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Abstract

This paper deals with the inferrability of classes of E-pattern languages—also re-
ferred to as extended or erasing pattern languages—from positive data in Gold’s
model of identification in the limit. The first main part of the paper shows that
the recently presented negative result on terminal-free E-pattern languages over bi-
nary alphabets does not hold for other alphabet sizes, so that the full class of these
languages is inferrable from positive data if and only if the corresponding terminal
alphabet does not consist of exactly two distinct letters. The second main part yields
the insight that the positive result on terminal-free E-pattern languages over alpha-
bets with three or four letters cannot be extended to the class of general E-pattern
languages. With regard to larger alphabets, the extensibility remains open.

The proof methods developed for these main results do not directly discuss the
(non-)existence of appropriate learning strategies, but they deal with structural
properties of classes of E-pattern languages, and, in particular, with the problem
of finding telltales for these languages. It is shown that the inferrability of classes
of E-pattern languages is closely connected to some problems on the ambiguity
of morphisms so that the technical contributions of the paper largely consist of
combinatorial insights into morphisms in word monoids.
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1 Introduction

Within the scope of the present paper, we use a pattern—i. e. a finite string
over an infinite set X of variables and an arbitrary alphabet Σ of terminal
symbols—as a device for the definition of a formal language. If we wish to
derive a word from a pattern then we use a so-called substitution, which means
that we replace all occurrences of variables in the pattern by arbitrary strings
of terminal symbols (of course, if there are several occurrences of the same
variable in the pattern then we choose the same string of terminals for each of
these occurrences). Accordingly, the pattern language of a pattern is the set of
all words that can be generated by such substitutions. Thus, as a substitution
actually is nothing but a (“terminal-preserving”) morphism mapping a string
in (Σ∪X)∗ onto a string in Σ∗, the pattern language of a pattern α is simply
the set of all morphic images of α in Σ∗. For instance, the pattern language of
the pattern α := x1 x1 a bx2 (with X := {x1, x2, . . .} and Σ := {a, b}) consists
of all words where the prefix can be split in two occurrences of the same string,
followed by the string ab and concluded by an arbitrary suffix. Consequently,
the language of α contains, among others, the words w1 = a a a b a, w2 =
a b a b a b a b and w3 = a b b b, whereas the following examples are not covered
by α: v1 = b a, v2 = b b b b b, v3 = b a a b a. With reference to elementary
insights in formal language theory, it can be easily seen that various regular
and nonregular languages can be described by patterns in a compact and
natural way.

Basically, two kinds of definitions of pattern languages are considered in lit-
erature: the first—introduced by Angluin [1] in 1980 and leading to so-called
NE -pattern languages—disallows the substitution of variables with the empty
word, whereas the second—given by Shinohara [36] in 1982 and resulting in
extended, erasing or simply E -pattern languages—allows the empty substitu-
tion; thus, in our example, w3 belongs to the E-, but not to the NE-pattern
language of α. Remarkably, this tiny difference in the definitions strongly in-
fluences the characteristics of the resulting classes of languages. In particular,
this holds for a number of elementary decision problems such as the equiv-
alence problem, which is a complex open question for E-pattern languages,
but can be easily solved for arbitrary NE-pattern languages. Further infor-
mation on basic properties of pattern languages are provided by, e. g., Jiang
et al. [13,14], and corresponding surveys are given by Mateescu, Salomaa [23]
and Salomaa [35].

While the investigation of patterns in strings of symbols—initiated by Thue [38]
in 1906—is a classic topic in combinatorics on words (cf. Lothaire [20]), the
concept of pattern languages has originally been motivated by considerations
on the algorithmic problem of computing a pattern that is common to a given
set of words. More precisely, pattern languages initially have been a focus of
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interest of inductive inference, and therefore the early corresponding papers
have mostly studied their inferrability (or, as we occasionally prefer to call
it, learnability) in the elementary model of identification in the limit as in-
troduced by Gold [8] in 1967 (an approach which frequently is referred to as
Gold-style learning). In this model, a class of languages is said to be inferrable
from positive data if and only if a computable device (the so-called learning
strategy)—that reads growing initial segments of texts (an arbitrary stream
of words which, in the limit, fully enumerates the language)—after finitely
many steps converges for every language and for every corresponding text to
a distinct output exactly representing the given language. In other words, the
learning strategy is expected to extract a complete description of a (potentially
infinite) language from finitely many examples for this language. According
to Gold [8], this task is too challenging for many well-known classes of formal
languages: All superfinite classes of languages—i. e. those classes that contain
all finite and at least one infinite language—such as the regular, context-free
and context-sensitive languages are not inferrable from positive data. Conse-
quently, the number of rich classes of languages that are known to be learnable
is rather small.

With regard to the inferrability of classes of pattern languages, the current
state of knowledge considerably differs when comparing NE- with E-pattern
languages. The full class of NE-pattern languages was shown to be learn-
able by Angluin [1,2] in her initial papers on the subject. Subsequent to this
fundamental insight, there has been a variety of additional studies on the
NE case—e.g. by Lange, Wiehagen [16], Wiehagen, Zeugmann [39], Reischuk,
Zeugmann [31] and many more—discussing more specific topics such as the
complexity of special learning algorithms, effects of different input data, ef-
ficient strategies for subclasses, and so on. Consequently, inductive inference
of NE-pattern languages is a well explored and well understood topic (for a
survey, see Shinohara, Arikawa [37]). Contrary to this, many basic questions
on the learnability of classes of E-pattern languages are still open. In par-
ticular, most previous corresponding papers do not tackle the inferrability of
the full class of E-pattern languages, but they merely present positive results
on subclasses: Shinohara [36] proves the learnability of the class of E-pattern
languages generated by regular patterns, which are characterised by the fact
that every variable in X occurs at most once in such a pattern. This result is
extended by Mitchell [24] to the class of so-called quasi-regular E-pattern lan-
guages, that are generated by patterns α for which there exists an n ∈ N such
that every variable in X occurs either 0 or exactly n times in α. Furthermore,
Wright [40] indirectly shows the inferrability of the class of E-pattern lan-
guages generated by patterns over an arbitrary terminal alphabet Σ and any
finite setX of variables. Finally, Reidenbach [30] also gives a positive learnabil-
ity result on a nontrivial (yet minor) class of E-pattern languages. The main
achievement of [30], however, is the first major insight into the inferrability of
the full class of E-pattern languages, as it shows that the class of terminal-free
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E-pattern languages (generated by patterns that do not contain any terminal
symbol) over a binary alphabet is not inferrable from positive data, which by
definition implies the same outcome for the full class of E-pattern languages
over such an alphabet. In this context note that Mitchell [24] also provides
some results on the full class of E-pattern languages, as he proves its learn-
ability for the cases |Σ| = 1 and |Σ| = ∞; since unary and infinite alphabets
substantially facilitate inferrability (and normally are not considered overly
interesting), this result is merely of marginal significance, though.

In the present paper we continue the research on the learnability of E-pattern
languages. In Section 4 we show that the class of terminal-free E-pattern
languages is not inferrable from positive data if and only if the terminal
alphabet is binary. Thus, we prove that the result by Reidenbach [30] on
binary alphabets is unique, so that the learnability of terminal-free E-pattern
languages is discontinuous with respect to the alphabet size. In Section 5
we demonstrate that the inferrability of the full class of E-pattern languages
differs from that of terminal-free E-pattern languages: for alphabets of size
3 and 4, the said class is not inferrable from positive data. To this end, we
introduce a non-learnable subclass of general E-pattern languages, generated
by the so-called quasi-terminal-free patterns. We are unable to provide an
answer on alphabets with five or more letters.

Our proofs do not directly discuss the (non-)existence of suitable learning
strategies, but they are based on a structural argument on learnable classes of
languages given by Angluin [2]. Using this as a tool, we show in Section 3 that,
with regard to the class of terminal-free E-pattern languages, the problem of
its inferrability is equivalent to a question on the ambiguity of morphisms in
word monoids. Additionally, we provide and utilise a characterisation of the
shortest generators of terminal-free E-pattern languages which, as a side-effect,
shows that the set of these patterns equals the set of strings that are not a
fixed point of a nontrivial morphism. Consequently, our reasoning on terminal-
free E-pattern languages does not only yield insights into their learnability,
but it also leads to some statements of intrinsic interest on combinatorics
on words. Contrary to this, besides their learning theoretical implication, our
considerations on general E-pattern languages mainly show that the ambigu-
ity of terminal-preserving morphisms strongly differs from that of common
morphisms.

2 Definitions and preliminary results

In order to keep this paper largely self-contained we now introduce a num-
ber of definitions and basic properties. For standard mathematical notions
and recursion-theoretic terms not defined explicitly, we refer the reader to
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Rogers [32]; for unexplained aspects of formal language theory, Rozenberg,
Salomaa [34] may be consulted.

N0 is the set of natural numbers {0, 1, 2, . . .} and N := N0 \ {0}. The symbol
⊆ denotes the subset relation, ⊂ the proper subset relation, ⊇ the superset
relation, ⊃ the proper superset relation, and ∅ the empty set. An alphabet
A is an enumerable set of symbols. A string (over A) is a finite sequence of
symbols which are contained in A, i. e. s = a1a2 . . . an with n ∈ N0 and ai ∈ A,
1 ≤ i ≤ n. The size of a set A is denoted by |A| and the length of a string s
by |s|. For the string that results from the n-fold concatenation of a string s
we write sn. The string of length 0 is called the empty string; it is denoted by
ε. For an arbitrary alphabet A, A+ denotes the set of all non-empty strings
over A, and A∗ := A+ ∪ {ε}. Any set L ⊆ A∗ is a language (over A).

We call a string t ∈ A∗ a substring of a string s ∈ A∗ if, for some r1, r2 ∈ A∗,
s = r1t r2. In addition to this, if t is a substring of s then we say that s contains
t and, conversely, that t occurs in s. The notation |s|t stands for the number
of occurrences of the substring t in the string s. If, for some s, t1, t2 ∈ A∗,
s = t1 t2 then t1 is a prefix of s and t2 is a suffix of s. Additionally, we use
the notations s = . . . t . . . if t is a substring of s, s = t . . . if t is a prefix of s,
and s = . . . t if t is a suffix of s. In contrast to this, if we wish to omit in our
presentation some parts of a canonically given string then we henceforth use
the symbol [ . . . ], i. e., e. g., s = a1 a2 [ . . . ] a5 stands for s = a1 a2 a3 a4 a5.
For any string s that contains at least one occurrence of a symbol a we define
the following substrings: [s/a] is the prefix of s up to (but not including) the
leftmost occurrence of the letter a and [a\s] is the suffix of s beginning with
the first letter that is to the right of the leftmost occurrence of a in s. Thus, the
specified substrings satisfy s = [s/a] a [a\s]; e.g., for s := bcaab, the substring
[s/a] equals bc and [a\s] equals ab.

