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Abstract. A segmented morphism σn : ∆∗ −→ {a, b}∗, n ∈ N, maps
each symbol in ∆ onto a word which consists of n distinct subwords in
ab+a. In the present paper, we examine the impact of n on the unam-
biguity of σn with respect to any α ∈ ∆+, i. e. the question of whether
there does not exist a morphism τ satisfying τ(α) = σn(α) and, for some
symbol x in α, τ(x) 6= σn(x). To this end, we consider the set U(σn) of
those α ∈ ∆+ with respect to which σn is unambiguous, and we com-
prehensively describe its relation to any U(σm), m 6= n. Our paper thus
contributes fundamental (and, in parts, fairly counter-intuitive) results
to the recently initiated research on the ambiguity of morphisms.

1 Introduction

This paper deals with morphisms that map a pattern, i. e. a finite string over
an infinite alphabet ∆ of variables, onto a finite word over {a, b}; for the sake
of convenience, we choose ∆ := N. With regard to such a morphism σ, we ask
whether it is unambiguous with respect to any pattern α, i. e. there is no mor-
phism τ : N∗ −→ {a, b}∗ satisfying τ(α) = σ(α) and, for some symbol x in α,
τ(x) 6= σ(x). As recently demonstrated in the initial paper on the ambiguity of
morphisms by Freydenberger, Reidenbach and Schneider [5], for every pattern
α, there is a particular morphism σsu

α such that σsu
α is unambiguous with respect

to α if and only if α is succinct, i. e. a shortest generator of its E-pattern lan-
guage, which, in turn, is equivalent to the fact that α is not a fixed point of a
nontrivial morphism φ : N∗ −→ N∗. Since there is no single morphism which
is unambiguous with respect to all succinct patterns, the morphism σsu

α has to
be tailor-made for α. More precisely, for various patterns α ∈ N+, σsu

α must be
heterogenous with respect to α, which means that there exist certain variables
x, y in α such that the first (or, if appropriate, the last) letter of σsu

α (x) differs
from the first (or last, respectively) letter of σsu

α (y). In addition to this, σsu
α has

a second important feature: it maps each variable in α onto a word that consists
? Corresponding author. A part of this work was done during the author’s stay at the
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of exactly three distinct segments, i.e. subwords taken from ab+a (or, in order
to guarantee heterogeneity, ba+b).

A closer look at the approach by Freydenberger et al. [5] – which is mainly
meant to prove the existence of an unambiguous morphism with respect to any
succinct pattern – reveals that it is not optimal, as there exist numerous pat-
terns with respect to which there is a significantly less complex unambiguous
morphism. For instance, as demonstrated by Reidenbach [11], the standard mor-
phism σ0 given by σ0(x) := abx, x ∈ N, is unambiguous with respect to every
pattern α satisfying, for some m ∈ N and e1, e2, . . . , em ≥ 2, α = 1e1 ·2e2 ·. . .·mem

(where the superscripts ej refer to the concatenation). With regard to this re-
sult, it is noteworthy that, first, σ0 maps each variable onto a much shorter
word than σsu

α and, second, σ0 is homogeneous, i. e. for all variables x, y ∈ N,
σ0(x) and σ0(y) have the same first and the same last letter. Consequently, σ0

is unambiguous with respect to each pattern in a reasonably rich set, although
it does not show any of the two decisive properties of σsu

α .

In the present paper, we wish to further develop the theory of unambigu-
ous morphisms. In accordance with the structure of σsu

α , we focus on segmented
morphisms σn, which map every variable onto n distinct segments. More pre-
cisely, for every x ∈ N, we define the homogeneous morphism σn by σn(x) :=
abnx−(n−1)aabnx−(n−2)a . . . abnx−1aabnxa. With regard to such morphisms, we
introduce the set U(σn) ⊆ N+ of all patterns with respect to which σn is unam-
biguous, and we give a characterisation of U(σm) for m ≥ 3. Furthermore, for
every n ∈ N, we compare U(σn) with every U(σm), m 6= n, and, since every σn is
a biprefix code, we complement our approach by additionally considering the set
U(σ0) of the suffix code σ0 as introduced above. Our corresponding results yield
comprehensive insights into the relation between any two sets U(σm), U(σn),
m,n ∈ N ∪ {0}.

