

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288387431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Temporal analysis of a
micro kernel
by Walter Hussa k

Temporal logic techniques have been
proposed as a way of achieving a very natural
transition from informal requirements to a
formal specification of the requirements. The
paper presents a case study of a real-life
system developed using such techniques.
Both a top-level specification and
implementation semantics are given in
temporal logic. In particular, the progression
from statements in English to temporal logic
is highlighted. A correctness proof that the
implemented system satisfies the
specification has been produced.

1 Introduction

In the formal development of any system, an important
issue is the clarity of the formalisms used. Ultimately,
formal methods can only give assurance of the correct
functioning of the system. At the transition from informal
to top-level formal specification stage of development,
comprehension of the formalisms used increases assur-
ance that the customers’ requirements have been properiy
represented. Thus, the clarity of the formalisms contribute
directly to this assurance of the system. A discussion of
this aspect of assurance has been described elsewhere 111.

Formal developments of concurrent systems have to
address additional problems. For example, what consti-
tutes a high-level requirements specification on the concur-
rent system? The best known approaches are the process
algebras such as CCS [2] and the rr-calculus [3], along with
tools such as the Concurrency Workbench [4] which
support the verification methods offered by these
approaches.

In this paper, we report on the formal development of a
real-life concurrent system using temporal logic. The diffi.
culty of producing the formal high-level requirements
amounts to analysing existing informal requirements
witten in English. The advantage of using temporal logic
is that it addresses concurrency as well as providing an
easy transition from informal to formal requirements. A
good illustration of this is the specification of a lift system
151, where it is shown how an informal specification can
translate very naturally into temporal logic. In this paper, a
real-life system is developed in a similar manner [SI. Fur-

thermore, two levels of development are given, for which a
proof has been produced. The stages of development are
as follows.

Specification
1. Give informal high-level requirements in English.
2. Perform a temporal analysis of the informal require-
ments.
3. Produce a temporal specification U of the requirements.

lrnplernentation
1. Implement the system.
2. Perform a temporal analysis of the implemented
system.
3. Produce a temporal I semantics of the implemented
system.

Verification
1. Prove the formula i =. U valid.

The specified system is a microkernel used on the Esprit II
European Declarative System (EDS) Project. The oper-
ating system for the EDS [6] was to be UNIX-like with a
multikvel process model. As part of the early experimen-
tation with this type of model, a lightweight microkernel
was layered on top of standard UNIX processes. This
microkernel enabled lightweight microprocesses to be
scheduled, thus providing fine-grained non-deterministic
multi-programming. The microkernel is documented infor-
mally elsewhere [7].* The formal specification of the micro-
kemel contained in this paper is a derivative of the original
version [8] and gives full semantics for the temporal logic
used. A correctness proof for the version in this paper is
documented elsewhere 191.

In the next Section, a firstader temporal logic with a
slightly unusual semantics is defined. It is used to specify
the microkernel. We describe a top-level formal specifi-
cation of the microkernel by analysing the informal
requirements given previously [7]. This is followed by the
temporal semantics of the implementation produced by a
temporal analysis of the implemented system as described
previously [7].

The parts of that work 171 that relate to the formal specification
here are reproduced in this paper.

Software Engineering Journal January 1995 21

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

2 Temporal language

The system is specified in a first.order temporal logic
where predicates as well as propositions have time
dependent meaning. This differs from possibly the more
common usage where predicates have time-independent
meanings. The latter are termed ‘rigid predicates and the
former ‘flexible’ predicates [lo], and so the language below
is denoted FLTL Flexible predicates are useful for
specifying resources shared by several processes, as seen
in examples elsewhere [I 1, 121. The domain of the predi.
cates is understood to be the non-negative integers N.
These represent processes in the microkernel specifi-
cation, and the predicates are statements about the pro-
cesses. The full syntax and semantics of FLTL are given
below.

