

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

.

I EEE SOFTWARE 0740 -7459/97/$10 .00 © 1997 I EEE 3 7

lthough they may know much about software de-
velopment theory, computer science graduates are
often poorly prepared for the real-world practice
of their craft.1 In the case of GPT, management
found that although graduates of computer sci-
ence,2 and even some other subjects,3 had been

taught software engineering principles, they still had difficulty han-
dling a professional work environment. Specifically, they had trou-
ble dealing with; frequent changes to specifications, priorities,
equipment, and procedures; the expectations of customers, man-
agers, and fellow team members to “do the impossible yesterday”;
conflict—whether requirements conflict, disagreement among cus-
tomers, or simply the differences between real-world practices and
the theory they had been taught; and estimating and planning in a
world of meetings, multiple tasks, constant distractions—and above
all, the everyday disasters that inevitably occur with real people,
equipment, and software. As one software manager said, graduates
can be “very knowledgeable—but not a lot of use.”4

Introducing
Software Engineers
to the Real World

RAY DAWSON, Loughborough University
RON NEWSHAM, University of Derby

Most software engineering
graduates begin their
careers lacking an
appreciation of real-world
conditions. Do universities
have the resources to
simulate this environment
or must software companies
provide such training
themselves?

A

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 22, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

.

To address these deficiencies, GPT
ran—over 14 years—project courses for
new employees.1 We were asked to set
up and run a course based on practical
work that simulated software develop-
ment in the real world in every possible
respect. Since then, we have both trans-
ferred to university teaching: Ray
Dawson to Loughborough University in
1987 and Ron Newsham to the Uni-
versity of Derby in 1996. Our academic
positions have given us experience with
existing practices for teaching real-world
awareness in computer science courses
and the opportunity to put ideas from
the company training course into prac-
tice in a university environment.

Many of GPT’s ideas for simulating
real projects can already be found in uni-
versity courses. The universities of

Loughborough and Derby are typical in
this respect. Most university computer
science courses involve students working
on group projects in the manner of a
small software house, sometimes referred
to as the “software hut.”5,6 Nevertheless,
GPT found that graduates still had much
to learn from the company course.

THE GPT COURSE

Soon after joining GPT, graduates
would attend the two-week training
course we created, working in three- to
five-member teams7 that competed with
one or two other teams. Table 1 shows
the course’s main features, as well as
those at our current universities.

The course started with a half-day in-

troductory session in which the students
were told the aims of the course and
warned where they would likely go
wrong. They would then undertake a
project chosen so it would be possible to
produce some usable software in the time
available, but with little margin for inef-
ficiency and error. There was always
scope for a team to take on more than it
could handle. The course had at least one
full-time staff member supervising and
monitoring the participants, with an-
other staff member assisting some of the
time. The last afternoon was devoted to
demonstrations and presentations by the
teams and a review by the course leader.

After the introductory session, the
participants were given the specification.
This was not a true specification, but a
brief, vague description that was in places

3 8 0740 -7459/97/$10 .00 © 1997 I EEE NOVEMBER/DECEMBER 1997

TABLE 1
FEATURES OF THE COMPANY AND UNIVERSITY COURSES

Feature GPT Company Loughborough and Derby Universities
Students 12 maximum 40 to 100+
Duration 2 weeks full time, fixed 74 hours About 80 hours over 10 weeks
Hours Strictly limited to company hours Unlimited
Introduction Half day at start Previous modules give background information
System experience Familiar with both hardware and software Often development hardware or software

must be learned
Supervision Full time, sometimes with two supervisors One supervisor about one third of the time
Simulation All real-world aspects simulated Loughborough: real-world aspects in one module

Derby: different real-world aspects in different
modules

Team size 3 to 5 4 rising to 8 or 9 in recent years
Specification Incomplete and ambiguous Incomplete and ambiguous
Role play Extensive Limited by supervisor availability (some real

customers used)
Forced changes Specifications, working procedures, Specifications only

customer personalities, supporting software
Dirty tricks Many Few, other than specification changes
Assessment No formal assessment By tutor observation, deliverables, and student

self-assessment
Review Related to detailed observation of the Based only partly on observed student experiences

graduates’ experiences

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 22, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

.

misleading and ambiguous. The specifi-
cation always contained requirements
that could not be met or that conflicted
with each other. The first task of each
group was to sort out the project’s re-
quirements and priorities, but these
would then be deliberately and fre-
quently changed by the course leader as
the project progressed. The course leader
also made changes to the working envi-
ronment, in the directed working proce-
dures, for example, or the hardware and
software support tools.8

The staff members used role play to
enact the part of customers, managers,
technical advisors, and quality auditors.
Course leaders kept each role distinct so
that, for example, the “customer” would
happily agree to product suggestions
even though the “technical consultant,”
if asked, would have advised that they
would be impossible to put into practice.