Our studies are largely motivated by the intrinsic interest involved in the
examination of the unambiguity of fixed instead of tailor-made morphisms.
Thereby, we face a task which gives less definitional leeway than the original
setting studied by Freydenberger et al. [5], and therefore our paper reveals new
elementary phenomena related to the ambiguity of morphisms that have not
been discovered by the previous approach. The choice of segmented morphisms
as main objects of our considerations, in turn, is primarily derived from the ob-
servation that σ3 is simply the homogeneous version of σsu

α . Hence, the insights
gained into U(σ3) immediately yield a deeper understanding of the necessity of
the heterogeneity of σsu

α and, thus, of a crucial concept introduced in [5]. In ad-
dition to this, our partly surprising results on the relation between the number
of segments of a morphism σn and the set of patterns for which σn is unam-
biguous suggest that – in a similar manner as the work by, e. g., Halava et al. [6]
with respect to the Post Correspondence Problem, which is loosely related to
our subject – we deal with a vital type of morphisms that addresses some of the
very foundations of the problem field of ambiguity of morphisms. Finally, it is
surely worth mentioning that the properties of segmented morphisms have also
been studied in the context of pattern languages (cf., e. g., Jiang et al. [8]); in



particular, recent papers prove the substantial impact of the (un-)ambiguity of
such morphisms on pattern inference (cf. Reidenbach [10, 11]). Thus, our results
provide a worthwhile starting point for further considerations in a prominent
algorithmic research field related to pattern languages. In the present paper,
however, we do not explicitly discuss this aspect of our work.

2 Definitions and Basic Notes

We begin the formal part of this paper with a number of basic definitions. A ma-
jor part of our terminology is adopted from the research on pattern languages (cf.
Mateescu and Salomaa [9]). Additionally, for notations not explained explicitly,
we refer the reader to Choffrut and Karhumäki [3].

Let N := {1, 2, 3, ...} and N0 := N ∪ {0}. Let Σ be an alphabet, i.e. an
enumerable set of symbols. We regard two different alphabets: N and {a, b}
with a 6= b. Henceforth, we call any symbol in N a variable and any symbol in
{a, b} a letter. A string (over Σ) is a finite sequence of symbols from Σ. For
the concatenation of two strings w1, w2 we write w1 · w2 or simply w1w2. The
notation |x| stands for the size of a set x or the length of a string x, respectively.
We denote the empty string by λ, i.e. |λ| = 0. In order to distinguish between
a string over N and a string over {a, b}, we call the former a pattern and the
latter a word. We name patterns with lower case letters from the beginning of
the Greek alphabet such as α, β, γ. With regard to an arbitrary pattern α, V (α)
denotes the set of all variables occurring in α. For every alphabet Σ, Σ∗ is the set
of all (empty and non-empty) strings over Σ, and Σ+ := Σ∗ \{λ}. Furthermore,
we use the regular operations +, ∗ and · on sets and letters in the usual way.
For any w ∈ Σ∗ and any n ∈ N, wn describes the n-fold concatenation of w,
and w0 := λ. We say that a string v ∈ Σ∗ is a substring of a string w ∈ Σ∗ if
and only if, for some u1, u2 ∈ Σ∗, w = u1vu2. Subject to the concrete alphabet
considered, we call a substring a subword or subpattern.

Since we deal with word semigroups, a morphism σ is a mapping that is
compatible with the concatenation, i.e. for patterns α, β ∈ N+, a morphism
σ : N∗ −→ {a, b}∗ satisfies σ(α · β) = σ(α) · σ(β). Hence, a morphism is fully
explained as soon as it is declared for all variables in N. Note that we restrict
ourselves to total morphisms, even though we normally declare a morphism only
for those variables explicitly that, in the respective context, are relevant.

For any pattern α ∈ N+ with σ(α) 6= λ, we call σ(α) unambiguous (with
respect to α or on α) if there is no morphism τ : N∗ −→ {a, b}∗ such that τ(α) =
σ(α) and, for some x ∈ V (α), τ(x) 6= σ(x); otherwise, we call σ ambiguous (with
respect to α or on α). For a given morphism σ, let U(σ) denote the set of all
α ∈ N+ such that σ is unambiguous on α.

We continue the definitions in this section with a partition of the set of all
patterns subject to the following criterion that is due to Freydenberger et al. [5]:

Definition 1. We call any α ∈ N+ prolix if and only if there exists a decompo-
sition α = β0γ1β1γ2β2 . . . βn−1γnβn with n ≥ 1, βk ∈ N∗ and γk ∈ N+, k ≤ n,
such that



1. for every k, 1 ≤ k ≤ n, |γk| ≥ 2,
2. for every k, 1 ≤ k ≤ n, and for every k′, 0 ≤ k′ ≤ n, V (γk) ∩ V (βk′) = ∅,
3. for every k, 1 ≤ k ≤ n, there exists an xk ∈ V (γk) such that xk occurs exactly

once in γk and, for every k′, 1 ≤ k′ ≤ n, if xk ∈ V (γk′) then γk = γk′ .

We call α ∈ N+ succinct if and only if it is not prolix.

