonen [18]
expresses the expectation that the relation between inclusion problem for sim-
ilar E-pattern languages and equivalence problem might be equivalent to the
relation between these problems for terminal-free patterns (cf. Theorem 5):

20

Conjecture 1 (Ohlebusch and Ukkonen [18]). Let Σ be an alphabet, |Σ| ≥ 3,
and let α, β ∈ PatΣ. Then LE,Σ(α) = LE,Σ(β) if and only if there exist terminal-
preserving morphisms φ, ψ : (Σ ∪ X)∗ → (Σ ∪ X)∗ satisfying φ(β) = α and
ψ(α) = β.

Note that the existence of φ and ψ necessarily implies that α and β are similar.
Ohlebusch and Ukkonen [18] demonstrate that Conjecture 1 holds true for a

variety of rich classes of E-pattern languages. In general, however, the conjec-
ture is disproved by Reidenbach [21] using complex counter example patterns.
These patterns are valid for alphabet sizes 3 and 4 only, and their particular
construction seems not to be extendable to larger alphabets. Concerning finite
alphabets Σ with |Σ| ≥ 5, our result in Theorem 6 does not directly contradict
Conjecture 1, since our patterns α, β do not generate identical languages. Thus,
there is still a chance that the conjecture is correct for alphabet sizes greater
than or equal to 5. Nevertheless, as the considerations by Ohlebusch and Ukko-
nen [18] are based on a specific expectation concerning the inclusion of similar
E-pattern languages which Theorem 6 demonstrates to be incorrect, it seems
that the insights given in the present section disprove the very foundations of
their approach to the equivalence problem for the full class of E-pattern lan-
guages. Therefore we feel that the only remaining evidence that still supports
Conjecture 1 for |Σ| ≥ 5 is the lack of known counter-examples.

Furthermore, our result definitely affects the use of the sophisticated proof
technique introduced by Filè [5] and Jiang et al. [10] for the proof of Theorem 5.
For terminal-free patterns α, β and any alphabet Σ with |Σ| ≥ 2, this technique
constructs a particular substitution τβ such that τβ(α) ∈ LE,Σ(β) if and only if
there is a morphism mapping β onto α. After considerable effort made by Dányi
and Fülöp [4], Ohlebusch and Ukkonen [18] and Reidenbach [21] to extend this
approach to general similar patterns, Theorem 6 demonstrates that, for certain
pairs of such patterns, such a substitution τβ does not exist, since, for every
finite alphabet Σ, there are similar patterns α, β such that LE,Σ(β) contains all
words in LE,Σ(α), although there is no terminal-preserving morphism mapping
β onto α. Consequently, Theorem 6 shows that the main tool for tackling the
inclusion problem for terminal-free E-pattern languages – namely our profound
knowledge on the properties of the abovementioned substitution τβ – necessarily
fails if we want to extend it to arbitrary similar patterns, and therefore it seems
that the research on the inclusion problem for similar E-pattern languages (and,
thus, the equivalence problem for general E-pattern languages) needs to start
virtually from scratch again.

Acknowledgements

The authors wish to thank the referees of the conference version [6] of this
paper for their valuable comments.

21

References

[1] Angluin, D., 1980. Finding patterns common to a set of strings. Journal of
Computer and System Sciences 21, 46–62.

[2] Angluin, D., 1980. Inductive inference of formal languages from positive
data. Information and Control 45, 117–135.

[3] Câmpeanu, C., Salomaa, K., Yu, S., 2003. A formal study of practical regu-
lar expressions. International Journal of Foundations of Computer Science
14, 1007–1018.

[4] Dányi, G., Fülöp, Z., 1996. A note on the equivalence problem of E-
patterns. Information Processing Letters 57, 125–128.

[5] Filè, G., 1988. The relation of two patterns with comparable language. In:
Proc. 5th Annual Symposium on Theoretical Aspects of Computer Science,
STACS 1988. Vol. 294 of Lecture Notes in Computer Science. pp. 184–192.