The availability of a second staff mem-
ber allowed the simultaneous assumption
of two different customer roles, to which
each would be given a different personal-
ity and expectation set. No student was
ever prepared for one customer to be en-
thusiastic, jumping at every suggestion no
matter how impractical, while the other
acted very conservatively and accepted
any suggestion that differed from their
original ideas reluctantly if at all.

Finally, if this were not enough to dis-
rupt the participants’ performance, we
played deliberate tricks on the course
participants. The central computer in the
network could be made to crash unex-
pectedly, or we found urgent errands for
key team members. One overnight trick
we played involved replacing all the com-
puter file space with a copy made half a
day earlier. While this may seem partic-
ularly mean, it helped us determine the
ability of each group to find and recover
from the problem and provided them
with a useful lesson in configuration
management.

Formal assessment of the individuals
or groups at GPT was unnecessary.
Software managers indicated their satis-
faction by continuing to send their new

recruits to the course. Motivating atten-
dees to take the course project seriously
was not a problem because the new re-
cruits tended to be enthusiastic and keen
to make a good impression, especially
when managers attended the final pre-
sentations and review.

Project progress. Progress on the GPT
course project would start well. After
deriving what they considered to be a
well-thought-out specification and a re-
alistic plan, which even allowed a little
leeway for things to go wrong, the
groups would usually manage to keep
within if not ahead of schedule during
the first week.

By half-way through the second week,
each team would attempt to integrate the
work of its members. The inevitable
problems would lead to concern, then
alarm, that the approaching deadline
might not be reached. The end of the
course became a scramble to get some-
thing ready in time. During this second
week, significant disasters occurred that
held up progress: an unknown fault
would be found in the compiler, a team
member would be out sick for a day, or
the computer response time would fall to
an unacceptable level. If all appeared to
be going too well, the course leaders
would introduce a few dirty tricks, al-
though in over half the cases the groups
produced so many problems for them-
selves that no further intervention was
necessary! The final demonstrations
were usually accompanied by a series of
excuses as the products were delivered in-
complete and full of errors.

Course value. The lessons learned on the
GPT course were many, with working in
groups being perhaps the most important
for the few who had not experienced this
before,9,10 though it is now common in
university undergraduate courses.

Although most participants knew
various development philosophies,11 no
group ever tried to put these into practice,
relying always on the conventional water-
fall11 development model. They then ex-

perienced the need to spend time in the
design phase to get it right from the be-
ginning, and the difficulties encountered
when the design is changed in the coding
phase. Most groups discovered that their
designs were inadequate and that they
would have benefited from using alterna-
tive development strategies.

The participants learned the difficul-
ties of determining the requirements and
getting the initial design correct when
dealing with “real” customers who start
with differing and vague ideas that they
then clarify and develop in unexpected
directions.8,12

The projects’ integration problems
taught participants the importance of
defining interfaces, unit testing, plan-
ning, and allowing enough time for the

integration process itself. In particular,
participants learned the difference be-
tween testing a module to their own sat-
isfaction and testing it to the satisfaction
of other team members.

The participants learned their own
limitations, particularly in their estima-
tion and planning of tasks. They became
more realistic, learning that they cannot
expect to live in an ideal world, and that
disasters are not exceptional. They also
learned it was no use complaining to the
“customer” about the lack of time or in-
adequate resources when they had nego-
tiated their own targets with full knowl-
edge of the development environment.

UNIVERSITY COURSES

We are aware, through contacts and

I EEE SOFTWARE 0740 -7459/97/$10 .00 © 1997 I EEE 3 9

One overnight trick
we played involved
replacing all the
computer file space
with a copy made
half a day earlier.

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 22, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

.

published papers, that many university
computer science courses have some el-
ement devoted to teaching real-world is-
sues2,5,6 along lines similar to our GPT
course. In this respect, Loughborough
and Derby universities are typical.