Succinct and prolix patterns possess several interesting characteristic properties.
First, Freydenberger et al. [5] demonstrate that a pattern α is succinct if and
only if there is an injective morphism σsu

α such that σsu
α is unambiguous on α.

Furthermore, there is no injective morphism that is unambiguous on all succinct
patterns, and all nonerasing morphism are ambiguous on all prolix patterns.
These results serve as the main fundament of the present work. In addition to
this aspect, the set of prolix patterns exactly corresponds to the set of finite
fixed points of nontrivial morphisms, i.e. for every prolix pattern α there exists
a morphism φ : N∗ −→ N∗ such that, for an x ∈ V (α), φ(x) 6= x and yet
φ(α) = α (cf., e. g., Hamm and Shallit [7]). Finally, according to Reidenbach [10],
the succinct patterns are the shortest generators for their respective E-pattern
language – this explains the terms “succinct” and “prolix”.

Whithin the scope of the present paper, we call a morphism σ : N∗ −→ {a, b}∗
homogeneous if there exist p, s ∈ {a, b}+ such that for all x ∈ N, p is a prefix of
σ(x) and s is a suffix of σ(x). Otherwise, σ is heterogeneous.

For every n ∈ N, we define σn (the segmented morphism with n segments)
by σn(x) := abnx−(n−1)a abnx−(n−2)a . . . abnx−1a abnxa for every x ∈ N and
refer to the subwords ab+a as segments. In this work, we mostly concentrate on
the morphisms σ1, σ2, σ3 given by σ1(x) := abxa, σ2(x) := ab2x−1a ab2xa and
σ3(x) := ab3x−2a ab3x−1a ab3xa. Although it is not a segmented morphism, we
also study the morphism σ0 given by σ0(x) := abx, as it is quite similar to σ1

and often used to encode words over infinite alphabets using only two letters.
There is an interesting property of all σn with n ≥ 3 that can be derived

from the proof of Lemma 28 by Freydenberger et al. [5]:

Lemma 1. Let α ∈ N+ succinct, n ≥ 3 and τ(α) = σn(α) for some morphism
τ 6= σn. Then, for every x ∈ V (α), τ(x) contains a abnx−(n−2)a . . . abnx−1a a.

This lemma is of great use in the next section, and the fact that there is no
similar property for n ≤ 2 is the very reason for the existence of Section 4.

3 Homogeneous Morphisms with Three or More
Segments

Due to Freydenberger et al. [5], we know that the characteristic regularities in
prolix patterns render every injective morphism ambiguous on these patterns.
Although succinctness prohibits those regularities, some other structures sup-
porting ambiguity of segmented morphisms can occur. For example, it is easy to
see that σ1 is ambiguous on the succinct pattern α := 1 · 2 · 1 · 3 · 3 · 2, e. g. by
considering morphisms τ1 or τ2 which are given by τ1(1) := ab, τ1(2) := a ab2a



and τ1(3) := a ab3 and τ2(1) := aba a, τ2(2) := b2a and τ2(3) := b3a a. In both
cases, the arising ambiguity can be understood (albeit rather metaphorically) as
some kind of communication where occurrences of 1 decide which modification is
applied to their image under σ1 and communicate this change to occurrences of
2, where applicable using 3 as a carrier. The patterns that show such a structure
can be generalised as follows:

Definition 2. Let α ∈ N+. An SCRN-partition for α is a partition of V (α) into
pairwise disjoint sets S, C, R and N such that α ∈ (N∗SC∗R)+ N∗. We call α
SCRN-partitionable if and only if it has an SCRN-partition.

As demonstrated by the above example, the existence of an SCRN-partition of a
pattern α is a sufficient condition for the ambiguity of any segmented morphism
(and σ0 as well). In fact, it holds for every homogeneous morphism:

Proposition 1. Let α ∈ N+. If α is SCRN-partitionable, then every homoge-
neous morphism σ is ambiguous on α.

Proof. As σ is homogeneous, there exist a p ∈ {a, b}+ and, for every x ∈ N,
an sx ∈ {a, b}∗ such that σ(x) = p sx. Let S, C, R,N be an SCRN-partition
for α. We define τ by, for all x ∈ S, τ(x) := σ(x) p, for x ∈ R, τ(x) := sx,
for x ∈ C, τ(x) := sx p. For x ∈ N , we simply define τ(x) := σ(x). As we are
using an SCRN-partition, α /∈ N∗; therefore, τ 6= σ holds. It is easy to see that
τ(α) = σ(α). Thus, σ is ambiguous on α. ut

We now wish to demonstrate that, for σn with n ≥ 3, this condition is even
characteristic. If σn is ambiguous on some succinct α ∈ N+ (i.e., there is some
τ 6= σn with τ(α) = σn(α)), every variable possessing different images under τ
and σn still keeps all its characteristic inner segments under τ (cf. Lemma 1). Any
change is therefore limited to some gain or loss of its (or its neighbours’) outer
segments and has to be communicated along subpatterns resembling the SC∗R-
sequences of a SCRN-partition. This allows to construct an SCRN-partition from
τ and leads to the following theorem:

Theorem 1. Let α ∈ N+. Then, for every n ≥ 3, σn is ambiguous on α if and
only if α is prolix or SCRN-partitionable.