For any two alphabets A,B, a morphism f : A∗ −→ B∗ is a mapping that is
compatible with the concatenation, i. e., for each pair of strings s1, s2 ∈ A∗,
the morphism f satisfies f(s1s2) = f(s1)f(s2). Hence, a morphism is fully
defined as soon as it is declared for all symbols in A. Note that, for every
morphism f , f(ε) = ε. For the composition of two morphisms f, g we write
g ◦ f , i. e., for every s ∈ A∗, g ◦ f(s) = g(f(s)).

We proceed with the pattern specific terminology. Σ is a finite or infinite al-
phabet of terminal symbols (or, alternatively: letters). Henceforth, we restrict
the use of the term “alphabet” to terminal alphabets, and we use lower case
letters in typewriter font, e.g. a, b, c, as terminal symbols. For unspecified ter-
minal symbols we use upper case letters in typewriter font, such as A. A string
over Σ is called a (terminal) word. Words normally are named as u, v, or w.
Additionally, we introduce the set X := {xi | i ∈ N}, Σ ∩X = ∅, and we call
any symbol xi a variable. Thus, for every k, k′ ∈ N, xk = xk′ if and only if
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k = k′. Contrary to this, for every j ≥ 1, we use the symbol yj ∈ X as an
unspecified variable, i.e. there may exist indices k, k′ such that k 6= k′, but
yk = yk′.

A pattern (over Σ) is a non-empty string over Σ ∪X, a terminal-free pattern
is a non-empty string over X; naming patterns we use lower case letters from
the beginning of the Greek alphabet such as α, β, γ. var(α) denotes the set of
all variables occurring in a pattern α and term(α) the set of all terminals in
α. The pattern tf(α) is derived from the pattern α by removing all terminal
symbols from α; e.g., tf(x1x1ax2b) = x1x1x2. We write PatΣ for the set of all
patterns, and we use Pat instead of PatΣ if Σ is understood; moreover, Pattf

denotes the set of all terminal-free patterns.

We call patterns α, β ∈ Pat similar if and only if α = α0u1α1u2[. . .]αm−1umαm

and β = β0 u1 β1 u2 [ . . . ] βm−1 um βm with m ∈ N0, αi, βi ∈ X+ for 1 ≤ i < m,
α0, β0, αm, βm ∈ X∗ and ui ∈ Σ+ for i ≤ m; in other words, we call patterns
similar if and only if their terminal substrings coincide.

For any alphabet Σ, a morphism φ : (Σ∪X)∗ −→ (Σ∪X)∗ is called terminal-
preserving provided that, for every A ∈ Σ, φ(A) = A. A terminal-preserving
morphism σ : (Σ ∪ X)∗ −→ Σ∗ is a substitution, and an inverse substitution
σ̄ is a morphism satisfying σ̄ : Σ∗ −→ X∗. The E-pattern language LΣ(α) of
a pattern α is defined as the set of all w ∈ Σ∗ such that σ(α) = w for some
substitution σ. For any word w = σ(α) we say that σ generates w, and for
any language L = LΣ(α) we say that α generates L. If there is no need to
give emphasis to the concrete shape of Σ we denote the E-pattern language
of a pattern α simply as L(α). We use ePATΣ (or ePAT for short) as an
abbreviation for the full class of E-pattern languages and ePATtf,Σ (or ePATtf

for short) for the class of all terminal-free E-pattern languages over Σ.

We designate a pattern α as succinct (with respect to an alphabet Σ) if and
only if |α| ≤ |β| for all patterns β with LΣ(β) = LΣ(α), and we call α prolix
(with respect to an alphabet Σ) if and only if it is not succinct. The pattern
β := x1x2x1x2, for instance, generates the same language as the pattern α :=
x1x1, and therefore β is prolix; α is succinct because there does not exist any
shorter pattern than α that exactly describes its language.

We denote a word w as ambiguous (with respect to a pattern α) if and only
if there exist two substitutions σ and τ such that σ(α) = w = τ(α), but
σ(xi) 6= τ(xi) for some xi ∈ var(α). We call w unambiguous (with respect
to α) if and only if there is exactly one substitution σ with σ(α) = w. The
word w1 := aaba, for instance, is ambiguous with respect to the pattern
α := x1ax2 since it can be generated by several substitutions, such as σ and τ
with σ(x1) := a, σ(x2) := ba and τ(x1) := ε, τ(x2) := aba. Contrary to this,
the word w2 := abb is unambiguous with respect to α.
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We now proceed with the description of some crucial decision problems on
E-pattern languages: Let ePAT⋆ be any set of E-pattern languages. We say
that the inclusion problem for ePAT⋆ is decidable if and only if there ex-
ists a computable function which, given two arbitrary patterns α, β with
L(α), L(β) ∈ ePAT⋆, decides on whether or not L(α) ⊆ L(β). Correspond-
ingly, the equivalence problem for ePAT⋆ is decidable if and only if there ex-
ists another computable function which for every pair of patterns α, β with
L(α), L(β) ∈ ePAT⋆ decides on whether or not L(α) = L(β). Obviously, the
decidability of the inclusion implies the decidability of the equivalence. The
inclusion problem is known to be undecidable provided that the class of E-
pattern languages over all alphabets is considered (cf. Jiang et al. [14]). Within
the scope of the present paper, however, we solely consider classes of E-pattern
languages over some fixed alphabet. With regard to this problem, for every
finite Σ with |Σ| ≥ 2, the decidability of the inclusion problem for ePATΣ is
open, and so is the decidability of the equivalence problem for ePATΣ. Still,
we can rely on the following sufficient criterion for the inclusion of E-pattern
languages:

Theorem 1 (Jiang et al. [13]) Let Σ be an alphabet, and let α, β ∈ PatΣ.
Then LΣ(β) ⊆ LΣ(α) if there exists a terminal-preserving morphism φ : (Σ ∪
X)∗ −→ (Σ ∪X)∗ with φ(α) = β.

Note that it can be effectively tested whether there exists a morphism mapping
a string onto another (see our remarks on the membership problem given
below).

If the patterns under consideration are terminal-free then the above criterion
additionally is necessary for the inclusion of their languages, and therefore the
inclusion and the equivalence problem are decidable for ePATtf :

Theorem 2 (Filè [6], Jiang et al. [14]) Let Σ be an alphabet, |Σ| ≥ 2, and
let α, β ∈ Pattf . Then LΣ(β) ⊆ LΣ(α) if and only if there exists a morphism
φ : X∗ −→ X∗ with φ(α) = β.

In Section 5.1, we present an extension of Theorem 2 that is due to Ohlebusch,
Ukkonen [25].

This paper exclusively deals with language theoretical properties of E-pattern
languages. Both motivation and interpretation of our examination, however,
are based on learning theory, and therefore we consider it useful to provide an
adequate background. To this end, we now introduce our notions on Gold’s
learning model (cf. Gold [8]) of identification in the limit and begin with a
specification of the objects to be learned. In this regard, we restrict ourselves to
any indexable class of non-empty languages ; a class L of languages is indexable
if and only if there exists an indexed family (of non-empty recursive languages)
(Li)i∈N0

such that L = {Li | i ∈ N0}—this means that the membership is
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uniformly decidable for (Li)i∈N0
, i.e. there is a total and computable function

which, given any pair of an index i ∈ N0 and a word w ∈ Σ∗, decides on
whether or not w ∈ Li. Concerning the learner’s input, we exclusively consider
inference from positive data given as text. A text for an arbitrary language L
is any total function t : N0 −→ Σ∗ satisfying {t(n) | n ∈ N0} = L. For any
text t, any n ∈ N0 and a symbol 3 6∈ Σ, tn ∈ (Σ ∪ {3})+ is a coding of the
first n+ 1 values of t, i.e. tn := t(0) 3 t(1) 3 t(2) [ . . . ] 3 t(n). Last, the learner
and the learning goal need to be explained: Let the learner (or: the learning
strategy) S be a computable function that, for any given text t, successively
reads t0, t1, t2, etc. and returns a corresponding stream of natural numbers
S(t0), S(t1), S(t2), and so on. For a language Lj and a text t for Lj , we say
that S identifies Lj from t if and only if there exist natural numbers n0 and
j′ such that, for every n ≥ n0, S(tn) = j′ and, additionally, Lj′ = Lj . An
indexed family (Li)i∈N0

is learnable (in the limit) (or: inferrable from positive
data) if and only if there is a learning strategy S identifying each language in
(Li)i∈N0

from any corresponding text. Finally, we call an indexable class L of
languages learnable (in the limit) or inferrable from positive data if and only
if there is a learnable indexed family (Li)i∈N0

with L = {Li | i ∈ N0}.

For the sake of convenience, the specific learning model given above—that
is largely based on Angluin [2]—is just a special case of Gold’s learning
model. For insights in numerous variations of Gold’s model, see e.g. Zeug-
mann, Lange [41] and Lange [15]. In this context, we wish to note that our
results in the subsequent sections hold in several other learning models as
well, so that they are not as limited as suggested by our choice of the learning
model. This fact, that is a consequence of our proof technique (based on The-
orem 3 given below) and various insights into the relations between prominent
learning models, can be verified referring to, e. g., Jain et al. [12], Baliga et
al. [3] and Lange, Zilles [17,18].

Angluin [2] introduces some criteria that reduce the learnability of indexed
families to a particular language theoretical aspect and thereby facilitate our
approach to learnability questions. Our subsequent reasoning shall be based
on the most fundemental one, which characterises those indexed families that
are inferrable from positive data (combining Condition 1 and Theorem 1 of
the referenced paper):

Theorem 3 (Angluin [2]) Let (Li)i∈N0
be an indexed family of non-empty

recursive languages. Then (Li)i∈N0
is inferrable from positive data if and only

if there exists an effective procedure which, for every j ∈ N0, enumerates a set
Tj such that

• Tj is finite,
• Tj ⊆ Lj, and
• there does not exist a j′ ∈ N0 with Tj ⊆ Lj′ ⊂ Lj.
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If there exists a set Tj satisfying the conditions of Theorem 3 then it is called
a telltale (for Lj) (with respect to (Li)i∈N0

).

The importance of telltales—that, at first glance, do not show any connection
to the learning model—is caused by the need of avoiding overgeneralisation
in the inference process, i.e. the case that the strategy outputs an index of a
language which is a proper superset of the language to be learned and there-
fore, as the input consists of positive data only, is unable to detect its mistake.
Thus, for every language Lj in a learnable indexed family it is characteristic
that it contains a finite set of words which, in the context of the indexed family,
may be interpreted as a signal distinguishing the language from all languages
that are subsets of Lj .