2.1 Syntax

symbols
The language FLTL has the following symbols:

0 a set of proposition symbols Pro
0 a set of predicate symbols Pre
0 the equality symbol =
0 global variable symbols m, n, . . .
0 connectives 1, A , and V
0 temporal operators 0, U, 0 and 9
0 quantifiers V and 3

Formation rules
The formulae of FLTL are as follows :

0 a proposition symbol Pis a formula
0 if p is a predicates symbol and n is a variable symbol,
then p(n) is a formula
0 if m and n are variables, then m = n is a formula
0 if 4, and d 2 are formulae, then so are 14,, 4, A $ 2

0 if 4, and 42 are formulae, then so are 04,, 04,,

0 if n is a variable and 4 is a formula, then V n . 4 and
3n . are formulae

and 41 v 4 2

04, and 41e42

2.2 Semantics

Time is assumed to be linear and discrete. Thus, a model
A is a pair (a, I) , where

0 a is an assignment to variables, i.e. a function from the
set of variables to the non-negative integers.
0 the interpretation / gives a meaning to proposition and
predicate symbols at each state, so I = (lp,o, lPJ , where

/p,o: Pro x N -+ {true, false),

/p,e: Pre x N + (N -+ {true, false})

The semantics is given by a satisfaction relation C between
modeVcurrent state pairs and formulae

.X,,~dJ

If a,, . . . , a, are integers and n,, . . . , n, are variables, then

.X.(n, t a,, ..., nk t a,)

22

denotes the model obtained from A by modifying its
assignment function a to map the variables n,, . . . , n, to
a,, . . . , a,, respedvely.

A’,,kP 0 l P , , (P , so)

A s o k ~ (4 * L(P, so)(n)
AsoCnl = n2*a(n1) = a(n2)

As,C 14 9 As&$ is false

A30~41 A 4 2 -=-ASOW, and Aso%

A,,k4, v42 9 J 4 s 0 k 4 1 or -K,,142

AM,,CVn.4 *A.(nta) , ,C4,foral laEN

Ak,,C3n.q5 o A . (n e a) , o k 4 , f o r s o m e a ~ N

Ak,,kO4 9 A S 0 + 1 k 4

ASO~U4

AE’,,C 0 4
A30k41%42 o f o r some i e N, Asu+ik42 and

-A3u+ik4 , for all i E N

eAso+iC4 , for some i E N

A S O + j % (0 < j < i)
Despite the unpleasant appearance of the semantics, it is
shown below that the specifications can be easily under-
stood by reading 0 as ‘next point in time’, 0 as ‘always’,
0 as ‘sometimes’ and % as ‘until’.

3 Specification of requirements

Informally, the system has the following components; pro-
cesses and a scheduler.

The system involves processes being serviced by the
processor and switched by the scheduler on expiry of their
alloted time slice. This is caused by a timer signal.
However, a problem arises

‘. . . when the timer causes a signal to occur whilst a
process is in kernel mode. The switcher (scheduler)
must not schedule another process since to do so might
lead to the corruption of kernel data structures, but on
the other hand to giue the currently executing process
another time slice would be unfair to other processes
which are ready to run. lndeed if this solution was
adopted then a process could continue indefinitely by
always being in kernel when the timer signal is
received. A compromise solution is to allow a process to
continue aper its time slice ends if it is in kernel mode
when this happens, but to force a context switch when
kernel mode is left.. . ’ [7].

In order to provide a formal specification of this, it is neces-
sary to define a system state formally.

3.1 Aspects of system state

The full overall system state of the implemented system is
described later. The aspects of this state that appear in the
high-level specification are discussed here. They corre-
spond to predicates which are either true or false at a

Software Engineering Journal January 1995

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

given point in time:

0 p (n) : process n is active
0 k(n): process n is active and in kernel mode
0 starf(n): process n performing start of kemel work
0 end(n): process n on the point of completing kernel
work
0 sg : a timer signal is occurring
0 sw : a new process will be scheduled at the next instant

The required system is a set of sequences of states rep
resented by a formula in FLTL whose set of models yield
this set of sequences precisely.