[6] Freydenberger, D., Reidenbach, D., 2008. Bad news on decision problems
for patterns. In: Proc. 12th International Conference on Developments
in Language Theory, DLT 2008. Vol. 5257 of Lecture Notes in Computer
Science.

[7] Freydenberger, D., Reidenbach, D., Schneider, J., 2006. Unambiguous mor-
phic images of strings. International Journal of Foundations of Computer
Science 17, 601–628.

[8] Ibarra, O., 1978. Reversal-bounded multicounter machines and their deci-
sion problems. Journal of the ACM 25, 116–133.

[9] Jiang, T., Kinber, E., Salomaa, A., Salomaa, K., Yu, S., 1994. Pattern
languages with and without erasing. International Journal of Computer
Mathematics 50, 147–163.

[10] Jiang, T., Salomaa, A., Salomaa, K., Yu, S., 1995. Decision problems for
patterns. Journal of Computer and System Sciences 50, 53–63.

[11] Karhumäki, J., Mignosi, F., Plandowski, W., 2000. The expressibility of
languages and relations by word equations. Journal of the ACM 47, 483–
505.

[12] Luo, W., 2005. Compute inclusion depth of a pattern. In: Proc. 18th An-
nual Conference on Learning Theory, COLT 2005. Vol. 3559 of Lecture
Notes in Artificial Intelligence. pp. 689–690.

[13] Mateescu, A., Salomaa, A., 1994. Finite degrees of ambiguity in pattern
languages. RAIRO Informatique théoretique et Applications 28, 233–253.

22

[14] Mateescu, A., Salomaa, A., 1997. Patterns. In: Rozenberg, G., Salomaa,
A. (Eds.), Handbook of Formal Languages. Vol. 1. Springer, Ch. 4.6, pp.
230–242.

[15] Minsky, M., 1961. Recursive unsolvability of Post’s problem of “Tag” and
other topics in theory of Turing machines. Annals of Mathematics 74, 437–
455.

[16] Mukouchi, Y., 1991. Characterization of pattern languages. In: Proc. 2nd
International Workshop on Algorithmic Learning Theory, ALT 1991. pp.
93–104.

[17] Ng, Y., Shinohara, T., 2008. Developments from enquiries into the learn-
ability of the pattern languages from positive data. Theoretical Computer
Science 397, 150–165.

[18] Ohlebusch, E., Ukkonen, E., 1997. On the equivalence problem for E-
pattern languages. Theoretical Computer Science 186, 231–248.

[19] Reidenbach, D., 2006. The Ambiguity of Morphisms in Free Monoids and
its Impact on Algorithmic Properties of Pattern Languages. Logos Verlag,
Berlin.

[20] Reidenbach, D., 2006. A non-learnable class of E-pattern languages. Theo-
retical Computer Science 350, 91–102.

[21] Reidenbach, D., 2007. An examination of Ohlebusch and Ukkonen’s con-
jecture on the equivalence problem for E-pattern languages. Journal of
Automata, Languages and Combinatorics 12, 407–426.

[22] Reidenbach, D., 2008. Discontinuities in pattern inference. Theoretical
Computer Science 397, 166–193.

[23] Rozenberg, G., Salomaa, A., 1997. Handbook of Formal Languages. Vol. 1.
Springer, Berlin.

[24] Salomaa, K., 2004. Patterns. In: Martin-Vide, C., Mitrana, V., Păun, G.
(Eds.), Formal Languages and Applications. No. 148 in Studies in Fuzziness
and Soft Computing. Springer, pp. 367–379.

[25] Salomaa, K., 2006. Patterns. Lecture, 5th PhD School in Formal Languages
and Applications, URV Tarragona.

[26] Shinohara, T., 1982. Polynomial time inference of extended regular pattern
languages. In: Proc. RIMS Symposia on Software Science and Engineering.
Vol. 147 of Lecture Notes in Computer Science. pp. 115–127.

23