Proof. As mentioned above, [5] demonstrates that we can safely restrict ourselves
to succint α, since every injective morphism is ambiguous on every prolix α ∈ N+.
We begin with the only-if-direction. Assume σn is ambiguous on some succinct
α ∈ N+; then there exists some morphism τ 6= σn with τ(α) = σn(α). Lemma 1
guarantees that every τ(x) contains the inner segments of σn(x). This allows us
to distinguish the following cases: For every x ∈ V (α), let x ∈ N if and only if
τ(x) = σn(x). If x has neither lost nor gained to its left, but has lost or gained
to the right, let x ∈ S, if its the other way around, let x ∈ R. Finally, if τ(x) is
different from σn(x) on both sides, let x ∈ C. To show that α ∈ (N∗SC∗R)+ N∗,
we read α from the left to the right. As the first variable has no left neighbour,
it cannot have gained or lost some word on its left side; thus, it must belong to



N or S. If it belongs to N , the same is true for the next variable, but as α ∈ N+

would contradict τ 6= σn, sooner or later some variable from S must occur.
As this variable has a changed right segment, its right neighbour experienced
the corresponding change on its left segment. Consequently, that variable must
belong to C or R. If it is from C instead, again variables from C must follow
until a variable from R is encountered; so α has a prefix from N∗SC∗R. But as
variables from R do not change their right segments under τ , we now have the
same situation as when we started. We conclude α ∈ (N∗SC∗R)+ N∗; therefore,
α is SCRN-partitionable. The if-direction follows from Proposition 1. ut

Consequently, ambiguity of morphisms with at least three segments on succinct
patterns is always only a transfer of parts of segments in blocks consisting of
a sender, a receiver and possibly some carriers between them.3 As a sidenote,
consider generalised segmented morphisms with n segments as morphisms σG :
N∗ −→ Σ∗ where σG(x) ∈ (ab+a)n for all x ∈ N, and for every w ∈ ab+a, there
is at most one x ∈ N such that w is a subword of σG(x). It can be shown that
if n ≥ 3, Lemma 1 holds for σG as well. Thus, for every generalised segmented
morphism σG with at least three segments, U(σG) = U(σ3). Furthermore, as
σ3 is the homogeneous version of the heterogeneous unambiguous morphism σsu

α

constructed by Freydenberger et al. [5], Theorem 1 precisely distinguishes the
patterns for which there is an unambiguous homogeneous morphism from those
patterns where an unambiguous morphism has to be heterogeneous. Thus, our
result significantly contributes to a deeper understanding of the impact of the
heterogeneity of a segmented morphism on its unambiguity.

Theorem 1 demonstrates, that for σn with n ≥ 3, ambiguity on succinct pat-
terns is inherently related to the occurrence of global regularities that depend on
local interactions between neighbouring variables only. In fact, these regularities
can be described by the equivalence classes L∼

i and R∼
i on V (α) introduced by

Freydenberger et al. [5] as fundamental tools to construct tailor-made unambigu-
ous morphisms σsu

α . In the present paper, we describe these equivalence classes
using an equivalent but simpler definition that is based on the adjacency graph
of a pattern, a construction that has first been employed by Baker et al. [1]
to simplify the Bean-Ehrenfeucht-McNulty-Zimin characterisation of avoidable
words, cf. Cassaigne [2]. Like Baker et al., we associate a pattern α ∈ N+ with a
bipartite graph AG(α), the adjacency graph of α: The vertex set consists of two
marked copies of V (α), V L and V R (for left and right, respectively); for each
x ∈ V (α), there is an element xL ∈ V L and an element xR ∈ V R. There is an
edge xL − yR for x, y ∈ V (α) if and only if xy is a subpattern of α.

Unlike Baker et al., we consider a partition of V L ∪ V R into sets H1, . . . ,Hn

such that each Hi is the set of vertices of a maximal and connected subgraph
of AG(α). We call such a set Hi a neighbourhood in α and refer to the set of all
neighbourhoods as H(α). For every neighbourhood Hi, the left neighbourhood
class L∼

i denotes the set of all x such that xL is in Hi and likewise the right
neighbourhood class R∼

i the set of all x such that xR is in Hi.
3 Hence the letters S, C, R, N stand for sender, carrier, receiver and neutral, respec-

tively.