With regard to classes of E-pattern languages, Theorem 3 is applicable because
ePAT is an indexable class of non-empty languages. This is evident as, first,
every E-pattern language is non-empty, second, a recursive enumeration of all
patterns can be constructed with little effort and, third, the decidability of the
membership problem for any pattern α ∈ Pat and word w ∈ Σ∗ is guaranteed
since the search space for a successful substitution of α is bounded by the
length of w and the number of different letters occurring in w. Note that the
membership problem for pattern languages is NP-complete (cf. Ehrenfeucht,
Rozenberg [5], Angluin [1], Jiang et al. [13]).

Thus, we can conclude this section with a naming for a particular type of
patterns that is introduced in [30] and that directly aims at the content of
Theorem 3: A pattern β is a passe-partout (for a pattern α and a finite set W
of words) if and only if W ⊆ L(β) and L(β) ⊂ L(α). Consequently, if there
exists such a passe-partout β then W is not a telltale for L(α) with respect to
any class of E-pattern languages containing both L(α) and L(β).

3 Preparatory technical considerations of intrinsic interest

Before we examine the learnability of classes of E-pattern languages in Gold’s
model of identification in the limit we give two characteristic criteria on the
subject: in Theorem 7 we determine the structural properties of succinct
terminal-free patterns, and Theorem 10 decribes the shape of telltales for
terminal-free E-pattern languages with respect to ePATtf . Both of these the-
orems are vital for our examination of the learnability of ePATtf,Σ in case of
|Σ| ≥ 3 (see Section 4). Furthermore, these theorems—the methodology of
which can be subsumed under the field of combinatorics on words (cf., e.g.,
Lothaire [20], Choffrut, Karhumäki [4])—show some fundamental and rather
unexpected analogies between E-pattern languages and other classic topics in
discrete mathematics.
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We begin this section with three lemmata describing basic combinatorial ob-
servations on morphisms in free monoids, that are needed at several stages of
our paper.

Lemma 4 Let α, β ∈ Pattf . Let φ, ψ : X∗ −→ X∗ be morphisms with φ(α) =
β and ψ(β) = α. Then either, for every xj ∈ var(α), ψ(φ(xj)) = xj or there
exists an xj′ ∈ var(α) such that |ψ(φ(xj′))| ≥ 2 and xj′ ∈ var(ψ(φ(xj′))).

We call any xj′ satisfying these two conditions an anchor variable (with respect
to φ and ψ).

PROOF. Let α := y1y2y3[. . .]ym; then β = φ(y1)φ(y2)φ(y3)[. . .]φ(ym). Let yk0

be the leftmost variable such that ψ(φ(yk0
)) 6= yk0

. Now assume to the contrary
there is no anchor variable in α. Then ψ(φ(yk0

)) necessarily equals ε as other-
wise ψ(β) 6= α. Hence, |ψ(φ(y1))ψ(φ(y2))ψ(φ(y3))[. . .]ψ(φ(yk0

))| = k0−1, and,
as there is no anchor variable in α, |ψ(φ(y1))ψ(φ(y2))ψ(φ(y3))[. . .]ψ(φ(yk))| ≤
k − 1 for every k > k0. Consequently, |ψ(β)| < |α| and therefore ψ(β) 6= α.
This contradiction proves the lemma. 2

From Lemma 4 we can immediately conclude the following fact:

Lemma 5 Let α, β ∈ Pattf . Let φ, ψ : X∗ −→ X∗ be morphisms with φ(α) =
β and ψ(β) = α. Then either, for every xj ∈ var(α), ψ(φ(xj)) = xj or there
exists an xj′ ∈ var(α) such that ψ(φ(xj′)) = ε.

The last of our initial lemmata discusses a property of those morphisms
which—according to Theorem 2 when using it as a criterion on the equiv-
alence of terminal-free E-pattern languages—map a succinct pattern α and a
prolix pattern β generating the same language onto each other:

Lemma 6 Let α, β ∈ Pattf , α succinct. Let φ, ψ : X∗ −→ X∗ be morphisms
with φ(α) = β and ψ(β) = α. Then, for every xj ∈ var(α), ψ(φ(xj)) = xj.

PROOF. Assume to the contrary that there exists an xj ∈ var(α) with
ψ(φ(xj)) 6= xj . Then, according to Lemma 5, there is an xj′ ∈ var(α) such
that ψ(φ(xj′)) = ε. We now regard the morphism

φ′(xj) :=







ε , j = j′ ,

xj , else ,

xj ∈ var(α), and define α′ := φ′(α). Hence, |α′| < |α| and, due to Theorem 1,
L(α′) ⊆ L(α). Moreover—since, for every xk ∈ var(φ(xj′)), ψ(xk) = ε—we can
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state ψ(φ(α′)) = α and therefore L(α′) ⊇ L(α). Since |α′| < |α|, the resulting
equality of L(α) and L(α′) contradicts the condition of α being succinct. 2

We now can give the first main result of the present section. It shows that a
pattern α is succinct if and only if there is not a particular decomposition of
α:

Theorem 7 Let Σ be an alphabet, |Σ| ≥ 2. Then a pattern α ∈ Pattf is prolix
with respect to Σ if and only if there exists a decomposition

α = β0 γ1 β1 γ2 β2 [ . . . ] βn−1 γn βn

for an n ≥ 1, arbitrary βk ∈ X∗ and γk ∈ X+, k ≤ n, such that

(i) for every k, 1 ≤ k ≤ n, |γk| ≥ 2 ,
(ii) for every k, 1 ≤ k ≤ n, and for every k′, 0 ≤ k′ ≤ n, var(γk)∩var(βk′) =

∅, and
(iii) for every k, 1 ≤ k ≤ n, there exists a yk ∈ var(γk) such that |γk|yk

= 1
and, for every k′, 1 ≤ k′ ≤ n, if yk ∈ var(γk′) then γk = γk′ .

PROOF. We first prove the if part of the theorem. Hence, let α ∈ Pattf

be a pattern such that there exists a decomposition satisfying conditions (i),
(ii), and (iii). We show that then there exist a pattern δ ∈ Pattf and two
morphisms φ and ψ with |δ| < |α|, φ(δ) = α, and ψ(α) = δ. Thus, we use
Theorem 2 as a criterion for the equivalence of E-pattern languages.

We define

δ := β0 y1 β1 y2 β2 [ . . . ] βn−1 yn βn ,

where yk is derived from condition (iii) for every k ≤ n. Then |δ| < |α| because
of condition (i). As a first morphism we define

φ(xj) :=







γk , xj = yk for a k, 1 ≤ k ≤ n,

xj , else ,

xj ∈ var(δ). Because of conditions (ii) and (iii), φ really is a morphism; obvi-
ously, φ(δ) = α. The second morphism reads

ψ(xj) :=







ε , xj ∈ var(γk) for a k, 1 ≤ k ≤ n, and xj 6= yk,

xj , else ,

xj ∈ var(α). Consequently, ψ(α) = δ and therefore L(α) = L(δ). Since δ is
shorter than α, α is prolix.
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For the only if part assume that α ∈ Pattf is prolix. We show that this assump-
tion implies the existence of a decomposition of α satisfying conditions (i), (ii),
and (iii): If α is prolix then there exist morphisms φ, ψ : X∗ −→ X∗ and a
succinct pattern δ ∈ Pattf such that |δ| < |α|, φ(δ) = α, and ψ(α) = δ. This
leads to

Claim 1. For every xj ∈ var(δ), φ(xj) 6= ε.

Proof (Claim 1): Since δ, α, φ and ψ satisfy the conditions of Lemma 6 we
may conclude that, for every xj ∈ var(δ), ψ(φ(xj)) = xj 6= ε. Consequently,
φ(xj) 6= ε. 2 (Claim 1 )

In addition, Lemma 6 also is the decisive tool for the proof of

Claim 2. For every xj ∈ var(δ) there is an xj′ ∈ var(α) such that xj′ ∈
var(φ(xj)) and |δ|xj

= |α|xj′
.

Proof (Claim 2): Assume to the contrary that there is an xj ∈ var(δ) such
that, for every xi ∈ var(α), xi 6∈ var(φ(xj)) or |α|xi

6= |δ|xj
. Consequently, for

every xi ∈ var(φ(xj)), |α|xi
> |δ|xj

since necessarily |α|xi
≥ |δ|xj

. Therefore,
for every xi ∈ var(φ(xj)), xj 6∈ var(ψ(xi)), and, thus, ψ(φ(xj)) 6= xj . This
contradicts Lemma 6. 2 (Claim 2 )

We now regard the following subsets of var(δ): X1 := {xj ∈ var(δ) | |φ(xj)| =
1} and X2 := var(δ)\X1. This partition of var(δ) leads to a particular decom-
position of δ:

δ= β̄0 ȳ1 ȳ2 [ . . . ] ȳs1
︸ ︷︷ ︸

γ̄1

β̄1 ȳs1+1 ȳs1+2 [ . . . ] ȳs2
︸ ︷︷ ︸

γ̄2

β̄2

[ . . . ]

β̄m−1 ȳsm−1+1 ȳsm−1+2 [ . . . ] ȳsm
︸ ︷︷ ︸

γ̄m

β̄m

with

• m ∈ N,
• for every i, 1 ≤ i ≤ m, |γ̄i| =: pi ≥ 1,
• for every k, 1 ≤ k ≤ m, sk :=

∑k
i=1 pi,

• for every j, 1 ≤ j ≤ sm, ȳj ∈ X2, and
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• β̄0, β̄m ∈ X∗
1 , β̄1, β̄2, . . . , β̄m−1 ∈ X+

1 .

This decomposition of δ is unique, and, with φ, it induces an appropriate
decomposition of α = φ(δ):

α=φ(β̄0)
︸ ︷︷ ︸

β0

φ(ȳ1)
︸ ︷︷ ︸

γ1

ε
︸︷︷︸

β1

φ(ȳ2)
︸ ︷︷ ︸

γ2

ε
︸︷︷︸

β2

[ . . . ] ε
︸︷︷︸

βs1−1

φ(ȳs1
)

︸ ︷︷ ︸

γs1

φ(β̄1)
︸ ︷︷ ︸

βs1

φ(ȳs1+1)
︸ ︷︷ ︸

γs1+1

ε
︸︷︷︸

βs1+1

φ(ȳs1+2)
︸ ︷︷ ︸

γs1+2

ε
︸︷︷︸

βs1+2

[ . . . ] ε
︸︷︷︸

βs2−1

φ(ȳs2
)

︸ ︷︷ ︸

γs2

φ(β̄2)
︸ ︷︷ ︸

βs2

[ . . . ]

φ(β̄m−1)
︸ ︷︷ ︸

βsm−1

φ(ȳsm−1+1)
︸ ︷︷ ︸

γsm−1+1

ε
︸︷︷︸

βsm−1+1

φ(ȳsm−1+2)
︸ ︷︷ ︸

γsm−1+2

ε
︸︷︷︸

βsm−1+2

[ . . . ] ε
︸︷︷︸

βsm−1

φ(ȳsm)
︸ ︷︷ ︸

γsm

φ(β̄m)
︸ ︷︷ ︸

βsm

.