Although we used our GPT experience
to influence the courses at these univer-
sities, we know that other universities
employ similar ideas and practices. It is
useful, therefore, to identify the successes
and failures in these courses.

Loughborough. For the last 15 years,
Loughborough University’s Department
of Computer Studies has run group pro-
ject courses in the second year of the un-
dergraduate program. The students have
taken group programming projects of ei-
ther five or 10 weeks’ duration, with stu-
dents reporting that they spend around
a quarter of their time on these projects.
The projects let students learn to work
effectively as a team. In earlier years, each
team consisted of four students, growing
more recently to groups of eight or nine
each. The increasing team size is an ad-
vantage because larger teams force stu-
dents to plan and organize their work
more carefully.

Increasingly, elements of the GPT
course have been introduced into the
Loughborough University projects.
Specifications are left deliberately vague
and ambiguous, the requirements and
priorities change throughout the project,
and the module lecturer plays the roles
of customers, managers, and quality au-

ditors. The teams are encouraged to seek
“customer” feedback during interviews
and demonstrations, while the “man-
ager” and “quality auditor” dictate the in-
ternal planning and reporting proce-
dures. The main difference from the
GPT course is in the extent of these real-
world aspects. University resource re-
strictions mean that fewer changes are
imposed and that customers, managers,
and quality auditors are less demanding.

Derby. The School of Mathematics and
Computing at the University of Derby
also has modules that simulate the real
world, but as at Loughborough, the mod-
ules are not as in-depth as the GPT
course. At Derby, different modules high-
light different aspects. One second-year
undergraduate module concentrates on
the customer, taking the relatively unusual
step of using real customers for these pro-
jects. These customers may be a different
staff member within the department, staff
within other university departments, or
even people from outside the university
environment. In each case, the customer
must have a suitably sized project that is
needed but is not so critical that the soft-
ware must be delivered in perfect condi-
tion. In these projects, student teams are
directed to produce a delivery in at least
two stages. This is enforced first to show
the advantages of customer interaction
and second to increase the chance that the
projects will produce something of value
within the available time.

Another module at Derby concen-
trates more on management of the
group’s project work. Students must pre-
sent detailed plans at the start of the pro-
ject and then regularly report on their
progress in relation to their plans. The
students experience frequent and strict
quality audits of both their software and
its associated documentation, and at cer-
tain stages must justify their ideas in a
management presentation. Yet another
module emphasizes teamwork and group
dynamics in the project undertaken.

University limitations. The university

modules do not attempt to give the stu-
dents as wide an experience as did our
GPT course. This is not due to a lack of
time: students are expected to spend a
total of around 80 hours on a module, in-
cluding the time they are expected to
work on their own. The GPT course to-
taled 74 hours. The Loughborough
courses attempt the full simulation of the
real world but with less role play, fewer
changes, and fewer real-world proce-
dures imposed. At Derby, each module
may cover one aspect of the GPT course
to the same depth, but other aspects re-
ceive less attention. Other than changes
to customer requirements, neither uni-
versity tries to simulate the day-to-day
problems of the real world by playing
tricks on the participating groups.

Closer inspection reveals the GPT
course had several advantages over the
university modules.

♦ Since their early school days, most
students have been completing their work
in a last-minute rush. As a deadline ap-
proaches, university students will abandon
work for other modules and will often
miss lectures. They put in long hours and
it is not unusual to find them working
through the night to meet a coursework
hand-in date. For many students, this last-
minute rush is normal and subconsciously
planned from the start. Students do not
appreciate the extra time they spend as a
result of their planning failures. In con-
trast, we kept the GPT course strictly to
company hours, with no extra work al-
lowed even during the lunch period.
Without the opportunity to compensate
for delays and mistakes with additional
time, participants taking the GPT course
were surprised and alarmed to find how
far wrong their planning could go.

♦ The level of supervision possible in
the GPT course would be the envy of
every university lecturer. The course
leader was always present, with a second
staff member also available sometimes.
In a university course, students are su-
pervised for only about one third of their
project work time. Limited staff re-
sources would make any further supervi-

4 0 0740 -7459/97/$10 .00 © 1997 I EEE NOVEMBER/DECEMBER 1997

Increasing team size
is an advantage
because larger
teams force
students to plan
and organize their
work more carefully.