3.2 Temporal specification of requirements

The following are the constraints on how the processes
may be scheduled. From the informal requirements, a
process is to continue after its time slice ends if it is in
kernel mode, but is to force a context switch when kernel
mode is lek From this, it is clear that two situations are
allowed to occur.

1. The process is switched at the end of its time slice as it
is not in kernel mode.
2. The process is in kernel mode when its time slice
expires, and so it continues in an active state until it has
completed that block of kernel work and, at the end of
that, a process switch occurs.

This behaviour is expressed formally by describing what
may happen between consecutive process switches. In
other words, if a switch occurs at some point in time, what
can happen up to the next process switch? The appropri-
ate condition for the switching constraints is thus of the
form

def
U = O(SW * u1 v U *)

where u1 and u2 correspond to the two situations given
above.

def
u1 = I n . O((1swA i .sgAp(n))%

(sg A sw A p(n) A (1 k(n) V end))))

is the normal situation where, after a process switch, there
is no process switch, no timer signal and the process is
active until a timer signal does occur, at which point there
is a process switch as the active process was either not in
kernel or at the point of exit from kernel mode.

dcf
u2 = 3n. o(

(1 sw A i sg A p(n))W
(sgA l s w A k (n) A l e n d (n)) A O (

(i sg A 7 sw A 1 start(n))W

(sw A end(n))))))
is when, after a process switch, there is a period of no
switching and no timer signal until a timer signal occurs
when the active process is in kernel mode. Thus, it con-
tinues, without being interrupted by either a timer signal or
process switch and without starting new kernel work, up to

Software Engineering Journal January 1995

the point at which it completes its portion of kernel work
and finally a process switch occurs. Notice how closely the
verbal description follows the temporal logic.

4 Implementation semantics

4.1 System state

The implemented system has as its parallel components
an arbitrary number of processes and a scheduler.

The execution of the overall system takes place in dis-
crete steps. Each discrete step is associated with an overall
system state or program state [13]. A program state I131
comprises

1. the values of variables accessed by the components.
2. the label of the next instruction to be executed in each
individual component.
3. the next component to be scheduled.

Condition 1 is a statement about the values of variables.
Conditions 2 and 3 are statements relating to the sched-
uling of components. Here, the system (program) state is
given by 21 propositions or predicates as follows:

1. (Boolean) variables:
c : the critical flag is set to true
sy : the switch-on-exit flag is set to true
(a) Label of instruction being executed by a process n,

one of:
label I(n), label2(n), label3(n), label4(n),
label5(n), label6(n), label7(n), label8(n)

p(n): process n is active
k(n): process n is in kernel mode
start(n): process n is performing start of kernel
work
end(n): process n on the point of completing
kernel work
setc: the critical flag is being set
psetsu: the switch-on-exit flag is being set by a
process
psw: a process switch is being initiated by a
process

Scheduling :
sw : a process switch is being initiated
ssw: a process switch is being initiated by the sched-
uler
se&: the switch-on-exit flag is being set by the
scheduler
sg: a timer signal is occurring

(b) Properties of instruction being executed:

Remarks
(i) The required scheduling is implemented by the use of
two flags, critical and switch-on-exit, which are set at
various times, and on the basis of which a process switch
is initiated either by a process or the scheduler com-
ponent.
(U) The system state is seen to last for the whole duration
of the current time, rather than be some entry or exit con-
dition [13]. For example, if sw is true, a process switch is
being initiated, although the old process remains active

23

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

throughout this point in time. A new process will be active
throughout the next point in time. As another example,
the setting of a flag, such as described by setc, lasts for
the duration of current time and is deemed to coincide
with c obtaining and having this new value throughout this
current time (and so, in this last respect, it differs from the
process switching situation).
(iii) As is seen below, the test of the condition in an if state-
ment executed by a process takes an instant in time.