Then, for this decomposition of α, Claim 1 and the definition of X2 ⊆ var(δ)
prove condition (i). Condition (ii) follows from Claim 2 and the statement
that, for every k ≤ m, β̄k ∈ X∗

1 . Finally, condition (iii) is satisfied because of
Claim 2 and the fact that the above decomposition is given by a morphism,
leading to γk = φ(ȳk) = φ(ȳk′) = γk′ for every k, k′ with ȳk = ȳk′. 2

Note that Theorem 7 does not imply a new decidability result on the equiva-
lence of E-pattern languages. In fact, the decidability of the equivalence prob-
lem follows from the result by Jiang et al. [14] cited in Theorem 2. Nevertheless,
the above theorem might allow for a more efficient decision procedure than
those known so far, and it is crucial for the proof of Lemma 24.

The following example illustrates the decomposition introduced in Theorem 7:

Example 8 Note that there may be different decompositions of one and the
same prolix pattern. For the subsequent prolix patterns, we nevertheless give
only one of them.

• A pattern α is prolix if it contains a variable xj with |α|xj
= 1 since, in that

case, we can always—possibly among other options— rely on the decompo-
sition satisfying β0 = β1 = ε and γ1 = α.

• The pattern x1x2x1x2 is prolix with γ1 = γ2 = x1x2 and β0 = β1 = β2 = ε.
• The patterns x1x2x2x1x2x2x2 and x1x2x1x3x4x2x4x3 are succinct because no

variable for every of its occurrences has the same “environment” (i.e. a suit-
able γ) of length greater or equal 2 so that this environment does not share
any of its variables with any potential β; thus, there is no decomposition of
these patterns satisfying the conditions of Theorem 7.

• The pattern x1x2x1x2x3x3x2x4x4x5x3x2x4x4x5 is prolix with γ1 = γ2 = x1x2,
γ3 = γ4 = x2x4x4x5, β0 = β1 = β4 = ε, β2 = x3x3, β3 = x3.
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Additional succinct terminal-free example patterns are presented in Exam-
ples 11-15 and in Section 4.2.

Although it has no immediate impact on the learnability of pattern languages,
we consider it noteworthy that Theorem 7 reveals a fundamental analogy
between terminal-free E-pattern languages and finite fixed points of nontrivial
morphisms, i. e. those strings s for which there exists a morphism φ with
φ(s) = s and φ(a) 6= a for some symbol a in s. As shown by Head [11],
the set of finite fixed points is characterised by the existence of the same
decomposition as the one identified by Theorem 7 and therefore a pattern is
prolix if and only if it is a fixed point:

Corollary 9 Let Σ be an alphabet, |Σ| ≥ 2, and let α ∈ Pattf . Then α is
prolix with respect to Σ if and only if there exists a morphism φ such that
φ(α) = α and, for some xi ∈ var(α), φ(xi) 6= xi.

For additional information on fixed points of morphisms, e. g. Hamm, Shal-
lit [9] can be consulted.

We proceed with the second main result of the present section. The following
theorem gives a criterion which allows to (effectively) decide on whether or
not a given set of words is a telltale (with respect to ePATtf) for the language
of a given succinct terminal-free pattern α:

Theorem 10 Let Σ be an alphabet, |Σ| ≥ 2, and let α ∈ Pattf be a succinct
pattern. Let Tα = {w1, w2, . . . , wn} ⊆ LΣ(α), n ≥ 1. Then Tα is a telltale for
LΣ(α) with respect to ePATtf,Σ if and only if, for every xj ∈ var(α), there exists
a w ∈ Tα such that, for every substitution σ : Pattf −→ Σ∗ with σ(α) = w,
there is an A ∈ Σ with |σ(xj)|A = 1 and |σ(α)|A = |α|xj

.

PROOF. We begin the proof with the if part of the theorem. Hence, let Tα =
{w1, w2, . . . , wn} be a set of words satisfying the above condition. Moreover,
let β ∈ Pattf be any pattern such that Tα ⊆ LΣ(β) ⊆ LΣ(α). We show that
this assumption implies LΣ(β) = LΣ(α), and therefore β is not a passe-partout
for α and Tα.

As LΣ(β) ⊆ LΣ(α), there is a morphism φ : X∗ −→ X∗ with φ(α) =
β (cf. Theorem 2). Furthermore, due to Tα ⊆ LΣ(β), there exists a set
{σ1, σ2, . . . , σn} of substitutions with σi(β) = wi, 1 ≤ i ≤ n. Note that,
for every i with 1 ≤ i ≤ n, σi ◦ φ is a substitution which, when applied to
α, leads to wi. Thus, and because of the fact that Tα satisfies the condition
of Theorem 10, for every xj ∈ var(α) there necessarily exist a j′, 1 ≤ j′ ≤ n
and an A ∈ Σ such that σj′(φ(xj)) = v1 A v2, where v1, v2 ∈ Σ \ {A}; moreover,
|σj′(α)|A = |α|xj

. Consequently, in order to generate this unique letter A, φ(xj)
must contain a unique variable, i. e., for some j′′ ∈ N, φ(xj) = γ1 xj′′ γ2 with
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γ1, γ2 ∈ X∗ and |φ(α)|xj′′
= |α|xj

. For every xk ∈ var(β) and for every j′′ with
xj ∈ var(α), we now define the morphism ψ : X∗ −→ X∗ by

ψ(xk) :=







xj , k = j′′,

ε , else .

As stated above, for every j′′, the number of occurrences of xj′′ in β equals the
number of occurrences of xj in α. Furthermore, each xj′′ solely occurs in the
respective φ(xj), and therefore the order of the variables xj′′ in β corresponds
to the order of the variables xj in α. Thus, ψ(β) = α, which implies LΣ(β) ⊇
LΣ(α) (according to Theorem 2). Together with the condition LΣ(α) ⊇ LΣ(β),
this leads to LΣ(β) = LΣ(α). Hence, there is no passe-partout β ∈ Pattf for α
and Tα.

Consequently, Tα is a telltale for LΣ(α) with respect to ePATtf,Σ, which proves
the if part of Theorem 10.

In order to prove the only if part of the theorem, we regard any finite set
W ⊆ LΣ(α) which does not have the properties noted in Theorem 10. We
show that this assumption implies that there exists a terminal-free passe-
partout for α and W , so that W is not a telltale for LΣ(α) with respect to
ePATtf,Σ.

Hence, let W := {w1, w2, . . . , wn} ⊆ LΣ(α), n ∈ N, and let the alphabet
Σ under consideration be specified by Σ := {a1, a2, . . . , am}, m ≥ 2, with
al 6= al′ for 1 ≤ l, l′ ≤ m, l 6= l′. Furthermore, for every i, 1 ≤ i ≤ n, and
for every l, 1 ≤ l ≤ m, let the inverse substitution σ̄i : Σ∗ −→ X∗ be given
by σ̄i(al) := xm(i−1)+l. Below, we shall use these inverse substitutions σ̄i for
constructing the said passe-partout.

As W does not satisfy the condition of Theorem 10 there must be a variable
x♯ ∈ var(α) such that, for every wi ∈ W , there exists a substitution σi,♯ with
σi,♯(α) = wi and, for every letter A ∈ Σ, |σi,♯(x♯)|A 6= 1 or |σi,♯(α)|A 6= |α|x♯

.
Using these substitutions σi,♯, we define for every xj ∈ var(α) a pattern βj by
βj := σ̄1(σ1,♯(xj)) σ̄2(σ2,♯(xj)) [ . . . ] σ̄n(σn,♯(xj)). We now introduce a morphism
φ : X∗ −→ X∗ by, for every xj ∈ var(α), φ(xj) := βj, and we denote β := φ(α).

In order to conclude the proof, we have to show that β indeed is a passe-partout
for α and W , i. e. W ⊆ LΣ(β) ⊂ LΣ(α). The first aspect to be proven, namely
W ⊆ LΣ(β), directly follows from the definition of β: For every wi ∈ W , we
can simply refer to the substitution σ′

i reading, for every xk ∈ var(β),

σ′
i(xk) :=







ak−m(i−1) , 1 ≤ k −m(i− 1) ≤ m,

ε , else,
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which yields σ′
i(β) = wi.

With regard to the second necessary property of β, i. e. LΣ(β) ⊂ LΣ(α), we
know—due to the construction of β which is based on the morphism φ—that
LΣ(β) ⊆ LΣ(α) (according to Theorem 2). Thus, we merely need to prove that
LΣ(α) is not a subset of LΣ(β) or, equivalently, that there is no morphism
mapping β onto α. To this end, we assume to the contrary that there is such a
morphism ψ : X∗ −→ X∗ with ψ(β) = α. Then, because of the succinctness of
α, the patterns α, β and the morphisms φ, ψ satisfy the conditions of Lemma 6,
which states that, for every xj ∈ var(α), ψ(φ(xj)) = xj . With regard to x♯ ∈
var(α), however, we know that, for every i with 1 ≤ i ≤ n and for every letter
A ∈ Σ occurring in σi,♯(x♯), |σi,♯(α)|A > |α|x♯

. Hence, for every xk ∈ var(β♯),
|β|xk

> |α|x♯
and therefore x♯ /∈ var(ψ(xk)). Consequently, ψ(φ(x♯)) 6= x♯,

which evidently contradicts Lemma 6. Thus, there is no morphism ψ with
ψ(β) = α; this implies LΣ(β) 6⊇ LΣ(α) and, referring to the existence of φ,
LΣ(β) ⊂ LΣ(α).