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 22, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

.

sion difficult and disproportionate to
other modules. The extra course super-
vision at GPT let the role play be more
extensive, as “customers” and “man-
agers” could be on hand more frequently
to influence development. In university
courses, extending the role play to pre-
sent more than one customer becomes
much more difficult; neither Lough-
borough nor Derby attempts to do so. At
GPT, the availability of the course leader
also made monitoring of teams more ef-
fective, enabling immediate action if a
group was thought to need assistance or,
in some cases, if the group was progress-
ing too well and needed the distraction
of an imposed disaster.

♦ The GPT course numbers gave a
significantly better staff-student ratio. At
GPT, a course was considered large if it
contained a dozen students, whereas at
universities a class size of less than 40 is
rare, with numbers over 100 possible.
Thus, time spent with each university
project group is a fraction of what the
GPT participants enjoyed.

♦ The lower supervision levels at the
universities reduces the time a supervisor
can observe the different groups’ experi-
ences with a view to emphasizing points
in the review session. Also, unlike the par-
ticipants in the GPT course, the student
groups are not necessarily working side
by side and so do not have the same op-
portunity to learn from other groups’ ex-
periences. In university courses, many of
the significant events that illustrate im-
portant lessons will, unfortunately, be
missed altogether.

♦ Because they were not being as-
sessed or graded, there was no need to
treat GPT course participants equally.
For example, sending a key group mem-
ber on an “urgent” errand for half a day
could provide excellent lessons in team
organization and product documentation.
This event would be noted by all other
groups, who would then be able to dis-
cuss and learn from its effects in the
course review. The assessment of students
in undergraduate modules implies that all
participants must be treated fairly. This

means that dirty tricks can only be played
when they affect all students equally. The
limitations on the tricks that can be played
leaves students with too much of an ex-
pectation of an ideal environment and se-
verely restricts their education on how to
cope with the inevitable occurrences of
real life they will later experience.

♦ Without the GPT course’s level of
supervision it is difficult for universities
to assess each member of a group.
Usually, the universities rely on an ele-
ment of self-assessment in which students
must evaluate each of their group mem-
bers’ contributions and attribute to each
the work completed. While such analysis
has some merit in forcing the students to
review how they functioned as a team, the
demarcation of tasks to individuals also
reduces collective responsibility for the
work. It becomes too easy for students to
blame others for their failures.

♦ The students are in only their sec-
ond year when they take the university
software engineering modules. Because
the GPT course was created for gradu-
ates, the participants inevitably had more
computing experience and maturity, en-
abling them to gain a far better under-
standing of real-world issues. This sug-
gests it would be better if the university
software engineering modules were given
in the final year. However, as assessment
of individuals is difficult within group
projects, the universities would be reluc-
tant to introduce significant group work
in the last year of a degree course.

University modules’ value. Many of the
lessons taught in the university modules
are similar to those in the GPT course.
The problems bring out the importance
of teamwork, communication, planning,
testing, and allowing enough time for the
integration process, while the realistic
conditions teach students that disasters
are not exceptional.

When the modules are compared
with the GPT course, however, there is
a significant difference in how well these
lessons are learned. The fixed hours of
the GPT course would highlight the par-

ticipants’ inability to plan and deliver
work on time in a way they had never ex-
perienced at their university. The close
observation of the groups by the course
leader allowed him to emphasize points
in the review session by relating to events
they experienced. We found that using
the participants’ own work as examples
of good or bad practice was particularly
effective at ensuring the message would
be remembered.

Although the university modules give
a useful insight into software develop-
ment in the real world, they cannot
match the industrial atmosphere created
in the GPT course. The extensive role
play, the standard company hours, and
the ability to create everyday disasters
gave the GPT course a realistic feel that
would be difficult to simulate in a uni-
versity environment.

IMPROVING UNIVERSITY
COURSES

No doubt most university lecturers will
feel that, given the level of staff time and
resources available to GPT, they could in-
crease the effectiveness of any similar uni-
versity course. However, the GPT course
had a few advantages that could transfer
effectively to the university environment
without additional resources.

One of the GPT course’s principle ad-
vantages was the set company hours. To
emulate this, Loughborough restricted
student access to the software to set hours
during the week. However, the choice of

I EEE SOFTWARE 0740 -7459/97/$10 .00 © 1997 I EEE 4 1

The assessment
of students in
undergraduate
modules implies
that all participants
must be treated
fairly.