The semantics of the system are the sequences of system
states that are allowed to occur. These will be expressed as
solutions to FLTL formulae. The allowable sequences of
states are affected by the constraints of the process com-
ponents and the constraints of the scheduler component.

The constraints of the process components are given
below, by analysing the previous C code [7]. The scheduler
constraints are given by analysing the description of the
low-level scheduler used previously [7].

4.2 Process component constraints
4.2.1 lnterleaoing of labelled statements: each process
is modelled as executing infinitely, occasionally in kernel
mode. and sometimes executing an exit protocol on com-
pletion of kernel mode. Precisely, each process n repeat.
edly executes the 'cycle' of labelled statements given below
...
label8(n): (some non-kernel mode instruction);
labell(n): -critical = TRUE:
label2(n): (some kernel mode instruction);
...
label2(n): (some kernel mode instruction):
label3(n): -critical = FALSE;
label4(n): if (switch-on-&) {
label5(n): -critical = TRUE;
labelan): -switch-on-exit = FALSE;
label7(n): -do-switch()} ;
labeld(n): (some non-kemel mode instruction);
...

where the C code on the right-hand side of the labels is
taken from the earlier work [71. The function -do-switch is
a routine which performs a process switch and resets the
-critical flag.

The behaviour of all the processes together is an inter-
leaving of the labelled statements executed by the individ-
ual processes. To avoid excessive use of brackets, the
following notation is used:t

period 4I point ... period 42 i - point 42,
... period &,,, - point 42n

def - -

41W4z A O(.. . (4 2 , - 1 * 0 (4 z ; A O(.. . 4 z m - I
WdZm)) .. .))

2 m - I brackeln

t The intention in this paper is to keep the basic connectives as
simple as possible and to introduce suitable 'higher level' ones to
aid readability. More brwity was achieved previousiy [SI. by use of
the 'chop' operator and a hed-point constructor, at the expense
of readability. A compositional (141 specification was also given.

It indicates several steps taking place over a period of time
alternated with a step at a single point in time. The inter.
leaving of the processes is given by the following four for-
mulae:

dsf
I , = 0 Vn. (labell(n)

3 ((

period (1 p(n))
point (labelI(n))
period (label2(n) V i p (n))
point (label3(n))
period (1 p(n))
point (=A label4(n))
period (l p (n))
point (label5(n))
period (i p (n))
point (labelqn))
period (l p (n))
point (label7(n))
period ((~ (f i) A 1 k(n)) V i p(nN
point (labelI(n)))
V (
period (l p (n))
point (labell(n))
period (label2(n) V 1 p(n))
point (label3(n))
period (1 p(n))
point (1 s x A label4(n))
period (W n) A 1 k(n)) V l p (n))
point (labell(n)))))

i 2 Er Vn . (l p (n) v (p(n) A 1 k(n)))Q(labelI(n))

i 3 = 3n 3 i . labeli(n)

i4 = 0 Vn Vm V i V j . ((1 m = n) V (1 i = j))

def

dsf

* l(labeli(m) A labelj(n))$

The effect of these four expressions is to say that the
behaviour of all the processes together is an interleaving of
the 'cycles' of labelled statements executed by the individ-
ual processes. The last two expressions state that exactly
one labelled statement is being executed at a given time.
In the first expression, the large disjunction results from
the testing of the switch-on-exit flag and the execution of
additional code if the value is true.

4.2.2 Properties of labelled statements: the interpreta-
tion of the labelled statements in terms of p(n), k(n),
start(n), end(n), psw, setc, psetwc, c and sx based on the
C code given above is as follows:

labell(n)o p(n) A k(n) A start(n) A i end (n)

label2(n) 9 p(n) A k(n) A istart(n) A i end(n)

label3(n)op(n) A k(n) A istart(n) A end(n)

A 1pswAsetcAcA ipsetwc

A 7 psw A 1 setc A 1 psetsx

A 1pswAsetcA i c A ipsetsx

5 Quantifying over i in labeli is a slight abuse of notation used to
shorten the expression. The meaning should be clear.