Example 1. Let α := 1 · 2 · 3 · 1 · 2 · 2 · 3. We obtain H1 = {1L, 2L, 2R, 3R}
and H2 = {3L, 1R} and therefore, L∼

1 = {1, 2}, L∼
2 = {3}, R∼

1 = {2, 3} and
R∼

2 = {1}. In the following figure, we display the adjacency graph of α. Boxes
mark the elements of H1: r
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As no injective morphism is unambiguous on a prolix pattern, we mainly deal
with succinct patterns. It is useful to note that, apart from patterns of length 1
(like 1), no succinct pattern contains variables that occur only once. Therefore,
in succinct patterns every neighbourhood contains elements from V L and V R,
and every variable belongs to exactly one left and one right neighbourhood class.

Utilising our definition of neighbourhood classes, we now give a second char-
acterisation of U(σn), n ≥ 3:

Theorem 2. For every α ∈ N+ with first variable f and last variable l and any
n ≥ 3, σn is ambiguous on α if and only if α is prolix or there is a neighbourhood
Hi ∈ H(α) such that f /∈ R∼

i and l /∈ L∼
i .

Proof. First, assume that, for some succinct α := fα′l with α′ ∈ N∗, there is
some τ 6= σn such that τ(α) = σn(α). Now we construct an SCRN-partition
S, C, R,N of V (α) like in the proof to Theorem 1. Let x ∈ S and choose i such
that x ∈ L∼

i . Then τ(x) can be seen as the result of σn(x) either loosing a word
b∗a to or gaining some word ab∗ from every right neighbour of an occurrence of
x in α. Therefore, all those neighbours must reflect this change on the left side of
their image under τ , as anything else would contradict Lemma 1 or τ(α) = σn(α).
Likewise, all those neighbours’ left neighbours must change their right segment
in the same way as x. This has to propagate through all of Hi; so all elements of
L∼

i show the same change to their right segment, and all elements of R∼
i show the

corresponding change to their left segment. Now assume f ∈ R∼
i . As f is the first

variable of α and due to Lemma 1, τ(f) can differ from σn(x) only to the right
of the middle segment, and only by some part of a segment. But this contradicts
our previous observation that all elements of R∼

i are afflicted by a change to
their left segment. This leads to f /∈ R∼

i . Likewise, l /∈ L∼
i , which concludes this

direction of the proof. For the other direction, let α := fα′l be succinct with
some neighbourhood Hi such that f /∈ R∼

i and l /∈ L∼
i . Now define S, C, R,N

by S = L∼
i \R∼

i , C = L∼
i ∩R∼

i , R = R∼
i \L∼

i and N = V (α) \ (L∼
i ∪R∼

i ). The
four sets form a partition of V (α), so it merely remains to be shown that their
elements occur in α in the right order. First observe that, by definition, f ∈ S∪N
and l ∈ R ∪ N . Furthermore, for any subpattern xy of α, if x ∈ S or x ∈ C,
then x ∈ L∼

i . Therefore, y ∈ R∼
i and thus y ∈ C ∪R. Likewise, x ∈ N or x ∈ R

implies x /∈ L∼
i and y /∈ R∼

i , which leads to y ∈ N ∪S and α ∈ (N∗SC∗R)+ N∗.
By Theorem 1, we conclude that σn is ambiguous on α. ut



Consequently, in order to decide ambiguity of σn, n ≥ 3, on a succinct pat-
tern α, it suffices to construct H(α) and check the classes of the first and last
variable of α. The construction can be done efficiently, e. g. by using a Union-
Find-algorithm.

This theorem provides a useful corollary for a class of patterns first described
by Baker et al. [1]. We call a pattern α ∈ N+ locked if and only if |H(α)| = 1
and thus L∼

1 = R∼
1 = V (α). We observe the following consequence:

Corollary 1. Let α ∈ N+. If α is succinct and locked, then α ∈ U(σ3).

This corollary is of use in the next section, where we shall see that having less
than three segments entails other types of ambiguity than the one described in
the previous section.