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 22, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

.

software used in the project is critical in
this context because most students have
access to the same software on their own
PCs. For example, the Loughborough
project involved accessing an Oracle

server from a PC client. Although there
was no practical way to restrict the
groups’ development of the client soft-
ware, the module teacher presumed that
students would not have access to their
own Oracle database software. The ex-
periment failed because the structured
query language needed to access Oracle
was similar to the widely available, PC-
based Access database’s SQL interface.
The students developed their programs
using their own computers, then devoted
the restricted course hours to converting
those programs to Oracle.

Thus, if students are to be restricted
in their project hours, care must be taken
to use software that is not similar to or
compatible with generally available PC
software. Unfortunately, this restriction
severely limits the potential candidates
for the project’s language and environ-
ment, making it quite likely that any
programming languages that partici-
pants learned earlier in the university
course would not be usable.

The problem of the relatively lower
level of supervision in a university course
is more difficult to overcome. Both
Loughborough and Derby have had some
success drawing on the students’ own ob-
servations by making each group present
their ideas and experiences to other stu-
dents. In such a presentation, the students

must justify their plans and actions, which
shows they can be professional and learn
from their mistakes. This supplements
the lecturer’s own comments in the re-
view at the end of the module. Although
reasonably successful, this process cannot
compare with the informed comments of
the GPT course leader who, by knowing
what to look for, could pick out course ex-
amples of every type of good and bad
practice to discuss in the review.

One suggestion to help increase uni-
versity module supervision is to use more
senior students, perhaps graduate stu-
dents, to assist in the supervision.
However, the requirement to be fair
makes this difficult. The second-year stu-
dents’ learning experience would be
clearly affected by the supervising stu-
dent’s abilities. For this reason, neither
Loughborough nor Derby have any
plans to implement this suggestion.

The need to be fair also restricts the
number and type of dirty tricks that can
be played on the groups. This does not
stop certain manufactured disasters from
being imposed on all groups, however.
Changing the requirements as the pro-
ject progresses is an easy trick to play and
one that gives experience of an all-too-
common real-world problem—yet many
participants had not encountered this
phenomenon before joining GPT.

Other types of change are rarely ex-
perienced by university students, though
in many cases they would not be difficult
to introduce. For example, on one occa-
sion at Loughborough the database
management software was upgraded to
the next version in the middle of the pro-
ject. Despite the new version being so-
called “backward compatible,” a whole
week passed before the students could
run any of their project software—a use-
ful and very realistic foretaste of the real
world. Nevertheless, the GPT course
leader’s ability to tailor the disasters to
the circumstances of each group in-
evitably made these lessons more appro-
priate, more timely, and consequently,
more effective than the universities
could possibly achieve.

That veteran GPT software man-
agers continued to send newly re-

cruited computer science graduates to
the course we developed indicates they
believe it to be valuable. That universi-
ties introduced similar modules shows
that educators also recognize the need for
providing real-world software develop-
ment experience. We believe that the
Loughborough and Derby modules are
typical of modules in many, if not most,
university computer science courses.
Although these modules impart valuable
experience, we found the GPT course to
be far more effective in delivering the
necessary lessons.

Much of the reason for our course’s
superiority can be attributed to full-time
company hours and greater staff and
equipment resources. Although, as we’ve
suggested, universities can overcome
some of their time and resource limita-
tions, their modules will never match the
learning experience of a company course.

Perhaps, then, the ideal situation is to
mix university education and company
training. The computer science students
can and should receive some real-world
experience while still at university,
through some form of software engi-
neering project modules. This should
then become a foundation for one or
more further training courses that will be
provided when the graduates enter a
company. None of this training will pre-
vent totally the all-too-common mistakes
that can give software development such
a bad name,12 but by teaching computer
science graduates to be more aware of
real-world issues, universities and soft-
ware companies can increase profession-
alism in the software industry. ♦

4 2 0740 -7459/97/$10 .00 © 1997 I EEE NOVEMBER/DECEMBER 1997

The need to be fair
restricts the number
and type of dirty
tricks that can be
played, but not some
manufactured
disasters.

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 22, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

.