Software Engineering Journal January 1995 24

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

label4(n)op(n) A 1 k(n) A lstart(n) A 1 end(n)

labe15(n)op(n)A k(n)A istart(n) A l end (n)

labelqn)op(n)A k(n)A i s ta r t (n)A l end (n)

labe17(n)op(n)A k(n)A istart(n)A end(n)

label8(n)op(n)A l k (n) A istart(n)A l end(n)

A i p s w A isetcA lpsetsx

A 1pswAsetcAcA lpsetsx

A 1pswA 1setcApsetsxA 1s

ApswAsetcA 1 c A lpsetsx

A i p s w A 1setcA lpsetsx

and

p(n) V k(n) V start(n) V end(n) * 3i.labeli(n)

The conjunction of these nine conditions is denoted by is.

4.2.3 Propettks of flag uariables: if the critical and
switch-on-exit flags are not set, conditions have to be
given to indicate that they do not change

is 2‘ 0 ((CA 0 1 c) V (1 cA Oc) =. Osetc)

I , ~ ~ O ((S) (A O ~ S) () V (~ S Y A O S T) * O ~ ~ ~ ~ ~)

The switch-on-ewit flag may be set either by a process or
the scheduler (see below)

dcf
i g = O(setsxopsetsxVssetsx)

Initially, both flags are false
dcf

l g = 1 c A IS)(

4.3 Scheduler component constraints

4.3.1 Basic process switching constraints: first, the
basic property of process switching is given. A process
remains active if no switch occurs

dcf
i l 0 = OVn. (l swAp(n) -Op(n))

If a switch occurs, there is a change in process at the next
instant in time

del
i l l = 0 Vn . (swAp(n) 0 l p (n))

A switch may be initiated by a process or by the scheduler

dcf
112 = o(swopswvssw)

4.3.2 Low-lewl scheduler constraints: the low-level
scheduler used has the following properties [7]:

‘A scheduler initiated action can only occur at a point at
which a timer signal is occurring‘

dcf
t 1 3 = osswvssetcvs5e~=.sg

‘At the instant of a process switch the timer is set up for
the next time slice’

I 14 zf O(sw =. O((1 sg A 1 sw)%!(sg V sw)))

This last requirement states that a switch is followed by a
period of no switching and no timer signal until a timer
signal or another switch occurs.

Software Engineering Journal January 1995

‘ I f there is a timer signal but no process switch, then the
timer signal will not be reset, and hence will not go off
until after the next process switch occurs’

i I 5 z f O((sgA 1 s w) - O((1sgA l swW(swA l sg)))

When the timer signal occurs the scheduler tests the
critical flag. I f it is false then a scheduler initiated
process switch occurs and the switch-on-exit flag is
cleared. Otherwise, i f the critical flag is true, no timer
initiated switch occurs and the switckon-exit flag is set
to true’

dcf
l I 6 = Osg*((lc*(sswAwtsvA 1%))

A (c =. (1sswA ssetsxA a)))

lmplicit in the English statement of the last property is that
the only time that a scheduler initiated process switch
occurs is when the timer signal occurs and the critical flag
is false. The following condition is needed for verification:*

dcf
117 = O(sW*(%A 1 C))

4.4 Overall semantics

The overall temporal behaviour I of the implementation
can now be given

dcf I = A l j
j = 1

5 Conclusions and future work

This case study has demonstrated the use of temporal
logic, with a real-life system, to produce a formal specifi-
cation of the requirements and implementation for the
purpose of verifying the system. The route from informal
description to formal specification has followed a very
natural path. As such it proved to be a low-cost activity in
the development of the system.

A formal proof obligation for the correctness of the
system is construaed vely easily. To prove the micro-
kemel correct, it is necessary to show that the implementa-
tion satisfies the specification, which amounts to
demonstrating the validity of the FLTL formula

1-0

An extended version of this paper [9] contains a lengthy
correctness proof of this formula based on a rigorous
argumenf which details how a formal proof would
proceed. The rigorous proof was used to establish the
absence of errors in the system after the system had
undergone extensive testing to remove errors.