4 Homogeneous Morphisms with Less than Three
Segments

In this section, we examine the effects caused by reducing the number of seg-
ments. One might expect no change in the corresponding sets of unambiguous
patterns, or a small hierarchy that reflects the number of segments, but as we
shall see, neither is the case. To this end, we construct the following five patterns:

Definition 3. We define α0, α1, α2 and α0\2 as follows:

α0 := 1 · 2 · 3 · 1 · 3 · 2,

α1 := 1 · 2 · 2 · 3 · 1 · 1 · 3 · 1,

α2 := (1 · 2 · 3 · 3 · 4)2 · 5 · 2 · 6 · 5 · 7 · (8 · 6)2 · (9 · 7)2 · 10 · 4 · 11 · 4 · 10 · 12 ·
11 · 12 · (3 · 13)2 · (14 · 3 · 2 · 15)2,

α0\2 := (1 · 2 · 3)2 · (4 · 5 · 4)2 · (6 · 7 · 6 · 8)2 · 1 · 7 · 3 · (9 · 6 · 6 · 10)2 · (11 · 12)2 ·
(13 · 7 · 7 · 4 · 14 · 12)2 · (15 · 14)2 · 9 · 6.

Finally, we define α1\2 by α1\2 := 12 · δ · 1 · p(δ) · 1, where

δ :=β1 · 1 · β2 · 1 · β3 · 1 · β4 · 1 · β5 · 1 · γ1 · β6 · 1 · β7 · 1 · γ2 · 1 · β8·
1 · γ3 · 1 · β9 · 1 · β10 · 1 · β11 · 1 · β12 · 1 · β13 · 1 · β14,

and p(1) := λ, p(x) := x for all x ∈ N \ {1}, and furthermore

β1 := 2 · 3 · 3 · 4, β2 := 3 · 2 · 2 · 5,

β3 := 6 · 7, β4 := 8 · 9,

β5 := 10 · 11, γ1 := (12 · 1)(13 · 1) · . . . · (17 · 1),
β6 := 18 · 19, β7 := 6 · 20 · 9,

γ2 := 21 · 1 · 22, β8 := 6 · 23 · 11,

γ3 := 24 · 1 · 25 · 1 · 26, β9 := 27 · 2 · 20 · 2 · 20 · 28 · 2 · 29,



β10 := 30 · 2 · (20 · 2 · 23 · 2)3 · 20 · (31)4 · 32, β11 := 33 · 3 · 34 · 23 · 3 · 23 · 3 · 35,

β12 := 36 · 20 · 20 · 28 · 2 · 29, β13 := 33 · 3 · 34 · 23 · 23 · 37,

β14 := 18 · 31 · 32.

We begin by establishing the relation between U(σ3) and the other sets:

Theorem 3. The sets U(σ0), U(σ1) and U(σ2) are strictly included in U(σ3).

Proof. For all three languages, the inclusion directly follows from Theorem 1:
If α /∈ U(σ3) then α is prolix or SCRN-partitionable. In the former case, every
injective morphism is ambiguous on α, and, due to Proposition 1, the existence
of an SCRN-partition is sufficient for ambiguity of segmented morphisms and
σ0. To prove strictness, we show that σ0, σ1, σ2 are ambiguous on the patterns
α0, α1, α2, respectively, from Definition 3. All three patterns are succinct and –
as demonstrated by their adjacency graphs – have only one neighbourhood class
each. Hence, due to Corollary 1, σ3 is unambiguous on each of the patterns.

We start with α0 and define τ by τ(1) := σ0(1·2), τ(2) := σ0(2) and τ(3) := b.
Then τ 6= σ0, but τ(α0) = σ0(1 · 2) · σ0(2) · b · σ0(1 · 2) · b · σ0(2) = σ0(α0).
Therefore, σ0 is ambiguous on α0. For α1, we set τ(1) := a, τ(2) := baab and
τ(3) := baσ1(3) ab. It is easy to see that τ 6= σ1 and τ(α1) = σ1(α1). With
regard to σ2, we consider the morphism τ given by

τ(1) := σ2(1 · 2 · 3) ab5a ab3, τ(2) := b3a ab3,

τ(3) := λ, τ(4) := b4a ab8a,

τ(5) := σ2(5) a, τ(6) := ba σ2(6),

τ(7) := b13a ab14a, τ(8) := ab15a ab15,

τ(9) := σ2(9) a, τ(10) := σ2(10) ab3,

τ(11) := σ2(11) ab3, τ(12) := b20a ab24a,

τ(13) := σ2(3 · 13), τ(14) := ab27a ab25,

τ(15) := b2a ab6a σ2(2 · 15).