I EEE SOFTWARE 0740 -7459/97/$10 .00 © 1997 I EEE 4 3

REFERENCES
1. R.J. Dawson, R.W. Newsham, and R.S. Kerridge, “Introducing New Software Engineering Graduates To The ‘Real World’ at the GPT Company,” Software

Eng. J., Vol. 7, No. 3, 1992, pp. 171-176.
2. L.M. Leventhal and B.T. Mynatt, “Components of Typical Undergraduate Software Engineering Courses: Results from a Survey,” IEEE Trans. Software Eng.,

Vol. 13, No. 11, 1987, pp. 1193-1198.
3. C. Alder, “Software Engineering in an Electronic Engineering Degree,” Software Eng. J., Vol. 4, No. 4, 1989, pp.191-199.
4. R.J. Dawson and R.W. Newsham, The Responsible Software Engineer, C. Mayers, T. Hall, and D. Pitt, eds., Springer-Verlag, London, 1996, pp. 320-331.
5. J.J. Horning and D.B. Wortman, “Software Hut: a Computer Program Engineering Project in the Form of a Game,” IEEE Trans. Software Eng., Vol. 3, No. 4,

1977, pp. 325-330.
6. B.M. Roper, “Training First Year Undergraduates to Produce Quality Software,” University Computing, Vol.10, 1988, pp. 9-12.
7. D.B. Wortman, “Software Projects in an Academic Environment,” IEEE Trans. Software Eng., Vol. 13, No. 11, 1987, pp. 1176-1181.
8. M. Jarke and K. Pohl, “Requirements Engineering in 2001: (Virtually) Managing a Changing Reality,” Software Eng. J., Vol. 9, No. 6, 1994, pp. 257-266.
9. F. Milsom, The Responsible Software Engineer, C. Mayers, T. Hall, and D. Pitt, eds., Springer-Verlag, London, 1996, pp. 306-319.

10. N. Chapman et al., “‘Slick Systems’ and ‘Happy Hackers’: Experience with Group Projects at UCL,” Software Eng. J., Vol. 8, No. 3, 1993, pp. 132-136.
11. R.S. Pressman, Software Engineering—A Practitioner’s Approach, European ed., McGraw-Hill, New York, 1994.
12. M. Van Genuchten, “Why is Software Late? An Empirical Study of Reasons for Delay in Software Development,” IEEE Trans. Software Eng., Vol. 17, No. 6,

1991, pp. 582-590.

Address questions about this article to Dawson at Dept. of Computer Studies,
Loughborough University, Loughborough, Leicestershire, UK;
R.J.Dawson@Lboro.ac.UK; or to Newsham at School of Mathematics and
Computing, University of Derby, Kedleston Road, Derby, UK;
R.W.Newsham@Derby.ac.UK.

Ray Dawson is a lecturer in computer studies at
Loughborough University. His interests include software
development practices, software quality and cost, software
estimation and planning, systems analysis, databases, and
object-oriented methods. His first industrial position was
with Plessey Telecommunications (which later became
GPT) developing software for digital telephone exchanges.
In 1983, he became a software lecturer with Plessey before
moving to Loughborough University in 1987.

Dawson received a BSc in mathematics with
engineering and an MPhil from the University of

Nottingham. He is a member of the British Computer Society, through which he
received Chartered Engineer status.

Ron Newsham is a senior lecturer in software engineer-
ing at the University of Derby. He is researching the
maintenance problems of software design notations. He
was a lecturer in the GPT Beeston Software Training
Department between 1988 and 1995, becoming the soft-
ware training manager in 1995. Prior to that he was a
software tools specialist supporting development on
System-X telephone exchange software.

Newsham received a BSc in music and electronics
from Keele University and an MSc in Software
Engineering from Nottingham Trent University. He is a

member of the British Computer Society, through which he received Chartered
Engineer status.

Software As Capital
An Economic Perspective on
Software Engineering
by Howard Baetjer

The concept that designing
capital goods is a social learning
process leads to interesting
conclusions about software
process models and methodolo-
gies. The book examines the
main failing of the software
industry when compared to

other industries: the absence of an extensive division of
labor for software components. It sets out the reasons
for the problem, an outline for the solution, and the
benefits that will result from its solution.

208 pages. 6" x 9" Hardcover. November 1997.
Catalog # BP07779 — $20.00 Members / $25.00 List

ONLINE BOOKSTORE:

http://computer.org

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 22, 2009 at 09:43 from IEEE Xplore. Restrictions apply.