Consequently, β is a passe-partout for α and W , which proves the only if part
of Theorem 10. 2

Evidently, Theorem 10 allows to discuss the problem of the learnability of
the full class of terminal-free E-pattern languages in a manner that shows no
immediate connections to the algorithmic definition of learning (cf. Section 2)
anymore. It is based on the fundamental criterion by Angluin [2] (cf. Theo-
rem 3) that introduces a language theoretical (or perhaps rather topological)
analogue to the learnability of indexed families, and it replaces this view by
an equivalent problem on combinatorics on morphisms. More precisely, Theo-
rem 10 for each word in a given set examines all of its generating substitutions,
and, hence, it deals with the ambiguity of words with respect to a fixed pat-
tern (for recent insights into the existence of unambiguous words in terminal-
free pattern languages, see Freydenberger et al. [7]). Thus, surprisingly, the
(non-)learnability of ePATtf is manifestly related to the fields of equality sets
of morphisms (and, thus, even to the Post Correspondence Problem; see, e. g.,
Harju, Karhumäki [10] and Lipponen, Păun [19]) and to word equations (see,
e. g., Makanin [21]). Contrary to this, the connections between our subject and
the studies on the ambiguity of pattern languages as conducted by Mateescu,
Salomaa [22] are rather weak, since [22] asks for the existence of a bound
n ∈ N such that, for a fixed pattern α and for all words w in L(α), there
exist at most n different substitutions σ satisfying σ(α) = w, whereas we are
interested in the ambiguity of certain selected words, and we have to study
the shape of their generating substitutions rather than the number of these
substitutions.

We conclude this section with a number of examples which are mainly meant to
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illustrate Theorem 10. Additionally, we use them to provide some concrete—
and more or less obvious—insights into telltales of terminal-free E-pattern
languages. Our first example demonstrates that a singular set of words can
be a telltale, even though Theorem 10 requires that for every variable in the
pattern there exists a word in the telltale:

Example 11 Let Σ := {a, b}, α := x2
1x

2
2, w := aabb and Tα := {w}. Evi-

dently, α is succinct. Then there is exactly one substitution σ with σ(α) = w,
namely σ(x1) = a and σ(x2) = b. Thus—since |w|a = 2 = |α|x1

, |w|b = 2 =
|α|x2

and |σ(x1)|a = 1 = |σ(x2)|b—the singular set Tα is a telltale for LΣ(α)
with respect to ePATtf,Σ.

Of course, such an example is only possible if the pattern under consider-
ation does not contain more variables as there are different letters in the
corresponding alphabet. Contrary to this, Reidenbach [30] demonstrates that
a major subclass of terminal-free E-pattern languages can be learned using
telltales that contain the single word generated by the simple injective substi-
tution σ given by σ(xj) := ab

j , j ∈ N. However, if we examine the telltales of
terminal-free E-pattern languages with respect to ePATtf—as done by Theo-
rem 10—then such an approach necessarily fails for all nontrivial cases:

Example 12 Let Σ := {a, b}, and let the substitution σ : Pattf −→ Σ∗

be given by σ(xj) = ab
j, j ∈ N. Then, for every succinct pattern α with

| var(α)| ≥ 2, for every variable xj ∈ var(α) and for every letter A occur-
ring in σ(α), it is |σ(α)|A > |α|xj

. Thus, for no such pattern, the singular set
Wα := {σ(α)} is a telltale for LΣ(α) with respect to ePATtf,Σ .

Hence, the question of whether a given set of words can serve as a telltale for
a terminal-free E-pattern language essentially depends on the concrete class
of languages under consideration, and this also holds for nontrivial example
classes. In this regard, Theorem 10 of course gives the most selective criterion
as it determines the telltales with regard to the full class of terminal-free
E-pattern languages; thus the criterion at least is sufficient for all classes of
terminal-free E-pattern languages.

As pointed out above, Theorem 10 reveals that a word w is a useful element
of a telltale for the language generated by an arbitrary succinct terminal-free
pattern α if and only if, first, there is a substitution σ satisfying σ(α) = w and
assigning a unique letter A to a variable in α and, second, the ambiguity of w
(with respect to α, of course) is restricted in a particular manner. If we now
consider the reasoning in Example 12 then we can observe that it solely refers
to the fact that the injective substitution examined therein does not conform
to the former of these requirements. Contrary to this, concerning the latter
condition, [30] shows that, for a large class of patterns, the said substitution
leads to words with the desirable property of unambiguity. Therefore, in the
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subsequent example we examine what happens if we modify σ such that it
largely keeps its original structure, but nevertheless assigns a unique letter to
a variable:

Example 13 Let Σ := {a, b, c}, and let the substitutions σi : Pattf −→ Σ∗ be
given by

σi(xj) :=







c , i = j,

ab
j , else,

i, j ∈ N. Let the succinct pattern α be given by α := x2
1x

2
2x

2
3. Note that if we

restrict ourselves to a binary alphabet then—according to Reidenbach [30]—
the language of α does not have a telltale with respect to ePATtf,{a,b} (so that,
as mentioned in Section 1 and to be further discussed in Section 4, ePATtf,Σ

is not learnable for |Σ| = 2). Let

Tα := {σ1(α), σ2(α), σ3(α)}

= {ccabbabbabbbabbb, ababccabbbabbb, abababbabbcc}.

Then it can be verified with a bit of effort (or, alternatively, it can be indirectly
derived from an argument given by [30] on a set of patterns comprising α) that
σ1(α), σ2(α) and σ3(α) are unambiguous with respect to α. Thus, for every
xj ∈ var(α) there exists a w ∈ Tα (namely w = σj(α)) such that, for every
substitution σ with σ(α) = w (since w is unambiguous, there is only one such
substitution, namely σj) there exists an A ∈ Σ (evidently, it is A = c) with
|σ(xj)|A = 1 and |σ(α)|A = |α|xj

. Consequently, Tα is a telltale for LΣ(α) with
respect to ePATtf,Σ.

Thus, as soon as a third letter is available in the alphabet, we can modify the
substitution σ given by σ(xj) := ab

j , j ∈ N, so that, concerning the prominent
example pattern α = x2

1x
2
2x

2
3, the resulting substitutions σi introduced in

Example 13 generate a telltale for LΣ(α) with respect to ePATtf,Σ, |Σ| ≥ 3.
As explained above, the unambiguity of the σi(α) contributes significantly to
this desirable result.

With regard to other terminal-free patterns α, however, the words σi(α), i ∈ N,
are ambiguous, and among the languages generated by these patterns we can
even find examples for which the substitutions under consideration do not lead
to a telltale:

Example 14 Let the substitutions σi be given in accordance with Example 13,
and let

α := x1x2x1x2x3x4x3x5x4x6x7x8x1x8x7x9x10x11x5x11x5

x12x6x13x12x6x13x14x9x14x9x15x10x15x10 .
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By Theorem 7, it can be straightforward verified that α is succinct. We now can
demonstrate that Wα := {σj(α) | xj ∈ var(α)} is not a telltale for LΣ(α) by in-
troducing a substitution τ3 by τ3(x1) := abab

2, τ3(x2) := τ3(x3) := τ3(x5) := ε,
τ3(x4) := cab

4, τ3(x6) := bab
3, τ3(x7) := ba, τ3(x8) := b

6
ab

7
ab

8, τ3(x9) := b,
τ3(x10) := b

9, τ3(x11) := ab
11
ab

5, τ3(x12) := ab
11, τ3(x13) := b

3
ab

13, τ3(x14) :=
ab

14
ab

8, τ3(x15) := ab
15
ab. Then τ3(α) = σ3(α), but τ3 maps x3 onto the empty

word, so that it does not contain any unique letter A (as referred to in Theo-
rem 10). Since, for every i satisfying i 6= 3, the substitution σi does not assign
such a letter to x3, either, Wα indeed is not a telltale for LΣ(α) with respect
to ePATtf,Σ, |Σ| ≥ 3. Thus, the substitutions σi introduced above do not lead
to a telltale in general.

Consequently, if we wish to examine the learnability of ePATtf for some alpha-
bet by Theorem 10 then we need to find more appropriate and probably more
sophisticated candidates than the substitutions σi given in Example 13—or
we have to disprove their existence.

Still—apart from this overall learning theoretical goal to be tackled in Section 4
which naturally focuses on well-chosen types of substitutions—Theorem 10
can be used to examine arbitrary sets of words on the telltale property (with
respect to any fixed terminal-free E-pattern language). Thus, it can reveal that
telltales do not necessarily need to follow the rigid principles implemented by
the substitutions given in Examples 11-14:

Example 15 Let finally Σ := {a, b} again. Let α := x3
1x

2
2x

4
3. It can be eas-

ily verified that α is succinct. Then Tα := {(ab)3
b

4, (ab)2, a5
b

4} is a telltale
(though by no means an optimal, i. e. shortest, one) for LΣ(α) with respect to
ePATtf,Σ: For every substitution σ1 generating the first word (ab)3

b
4, σ1(x1)

contains the letter a with |σ1(x1)|a = 1 and |σ1(α)|a = 3 = |α|x1
. The sec-

ond word (ab)2 can only be generated by the substitution σ2 with σ2(x2) = ab,
σ2(x1) = σ2(x3) = ε, and therefore both a and b can serve as the unique letter
with respect to x2. The third word a

5
b

4 again is unambiguous with respect to
α, and its only generating substitution maps x3 onto the unique letter b.

By Theorem 7 and Theorem 10 we have two powerful combinatorial tools for
dealing with terminal-free E-pattern languages over alphabets with at least
two distinct letters. In the subsequent section we shall apply them to the
problem of the learnability of ePATtf,Σ for |Σ| ≥ 3.

4 Inductive inference of terminal-free E-pattern languages

As mentioned in the context of Example 13, it is shown by Reidenbach [30]
that, for the pattern α := x2

1x
2
2x

2
3 and for every finite W ⊆ LΣ(α), there exists
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a terminal-free passe-partout if a binary terminal alphabet Σ is considered.
Thus, the class of terminal-free E-pattern languages over such an alphabet is
not learnable:

Theorem 16 (Reidenbach [30]) Let Σ be an alphabet, |Σ| = 2. Then ePATtf,Σ

is not inferrable from positive data.

As an immediate consequence thereof it can be concluded that the full class
of E-pattern languages is not learnable, either, in that case.

Intuitively, Theorem 16 demonstrates that the expressive power of substi-
tutions (which are ordinary morphisms as long as we restrict ourselves to
terminal-free patterns) mapping a pattern onto a word over a binary alphabet
is not sufficient for generating morphic images that allow to draw unequivocal
conclusions about their common preimage. Hence, very roughly speaking, if
|Σ| ≥ 2 then we cannot “encode” the structure of a terminal-free pattern α
into a finite sublanguage of LΣ(α). Consequently, basic insights in the theory
of codes, which say that a code over a binary alphabet is as powerful as a code
over any larger alphabet, suggest that the negative result on binary alphabets
might be extendable to all finite non-unary alphabets.

Contrary to these considerations, however, a closer look at the characterisation
of telltales for terminal-free E-pattern languages as presented in Theorem 10
and, in particular, as applied in Example 13 demonstrates that there are E-
pattern languages over a binary alphabet Σ for which there exists no telltale
(with respect to ePATtf,Σ), but, for the language over a ternary alphabet gen-
erated by the same pattern, there is a telltale. Our main result of the present
section shows that, surprisingly, we can find such telltales for all terminal-free
E-pattern languages over at least three distinct letters:

Theorem 17 Let Σ be a finite alphabet, |Σ| ≥ 3. Then ePATtf,Σ is inferrable
from positive data.