Then τ 6= σ2. Proving τ(α2) = σ2(α2) is less obvious, but straightforward. ut

The proof for Theorem 3 is of additional interest as Freydenberger et al. [5]
propose to study a morphism σ2-seg

α that maps each variable x in a succinct
pattern α onto a word that merely consists of the left and the right segment of
σsu

α (x) (recall that σsu
α is a heterogeneous morphism which maps every variable

x onto three segments). In [5] it is asked whether, for every succinct pattern α,
σ2-seg

α is unambiguous on α, thus suggesting the chance for a major improvement
of σsu

α . With regard to this question, we now consider the pattern α2. In the above
proof, it is stated that α is a locked pattern, which implies that σ2-seg

α2
only

maps the variable 1 onto a word b . . . b and all other variables in α2 onto words
a . . . a. Consequently, for each x ∈ V (α2) \ {1}, σ2-seg

α2
(x) = σ2(x). Therefore –

and since, for the corresponding τ introduced in the proof of Theorem 3, the
word τ(1) completely contains σ2(1) – we can define a morphism τ ′ by τ ′(1) :=



σ2-seg
α2

(1 · 2 · 3) ab5a ab3 and τ ′(x) := τ(x), x ∈ V (α2) \ {1}, and this definition
yields τ ′(α2) = σ2-seg

α2
(α2). So, there exists a succinct pattern α (namely α2) such

that σ2-seg
α is ambiguous on α. Thus, α2 does not only prove U(σ2) ⊂ U(σ3), but

it also provides a negative answer to an intricate question posed in [5].
Returning to the focus of the present paper, the examples in the proof for

Theorem 3 demonstrate ambiguity phenomena that are intrinsic for their re-
spective kind of morphisms and cause ambiguity on patterns that are neither
prolix nor SCRN-partitionable: With regard to σ0, the fact that for each x, y
with x < y, σ0(x) is a prefix of σ0(y) can be used to achieve ambiguity, as
demonstrated by α0. Concerning σ1, a variable x can achieve τ(x) = a both by
giving abx to the left or bxa to the right, which can be prefix or suffix of some
σ1(y). In α1, we use this for τ(1). The situation is less obvious and somewhat
more complicated for σ2, as suggested by the fact that we do not know a shorter
pattern serving the same purpose as α2. Here, a variable x can obtain an image
τ(x) ∈ b∗aab∗, which can be used both as a middle part of some σ2(y), and as the
borderline between some σ2(y) and some σ2(z). In the proofs for Theorem 5 and
Theorem 6 we utilise further examples for complicated cases of σ2-ambiguity.

It is natural to ask whether these phenomena can be used to find patterns
where one of the three morphisms σ0, σ1, σ2 is ambiguous, and another is not.
We begin with a comparison of U(σ0) and U(σ1):

Theorem 4. The sets U(σ0) and U(σ1) are incomparable.

Proof. We have already established the ambiguity of σ0 on α0 and of σ1 on α1

in the proof of Theorem 3. The proofs for the unambiguity of σ1 on α0 and of
σ0 on α1 are left out due to space reasons. ut

This result is perhaps somewhat counter-intuitive, but the fact that U(σ0) and
U(σ1) can be separated by two very short examples might be considered evidence
that the two languages are by far not as similar as the two morphisms. We
proceed with a comparison of U(σ0) and U(σ2). Surprisingly, the same result
holds (although one of the examples is considerably more involved):

Theorem 5. The sets U(σ0) and U(σ2) are incomparable.

Proof. Here, we use α0 and α0\2. In spite of the NP-completeness of the problem
(cf. Ehrenfeucht, Rozenberg [4]), α0\2 ∈ U(σ0) and α0 ∈ U(σ2) can be verified by
a computer; therefore (and due to space constraints), we omit the corresponding
proof. Contrary to this, the length of σ2(α0\2) does not allow for the use of a
computer. With regard to the ambiguity of σ2, we thus refer to the morphism τ
given by

τ(1) = σ2(1) ab2, τ(2) = ba ab2,

τ(3) = b2a σ2(1), τ(4) = λ,

τ(5) = σ2(4 · 5 · 4), τ(6) = a,

τ(7) = b11a ab12, τ(8) = σ2(7 · 6 · 8),
τ(9) = σ2(9 · 6), τ(10) = σ2(6 · 10),



τ(11) = σ2(11) ab23a ab12, τ(12) = b12a,

τ(13) = σ2(13 · 7 · 7 · 4) ab27a ab17, τ(14) = λ,

τ(15) = σ2(15 · 14),

which yields τ(α0\2) = σ2(α0\2) and, hence, the ambiguity of σ2 on α. ut

We conclude this section by the examination of the last open case, namely
the relation between U(σ1) and U(σ2). Again, one might conjecture that the
more complex morphism σ2 is “stronger” than σ1, but our most sophisticated
example pattern α1\2 shows that this expectation is not correct:

Theorem 6. The sets U(σ1) and U(σ2) are incomparable.