There are numerous reasons why a formal proof was
not envisaged. First, formal proofs are theoretically impos-
sible for the whole of FLTL. Even with finiteness assump
tions on the number of processes to reduce formulae to
propositional logic (PTL). the scale of the problem would
preclude the use of any of the PTL theorem-provers in

*The condition was only noticed later when difficulties were
encountered in verifying the system.

25

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

existence such as dp 1151. However, it is hoped that having
available a temporal development of a real4ife system will
suggest suitable proof assistants that might be produced
and used, perhaps in conjunction with the development of
improved theorem-provers, to elevate such rigorous argu-
ments to full formal proofs. At the very least, it provides an
idea of what it will take to formally develop and verify such
a real-life concurrent system.

6 Ac knowiedgments

The author would like to thank Sean Holdsworth who
designed the microkernel and the referee who made
extensive comments on a previous version of this paper.

This work was partly supported under ESPRIT II grant
EP2025, the EDS Project.

7 References

[I] BARRoCq L.M. and McDERMID, JA: 'Formal methods:
use and relevance for the development of safety-critical
systems'. Cornput. J., 1992,35, (6). pp. 579-599

[2] MILNER, R: 'Communication and concurrency, (Prentice
Hall, 1989)

[3] MILNER, R., PARROW, J.G., and WALKER, D.J.: 'A calculus
of mobile processes 11, Inf. Cornputat.. 1992, 100, pp. 1-40

[4] CLEAVELAND, R., PARROW, J., and STEFFEN, B.: 'The
Concurrency Workbench: a semantics-based tool for the
verification of concurrent systems', ACM TOPIAS, 1993,
15, (I), pp. 36-72

[5] BARRINGER. H.: 'Up and down the temporal way', Cornput.
J., 1987,30. (2), pp. 134-148

[6] ISTAVRINOS, P.: 'Spdfication of the process control lan-
guage (PCL)'. EDS Project document, EDS.DD. 1S.0007

[71 HOLDSWORTH, S.: 'A proposal for the provision of an
environment for studying distributed operating system

issues'. EDS Project document, Department of Computer
Science, University of Manchester, UK, 1989

[8] HUSSAK, W.: 'Specification of a distributed operating
system environment'. EDS Project document, Department
of Computer Science, University of Manchester, UK, 1989

[9] HUSSAK, W.: 'Correctness proof for a microkernel'. Internal
Report 884, Department of Computer Studies, Loughbo-
rough University of Technology, UK, 1994

[IO] ABADI, M: Temporal-logic theorem proving'. PhD Thesis,
Stanford University, California, STAN-CS87-1151

(1 I] BARRINGER, H., FISHER, M, GABBAY, D., GOUGH, G., and
OWENS, R: 'MerateM: a framework for programming in
temporal logic'. REX Workshop on Stepwise Refinement of
Distributed Systems (Led. Notes Cornput. Sci., 1989,430)

(121 KEANE, JA, and HUSSAK, W.: 'A formal approach to
determining parallel resource bindings'. Proc. 16th Int C o d
on Software Engineering, ICSE '94, Italy, May 1994, pp.
15-22 (IEEE Press)

[I31 KROGER, F.: Temporal logic of programs' (Springer-Verlag,
1987)

114) BARRINGER, H.: 'Using temporal logic in the compositional
specification of concurrent systems'. UMCS.8610-3, Depart-
ment of Computer Science, University of Manchester, UK,
1986

[I51 GOUGH, G.: 'Decision procedures for temporal logic'. MSc
Dissertation, Department of Computer Science, University of
Manchester. UK, 1984

C IEE: 1995

The paper was first received 3 May and in revised form 24
October 1994.

The author is with the Department of Computer Studies, Lough-
borough University of Technology, Loughborough, Leicestershire
LEI 1 3TU. UK.

26 Software Engineering Journal January 1995

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