The proof for Theorem 17 is given in Section 4.1.

By Theorem 17, we have answered the question of the learnability of ePATtf,Σ

for all alphabet sizes:

Corollary 18 Let Σ be an alphabet. Then ePATtf,Σ is inferrable from positive
data if and only if |Σ| 6= 2.

PROOF. With regard to |Σ| = 1 and |Σ| = ∞, the proof is given by
Mitchell [24]. For |Σ| = 2, see Theorem 16 and else Theorem 17. 2
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Consequently, Corollary 18 demonstrates that the learnability of terminal-
free E-pattern languages is discontinuous subject to the size of the terminal
alphabet, which—referring to Theorem 3—necessarily implies that some fun-
damental intrinsic properties of ePATtf,Σ change under the alphabet extension
from |Σ| = 2 to |Σ| = 3. Nevertheless, we do not think that the correspond-
ing phenomena are perfectly understood so far. In particular, it is noteworthy
that the varying learnability results for ePATtf,Σ contrast with the continuous
behaviour of the equivalence of terminal-free E-pattern languages over the
alphabet sizes under consideration: as indirectly shown by Theorem 2, two
terminal-free patterns generate the same language over a binary alphabet if
and only if they generate the same language over any alphabet with more than
two letters.

Hence, in spite of the proof for Theorem 17 to be given in the subsequent
section, we still consider Corollary 18 to be rather counter-intuitive. This is
mainly caused by the observation that, on the one hand, our results essen-
tially depend on the (non-)existence of morphisms sufficiently reflecting the
structure of a pattern (see Theorem 10) and, on the other hand, that the
stated properties do not at all match with the most elementary insights in
coding theory. Therefore we expect that a deeper understanding of Corol-
lary 18 requires a further analysis of the special characteristics of morphisms
in “combinatorial” contexts (as provided by pattern languages).

4.1 Proof of Theorem 17

We begin our proof for Theorem 17 with the definition of the substitutions
which, when applied to any succinct pattern α, lead to a telltale for LΣ(α)
with respect to ePATtf,Σ; to this end we have to assume Σ ⊇ {a, b, c}.

Definition 19 Let Σ be an alphabet, {a, b, c} ⊆ Σ. Then, for every i, j ∈ N,
the substitution σtf-tt,i : Pattf −→ Σ∗ is given by

σtf-tt,i(xj) :=







ab
3j−2

a c ab
3j−1

a ab
3j
a , i = j,

ab
3j−2

a ab
3j−1

a ab
3j
a , else.

It can be immediately seen that, for every j with xj ∈ var(α), the morphism
σtf-tt,j maps the variable xj onto a word containing the unique letter A = c

referred to in Theorem 10. Hence, we merely have to show that every substi-
tution τ with τ(α) = σtf-tt,j(α) also has this property, i. e. τ(xj) = . . . c . . . .
Then Theorem 17 follows directly from Theorem 10 and Theorem 3. Unfortu-
nately, however, the proof of the said property of the morphisms τ is rather
cumbersome.
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For our proof of the suchlike “restricted” ambiguity of the σtf-tt,i(α) (and, as
to be shown in Section 4.2, also for the telltale property of these words), it
is essential that σtf-tt,i maps each variable onto a word that consists of three
segments ab

m
a, m ∈ N. Since each of these segments in σtf-tt,i(α) solely is

generated by the occurrences of some particular xj in α, we can unequivocally
call each word ab

3j−p
a, p ∈ {0, 1, 2}, a segment of σtf-tt,i(xj). In order to ad-

dress the segments more precisely we henceforth additionally use the following
terms: For any variable xj ∈ X, we call ab3j−2

a the left segment, ab3j−1
a the

inner segment and ab
3j
a the right segment of σtf-tt,i(xj). Furthermore, we ex-

tend this terminology to segments of σtf-tt,i(γ) for any (sub-)pattern γ ∈ Pattf :
A word w ∈ {a, b, c}+ is said to be a segment of σtf-tt,i(γ) if and only if there
exists a variable xj ∈ var(γ) such that w is a segment of σtf-tt,i(xj).

In fact, our subsequent Lemmata 20-24 are very similar to analogous lemmata
given by Freydenberger et al. [7] on a different substitution σsu

β which also
maps every variable onto a word that consists of three distinct segments, and
a major part of both lines of reasoning is even verbatim the same. For the
sake of a self-contained presentation and since it requires some effort to adapt
σsu

β and the notations used in the mentioned paper to the needs of the present
section, we nevertheless give all technical details.

Before we present the crucial Lemma 24, we formulate four lemmata which fea-
ture simple combinatorial observations on those variables xj in α for which—
with regard to any substitution τ with τ(α) = σtf-tt,i(α)—the word τ(xj) con-
tains any segment of σtf-tt,i(xj) (note that a straightforward reasoning proves
the existence of such variables even in prolix patterns). Since these lemmata
are needed for an unobstructed understanding of our main argumentation in
Lemma 24, it is important to keep them in mind.

According to our first observation, for every i ∈ N, for every substitution
τ with τ(α) = σtf-tt,i(α) and for every variable xj in α, τ(xj) contains any
complete segment of σtf-tt,i(xj) at most once:

Lemma 20 Let α, β ∈ Pattf , and let i ∈ N. Let τ : Pattf −→ {a, b, c}∗ be any
substitution with τ(α) = σtf-tt,i(α). Then, for every xj ∈ var(α) and for every
p ∈ {0, 1, 2}, τ(xj) 6= . . . ab3j−p

a . . . ab3j−p
a . . . .

PROOF. Assume to the contrary that there is a variable xj ∈ var(α) with
|τ(xj)|ab3j−pa ≥ 2. Then |τ(α)|ab3j−pa ≥ 2|α|xj

> |α|xj
= |σtf-tt,i(α)|ab3j−pa. This

contradicts the condition τ(α) = σtf-tt,i(α).

The next lemma says that if, for any substitution τ with τ(α) = σtf-tt,i(α) and
for any variable xj ∈ var(α), τ(xj) contains the left and the inner segment (or
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the inner and the right segment) of σtf-tt,i(xj) then these segments occur in
the “natural” order (i. e. in the order dictated by σtf-tt,i):

Lemma 21 Let α, β ∈ Pattf , and let i ∈ N. Let τ : Pattf −→ {a, b, c}∗ be
any substitution with τ(α) = σtf-tt,i(α). For every xj ∈ var(α) and for every
p ∈ {1, 2}, if τ(xj) = . . . ab3j−p

a . . . and τ(xj) = . . . ab3j−p+1
a . . . then, for

some v ∈ {ε, c}, τ(xj) = . . . ab3j−p
a v ab3j−p+1

a . . . .

PROOF. Because of τ(α) = σ(α), we have |τ(α)|ab3j−pa = |τ(α)|ab3j−p+1a =
|τ(α)|ab3j−pa v ab3j−p+1a = |α|j. Thus, for every occurrence of ab

3j−p
a and of

ab
3j−p+1

a in τ(α), τ(α) = . . . ab3j−p
a v ab

3j−p+1
a . . . . Therefore, our condi-

tions τ(xj) = . . . ab
3j−p

a . . . and τ(xj) = . . . ab
3j−p+1

a . . . imply τ(xj) =
. . . ab3j−p

a v ab3j−p+1
a . . . .

By a similar reasoning we can conclude that if, for any substitution τ with
τ(α) = σtf-tt,i(α) and for any variable xj in α, τ(xj) contains the left and
the right segment of σtf-tt,i(xj) then it must also contain the inner segment of
σtf-tt,i(xj) and, again, these segments must occur in the canonical order:

Lemma 22 Let α, β ∈ Pattf , and let i ∈ N. Let τ : Pattf −→ {a, b, c}∗ be
any substitution with τ(α) = σtf-tt,i(α). For every xj ∈ var(α), if τ(xj) =
. . . ab3j−2

a . . . and τ(xj) = . . . ab3j
a . . . then, for some v ∈ {ε, c}, τ(xj) =

. . . ab3j−2
a v ab3j−1

a ab
3j
a . . . .

We conclude our list of basic properties of any xj ∈ var(α) for which τ(xj)
contains a segment s = ab

3j−p
a, p ∈ {0, 1, 2}, with an immediate conse-

quence of Lemma 20. Since τ(xj) contains this segment s only once, we reli-
ably know that, for any n, 1 ≤ n ≤ |α|j, the nth occurrence (counted from the
left) of xj in α under both σ and τ necessarily generates the nth occurrence
of s in σtf-tt,i(α) = τ(α). Thus, from the said feature of τ(xj) we may not
only draw additional “local” conclusions on τ(xj) as demonstrated by Lem-
mata 20, 21, 22, but also “global” ones (which—admittedly—are rather weak)
on τ(xj′) for every xj′ ∈ var(α). In anticipation of the requirements of the sub-
sequent main Lemma 24 and for the sake of a more concise presentation, we
focus on a variable xj ∈ var(α) for which τ(xj) contains the inner segment of
σtf-tt,i(xj):

Lemma 23 Let α, β ∈ Pattf . Let, for some variable xj ∈ var(α) and α1, α2 ∈
X∗, α = α1 xj α2. Let i ∈ N and τ : Pattf −→ {a, b, c}∗ be any substitution
with τ(α) = σtf-tt,i(α). If, for some w1, w2 ∈ {a, b, c}∗, τ(xj) = w1 ab

3j−1
a w2

then

• τ(α1) w1 = σ(α1) ab
3j−2

a and
• w2 τ(α2) = ab

3j
a σ(α2) .
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We now proceed with our main lemma which says that, for every i ∈ N, for
every succinct pattern α, for every substitution τ with τ(α) = σtf-tt,i(α) and
for every xj ∈ var(α), τ(xj) contains at least the complete inner segment, the
righmost letter of left segment and the leftmost letter of the right segment
of σtf-tt,i(xj). Thus, it follows immediately, that, for every substitution τ with
τ(α) = σtf-tt,j(α), τ(xj) contains exactly one occurrence of the letter c which is
inserted by σtf-tt,j between the left and the inner segment of σtf-tt,j(xj). This im-
plies that, for every succinct pattern α, the set Tα := {σtf-tt,j(α) | xj ∈ var(α)}
satisfies the conditions of Theorem 10 and, thus, that Tα is a telltale for LΣ(α)
with respect to every Σ containing at least three distinct letters. Note that the
subsequent lemma can be easily extended such that it characterises succinct-
ness (cf. Freydenberger et al. [7]). With regard to our needs, however, this fact
is of no importance, and therefore we omit the corresponding statement.