Proof. For this proof we use the patterns α1 and α1\2. Recall that σ1 is am-
biguous on α1 (cf. proof of Theorem 3). With little effort, it can be seen that
σ2 is unambiguous on α1. Thus, we know that α1 ∈ U(σ2) \ U(σ1). The fact
that σ1 is unambiguous on α1\2 requires extensive reasoning, which is left out
due to space reasons. Showing that σ2 is ambiguous on α1\2 is more straight-
forward. Let τ(x) := λ for x ∈ {2, 3, 28, 31, 34} and τ(x) := σ2(x) for x ∈
V (γ1) ∪ V (γ2) ∪ V (γ3). For all other x ∈ V (α1\2), define τ(x) as follows:

τ(4) := σ2(2 · 3 · 3 · 4), τ(5) := σ2(3 · 2 · 2 · 5),

τ(6) := σ2(6) ab11, τ(7) := b2a ab14a,

τ(8) := ab15a ab3, τ(9) := b13a σ2(9),

τ(10) := ab19a ab8, τ(11) := b12a σ2(11),

τ(18) := σ2(18) ab27, τ(19) := b10a ab38a,

τ(20) := b28a ab27, τ(23) := b34a ab34,

τ(27) := σ2(27 · 2 · 20 · 2) ab39a ab12, τ(29) := b29a σ2(2 · 29),

τ(30) := σ2

(
30 · 2 · (20 · 2 · 23 · 2)3

)
ab39a ab12, τ(32) := b34a ab62a · σ2(32),

τ(33) := σ2(33 · 3) ab33, τ(35) := w σ2(3 · 23 · 3 · 35),

τ(36) := σ2(36 · 20) ab39a ab12, τ(37) := w σ2(23 · 37),

where w := b11a ab46a. Obviously τ 6= σ2. As τ(x) = σ2(x) for x ∈ V (γ1) ∪
V (γ2) ∪ V (γ3), especially for x = 1, it suffices to show τ(βi) = σ2(βi) for all
i ∈ {1, 2, . . . , 14}. For β1 and β2, the claim holds trivially. For the other βi, the
process is straightforward but somewhat lenghty. Thus, α1\2 ∈ U(σ1) \ U(σ2),
and therefore U(σ1) and U(σ2) are incomparable. ut

Note that we do not know any nontrivial characterisation of U(σ0), U(σ1) and
U(σ2). Moreover, we cannot refer to a computationally feasible method to suc-
cessfully seek for any patterns in U(σ1)\U(σ2), U(σ0)\U(σ2) and U(σ3)\U(σ2).
Therefore, we cannot answer the question of whether there exist shorter examples
than α2, α0\2 and α1\2 suitable for proving Theorems 3, 5 and 6, respectively.
The intricacy of the ambiguity phenomena relevant for the construction of such
patterns, however, suggests that our examples cannot be shortened significantly.



5 Conclusion and Open Problems

In the present paper, we have studied the unambiguity of an important type of
injective morphisms. More precisely, we have examined the impact of the num-
ber n of segments of a segmented morphism σn on the set U(σn) of patterns for
which σn is unambiguous. Our main results show that a change of n, surprisingly,
does not give rise to a “real” hierarchy of sets of patterns, as the three pairwise
incomparable languages U(σ0), U(σ1) and U(σ2) are all contained in one com-
mon superset U(σ3), that is also the maximum any homogeneous morphism can
achieve. We have established the result on U(σ3) by two characteristic crite-
ria on U(σ3), which additionally entail a substantial improvement of the main
technique introduced in the initial paper [5] on the unambiguity of morphisms.

Contrary to this, a major part of our results on σ0, σ1 and σ2 are not based
on criteria, but on example patterns. We regard it as a very interesting problem
to find characterisations of U(σ0), U(σ1) and U(σ2). In consideration of the
remarkable complexity of the patterns α0\2, α1\2 and α2, however, we expect
this to be an extraordinarily cumbersome task.
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[6] V. Halava, T. Harju, J. Karhumäki, and M. Latteux. Post Correspondence Prob-
lem for morphisms with unique blocks. In Proc. Words’05, volume 36 of Publica-
tions du LACIM, pages 265–274, 2005.

[7] D. Hamm and J. Shallit. Characterization of finite and one-sided infinite fixed
points of morphisms on free monoids. Technical Report CS-99-17, Dep. of Com-
puter Science, University of Waterloo, 1999.

[8] T. Jiang, A. Salomaa, K. Salomaa, and S. Yu. Decision problems for patterns. J.
Comput. Syst. Sci., 50:53–63, 1995.

[9] A. Mateescu and A. Salomaa. Patterns. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 1, pages 230–242. Springer, 1997.

[10] D. Reidenbach. A discontinuity in pattern inference. In Proc. STACS’04, volume
2996 of Lecture Notes in Computer Science, pages 129–140, 2004.

[11] D. Reidenbach. A non-learnable class of E-pattern languages. Theor. Comput.
Sci., 350:91–102, 2006.