Lemma 24 Let α ∈ Pattf be a succinct pattern. Then, for every i ∈ N, for
every xj ∈ var(α) and for every substitution τ : Pattf −→ {a, b, c}∗ with
τ(α) = σtf-tt,i(α),

τ(xj) =







. . . a c ab3j−1
a a . . . , i = j,

. . . a ab3j−1
a a . . . , else.

PROOF. We argue by contraposition. Consequently, we show that if there
exists a substitution τ with τ(α) = σtf-tt,i(α) and, for some xj ∈ var(α),
τ(xj) 6= . . . a v ab3j−1

a a . . ., v ∈ {ε, c}, then α is prolix:

We start with a partition of var(α) into subsets X1, X2, X3 depending on any
substitution τ satisfying the said conditions. From an informal point of view,
this partition is given as follows: First, let X1 be the set of all variables xj

in α such that τ(xj) contains the inner segment of σtf-tt,i(xj), at least one
letter of the left segment of σtf-tt,i(xj), at least one letter of the right segment
of σtf-tt,i(xj) and at least one complete segment of some σtf-tt,i(xj′), j

′ 6= j.
Second, let X2 be the set of all variables xj in α such that τ(xj) does not
contain any letter of at least one segment of σtf-tt,i(xj). Third (and last), let
X3 be the set of all variables xj in α such that τ(xj) contains the inner segment
of σtf-tt,i(xj), at least one letter of the left segment of σtf-tt,i(xj), at least one
letter of the right segment of σtf-tt,i(xj), but no complete segment of some
σtf-tt,i(xj′), j

′ 6= j.

Since τ(α) = σtf-tt,i(α) and thus, for every xj ∈ var(α), τ(xj) is a subword
of σtf-tt,i(α) this vague definition of X1, X2 and X3 results in several evident
restrictions on the images under τ of the variables in α (cf. Lemmata 20, 21,
22, 23) such that the introduced subsets of var(α) read formally:
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X1 := {xj ∈ var(α) | τ(xj) = . . . ab3j′
a ab

3j−2
a v ab3j−1

a a . . . or

τ(xj) = . . . a v ab3j−1
a ab

3j
a ab

3j′−2
a . . . ,

xj′ ∈ var(α), v ∈ {ε, c} } ,

X2 := {xj ∈ var(α) | τ(xj) 6= . . . a v ab3j−1
a a . . . , v ∈ {ε, c}} ,

X3 := {xj ∈ var(α) | τ(xj) = . . . a v ab3j−1
a a . . . and

τ(xj) 6= . . . ab3j′
a ab

3j−2
a . . . and

τ(xj) 6= . . . ab3j
a ab

3j′−2
a . . . ,

xj′ ∈ var(α), v ∈ {ε, c} } .

Directly from the definition, it can be verified that X1 ∩ X2 = X1 ∩ X3 =
X2 ∩X3 = ∅ and X1 ∪X2 ∪X3 = var(α). According to our initial condition,
there is a variable xj ∈ var(α) with τ(xj) 6= . . . a v ab3j−1

a a . . . , v ∈ {ε, c},
and therefore X2 6= ∅. Note that our subsequent argumentation in Claim 3
shows that this leads to X1 6= ∅.

As we now wish to show that X2 6= ∅ implies α being prolix, we need to find an
appropriate decomposition of α satisfying the three conditions of Theorem 7.
We start our argumentation with the following one:

α = β̄0 γ̄1 β̄1 γ̄2 β̄2 [ . . . ] β̄m̄−1 γ̄m̄ β̄m̄

with m̄ ≥ 1 and

• β̄0, β̄m̄ ∈ X∗
3 and β̄k ∈ X+

3 , 1 ≤ k ≤ m̄− 1, and
• γ̄k ∈ (X1 ∪X2)

+, 1 ≤ k ≤ m̄.

Note that m̄ ≥ 1 is guaranteed because of X2 6= ∅.

Obviously, this decomposition is unique, and it satisfies condition (ii) of The-
orem 7 since X1, X2 and X3 are disjoint:

Claim 1. For every k, k′, 1 ≤ k, k′ ≤ m̄, var(γ̄k) ∩ var(β̄k′) = ∅.

Concerning condition (i) of Theorem 7 we need to examine the given decom-
position of α in a bit more detail. The subsequent claim says that, for every γ̄k,
τ(γ̄k) “almost” corresponds to σtf-tt,i(γ̄k), i. e. τ(γ̄k) contains at least 3|γ̄k| − 2
complete segments of σtf-tt,i(γ̄k) (and potentially some letters of two other
segments) and at most 3|γ̄k| complete segments of σtf-tt,i(γ̄k) and, moreover,
for every variable xj ∈ var(γ̄k) the inner segment of σtf-tt,i(xj) as often as
xj is contained in γ̄k, and it does not contain any segment of σtf-tt,i(xj′) if
xj′ 6∈ var(γ̄k):

Claim 2. For every γ̄k = xj1 xj2 [ . . . ]xjs, s ∈ N, for every xj′ ∈ var(α) and for
some v1, v2, . . . , vs ∈ {ε, c}
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τ(γ̄k)= . . . a v1 ab
3j1−1

a ab
3j1

a ab
3j2−2

a [ . . . ] vs ab
3js−1

a a . . . and

τ(γ̄k) 6= . . . a v1 ab
3j1−1

a ab
3j1

a [ . . . ] ab3js
a ab

3j′−2
a . . . and

τ(γ̄k) 6= . . . ab3j′
a ab

3j1−2
a v1 ab

3j1−1
a [ . . . ] vs ab

3js−1
a a . . . .

For any subpattern δ of α satisfying the statement in Claim 2 we say that
τ(δ) corresponds to σtf-tt,i(δ) (apart from a negligible prefix and suffix).

Claim 2 follows from the fact that every γ̄k is surrounded by β̄k−1 ∈ X∗
3

and β̄k ∈ X∗
3 . Thus, with Lemma 23 applied to the variables in X3, τ(γ̄k)

is fixed by τ(β̄k−1) and τ(β̄k): as these two subwords of τ(α) by definition
correspond to σtf-tt,i(β̄k−1) and σtf-tt,i(β̄k), respectively, τ(γ̄k) must also corre-
spond to σtf-tt,i(γ̄k). Consequently—and since by definition, for no δ ∈ X+

1 ,
τ(δ) corresponds to σtf-tt,i(δ)—γ̄k 6∈ X+

1 .

We proceed our argumentation on condition (i) of Theorem 7 being satisfied
for the regarded decomposition by a closer look at the images under τ of those
subpatterns δ of α which exclusively consist of variables in X2. In this regard
we can see that τ(δ) necessarily does not correspond to σtf-tt,i(δ):

Claim 3. For every δ = xj1 xj2 [ . . . ] xjt with t ∈ N, δ ∈ X+
2 , and for all

v1, v2, . . . , vt ∈ {ε, c}

τ(δ) 6= . . . a v1 ab
3j1−1

a ab
3j1

a ab
3j2−2

a v2 [ . . . ] vt ab
3jt−1

a a . . . .

The correctness of Claim 3 follows from a straightforward combinatorial ex-
amination of the definition of X2. Thus, and from Claim 2, it is γ̄k 6∈ X+

2 and
therefore γ̄k must consist of variables in X1 and of variables in X2:

Claim 4. For every k, 1 ≤ k ≤ m̄, |γ̄k| ≥ 2.

Hence, condition (i) of Theorem 7 is satisfied for the above decomposition.

With regard to condition (iii), however, the decomposition possibly requires
some modifications. We wish to have a decomposition where there is exactly
one occurrence of an xj ∈ X1 in each γ̄k since this variable is meant to serve
as the variable yk referred to in condition (iii) of Theorem 7. For the given
decomposition, however, we can only conclude that there is at least one oc-
currence of an xj ∈ X1 in each γ̄k. Therefore we transform it into a specific
decomposition where every γ̄k contains exactly one xj ∈ X1. To this end, we
apply two different types of operations, namely a splitting of certain γ̄k and a
redefinition of X1 and X3.
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We first split every γ̄k that contains more than one occurrence of a variable
from X1, and we do so by identifying all so-called splitting points in γ̄k. Intu-
itively, these splitting points lead to a maximum s ∈ N for which there exists
a decomposition γ̄k = γ̄k,1 γ̄k,2 [ . . . ] γ̄k,s such that, for every k′, 1 ≤ k′ ≤ s,
τ(γ̄k,k′) corresponds to σtf-tt,i(γ̄k,k′) “as far as possible”. Formally, a splitting
point is an inner substring δ of γ̄k, i. e. γ̄k = γ̄k,lδ γ̄k,r with γ̄k,l = xj1xj2 [ . . . ]xjp

and γ̄k,r = xjp+1
xjp+2

[ . . . ] xjp+q
, p, q ∈ N, xj1, xj2 , . . . , xjp+q

∈ X1 ∪ X2, that
satisfies one of the following conditions:

(1) δ = ε and

τ(γ̄k,l) = . . . a v1 ab
3j1−1

a ab
3j1

a [ . . . ] ab3jp−2
a vp ab

3jp−1
a a . . . and

τ(γ̄k,r) = . . . a vp+1 ab
3jp+1−1

a ab
3jp+1

a [ . . . ] ab3jp+q−2
a vp+q ab

3jp+q−1
a a . . .

or

(2) δ = xj′, j
′ ∈ N, and

τ(γ̄k,l) = . . . a v1 ab
3j1−1

a ab
3j1

a [ . . . ] vp ab
3jp−1

a ab
3jp

a ab
3j′−2

a . . . and

τ(γ̄k,r) = . . . ab3j′
a ab

3jp+1−2
a vp+1 ab

3jp+1−1
a [ . . . ] ab3jp+q−2

a vp+q ab
3jp+q−1

a a . . . .

for appropriate v1, v2, . . . , vp+q ∈ {ε, c}.

For a better understanding of the definition of a splitting point, recall Claim 2
and Claim 3. Furthermore, these claims are sufficient for verifying the following
facts:

• A subpattern γ̄k with only one occurrence of a variable from X1 does not
contain any splitting point.

• For every splitting point δ of type 2, i. e. δ = xj′ ∈ X, necessarily xj′ ∈ X2.
• For two splitting points δ, δ′, necessarily γ̄k 6= . . . δ δ′ . . . .

After all of the splitting points have been identified in γ̄k, for each of them
the following splitting operation is performed:

(1) If |δ| = 0 then δ is renamed to β̇.
(2) If |δ| = 1 then a β̇ = ε is inserted to the right of δ, i. e. γ̄k := γ̄k,l δ β̇ γ̄k,r.

Note that, in case 2, we can arbitrarily choose to insert β̇ to the left or to the
right of δ, but it is essential to do this for all splitting points in the same way.
This will be relevant for our argumentation on the crucial Claim 6.

When this has been accomplished for all splitting points then we regard the
following decomposition of α:

α = β̂0 γ̂1 β̂1 γ̂2 β̂2 [ . . . ] β̂m̂−1 γ̂m̂ β̂m̂
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with m̂ ≥ 1 and

• β̂k ∈ X∗
3 , 0 ≤ k ≤ m̂, where, for every 1 ≤ k′ ≤ m̂− 1, β̂k′ = ε if and only if

at exactly the position of β̂k′ a β̇ has been inserted by a splitting operation,
i. e. in this case β̂k′ simply is a renaming of a β̇, and

• γ̂k ∈ (X1 ∪X2)
+, 1 ≤ k ≤ m̂.

Consequently, if in some γ̄k there is, e. g., exactly one splitting point, i. e. γ̄k =
γ̄k,l δ γ̄k,r, then, for some h < m̂, the splitting operation leads to γ̂h = γ̄k,l

and γ̂h+1 = γ̄k,r (in case of |δ| = 0) or γ̂h = γ̄k,l δ and γ̂h+1 = γ̄k,r (in case of
|δ| = 1). Additionally note that m̂ ≥ 1 again follows from X2 6= ∅.

After the splitting operations we can record:

Claim 5. For every k, 1 ≤ k ≤ m̂, γ̂k contains exactly one occurrence of an
xj ∈ X1.

Claim 5 follows from Claim 2, Claim 3 and the definition of the splitting
points.

Moreover, the resulting decomposition has a second crucial property:

Claim 6. For every k, k′, 1 ≤ k, k′ ≤ m̂, if var(γ̂k) ∩ var(γ̂k′) ∩ X1 6= ∅ then
γ̂k = γ̂k′.

Proof (Claim 6). If |γ̂k| = |γ̂k′| = 1 then Claim 6 trivially holds true. There-
fore we restrict our argumentation to the case |γ̂k| ≥ 2 or |γ̂k′| ≥ 2. Now
assume to the contrary that there are k, k′, 1 ≤ k, k′ ≤ m̂, with var(γ̂k) ∩
var(γ̂k′) ∩ X1 6= ∅ and γ̂k 6= γ̂k′. Because of Claim 5 we can write γ̂k as
γ̂k = xj1 xj2 [ . . . ] xjp xj⋆ xjp+1

xjp+2
[ . . . ] xjp+q

with p, q ∈ N0, xj⋆ ∈ X1,
xj1 , xj2, . . . , xjp+q

∈ X2 and γ̂k′ as γ̂k′ = xj′
1
xj′

2
[ . . . ]xj′r

xj⋆ xj′r+1
xj′r+2

[ . . . ]xj′r+s

with r, s ∈ N0, xj′
1
, xj′

2
, . . . , xj′r+s

∈ X2. Note that our condition |γ̂k| ≥ 2 or
|γ̂k′| ≥ 2 implies p+ q + r + s ≥ 1.

We now assume, first, that p = r and q = s (we shall examine the case
where there is p 6= r or q 6= s later) and, second, w. l. o. g. that t ∈ N is
the largest number with jt 6= j′t and t ≤ p. The latter assumption does not
restrict our reasoning since, for the case that the only different variables in
γ̂k, γ̂k′ are to the right of xj⋆ , an analogous argumentation can be applied.
Under these two assumptions, we now examine Claim 3, which says that,
for every n, 0 ≤ n ≤ p − t, τ(xjt xjt+1

[ . . . ] xjt+n
) does not correspond

to σtf-tt,i(xjt xjt+1
[ . . . ] xjt+n

) (and of course τ(xj′t
xj′t+1

[ . . . ] xj′t+n
) does not

correspond to σtf-tt,i(xj′t
xj′t+1

[ . . . ] xj′t+n
)) as all of the variables under con-

sideration are in X2. More precisely, we may conclude that, again for every
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n, 0 ≤ n ≤ p − t, τ(xjt+n+1
xjt+n+2

[ . . . ] xj⋆) contains the right segment of
σtf-tt,i(xjt+n

) (and, additionally, τ(xj′t+n+1
xj′t+n+2

[ . . . ] xj⋆) contains the right
segment of σtf-tt,i(xj′t+n

)) since, otherwise, there would have been a splitting
point somewhere between xjt and xj⋆ (and between xj′t

and xj⋆)—this state-
ment can be verified by a closer look at the definition of both types of splitting
points, where the condition for the left subpattern γ̄k,l in the case of τ(γ̄k,l)
containing the right segment of σtf-tt,i(xjt+n

) would have led to the insertion
of the said splitting point. Thus, with n := 0, this implies

τ(xjt+1
xjt+2

[ . . . ] xj⋆) = . . . ab3jt
a ab

3jt+1−2
a [ . . . ] ab3j⋆−1

a a . . .

= τ(xj′t+1
xj′t+2

[ . . . ] xj⋆) .

On the other hand we have

σtf-tt,i(xj′t
xj′t+1

xj′t+2
[ . . . ] xj⋆) = . . . ab3j′ta ab

3jt+1−2
a [ . . . ] ab3j⋆−1

a a . . . .

However—since xj⋆ ∈ X1 and, consequently, τ(xj⋆) contains the inner seg-
ment of σtf-tt,i(xj⋆)—we know that τ(xj⋆) and σtf-tt,i(xj⋆) generate the same
occurrence of the subword ab

3j⋆+1
a in τ(α) = σtf-tt,i(α) (cf. our remarks intro-

ducing Lemma 23). Thus, we can conclude from Lemma 23 that our condition
τ(α) = σtf-tt,i(α) implies ab

3jt+2
a = ab

3j′t+2
a and, hence, jt = j′t. This contra-

dicts our assumption jt 6= j′t.

We proceed with the remaining case p 6= r or q 6= s. Due to the same reason
as given above and, thus, w. l. o. g., we focus on p 6= r. Additionally and again
w. l. o. g., we assume p < r. If there is a t ∈ N0, t < p, such that jp−t 6= j′r−t

then we can apply exactly the same argument as above. Thus, xj1 xj2 [ . . . ]xjp

must be a suffix of xj′
1
xj′

2
[ . . . ] xj′r

. If α = γ̂k . . . or α = . . . xj♯
γ̂k . . . with

j♯ 6= j′r−p then our argumentation again is equivalent to that on the case

p = r. Hence, j♯ = j′r−p. Since xj′r−p
∈ X2, β̂k−1 must have been a splitting

point separating xj′r−p
and xj1 , whereas there has not been any splitting point

between xj′r−p
and xj′r−p+1

. Since xj1 xj2 [ . . . ] xjp is a suffix of xj′
1
xj′

2
[ . . . ] xj′r

this contradicts the definition of splitting points. 2(Claim 6 )

In a final step, we now remove all γ̂k with |γ̂k| = 1; this type of γ̂ can occur,
e. g., for γ̄k′ = xj1 xj2 xj3 with xj1 , xj3 ∈ X1 and xj2 ∈ X2. Consequently, for
every γ̂k = xj , xj ∈ X1, we shift xj to X3, or, more precisely, we introduce
X ′

3 := X3 ∪{xj | ∃ k : γ̂k = xj} and X ′
1 := X1 \ {xj | ∃ k : γ̂k = xj}. Note that

because of Claim 5 and Claim 6 this redefinition operation does not affect any
γ̂k with |γ̂k| ≥ 2.

This leads to the final decomposition of α:

α = β0 γ1 β1 γ2 β2 [ . . . ] βm−1 γm βm
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with m ≥ 1 and

• βk ∈ X ′∗
3 , 0 ≤ k ≤ m, where, for every 1 ≤ k′ ≤ m−1, βk′ = ε if and only if

the variables to the right and to the left of βk′ have been split by a splitting
operation and none of the resulting neighbouring γ̂k′′ has been removed by
a shifting operation, and

• γk ∈ (X ′
1 ∪X2)

+, 1 ≤ k ≤ m.

Again, this decomposition is unique, and m ≥ 1 is granted since X2 is not
redefined and (according to our assumption) X2 6= ∅.

We conclude the proof of Lemma 24 with the verification of the conditions in
Theorem 7:

Claim 7. For every k, 1 ≤ k ≤ m, |γk| ≥ 2.

Claim 7 is evident since the redefinition operation does not shorten or split
any γ̂k with |γ̂k| ≥ 2. Consequently, the above decomposition conforms with
condition (i) of Theorem 7. The next claim follows directly from the fact that
X ′

1, X2 and X ′
3 are disjoint:

Claim 8. For every k, 1 ≤ k ≤ m, and for every k′, 0 ≤ k′ ≤ m, var(γk) ∩
var(βk′) = ∅.

Thus, condition (ii) of Theorem 7 is satisfied as well. Since, according to the
notes on Claim 7, the splitting operation does not modify any γ̂k with |γ̂k| ≥ 2
we can easily conclude from Claim 6:

Claim 9. For every k, 1 ≤ k ≤ m, γk contains exactly one xj ∈ X ′
1 and, for

every k′, 1 ≤ k′ ≤ m, if var(γk) ∩ var(γk′) ∩X ′
1 6= ∅ then γk = γk′.

This proves that condition (iii) of Theorem 7 is satisfied.

Consequently, if there is an xj ∈ var(α) such that τ(xj) 6= . . . av ab3j−1
aa . . .,

v ∈ {ε, c}, then α is prolix. This proves the lemma. 2

Consequently, when applied to succinct patterns, the ambiguity of every sub-
stitution σtf-tt,j , j ∈ N, is restricted in a special manner which, in particular,
is compatible with the assignment of the unique letter c to xj . Thus, we can
use the substitutions σtf-tt,i for the definition of telltales:

Lemma 25 Let Σ be an alphabet, {a, b, c} ⊆ Σ, and let L ∈ ePATtf,Σ. For
any succinct pattern α ∈ Pattf with L = LΣ(α), let Tα := {σtf-tt,j(α) | xj ∈
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var(α)}. Then Tα is a telltale for L with respect to ePATtf,Σ.

PROOF. According to Lemma 24, for every j ∈ N with xj ∈ var(α) and for
every substitution τj : Pattf −→ Σ∗ with τj(α) = σtf-tt,j(α), it is |τj(xj)|c = 1.
Furthermore, by definition, |τj(α)|c = |α|xj

. Consequently, due to Theorem 10,
Tα is a telltale for L with respect to ePATtf,Σ. 2

Thus, Lemma 25 shows that each terminal-free E-pattern language over an
alphabet |Σ|, |Σ| ≥ 3, contains a telltale with respect to ePATtf,Σ. As the
recursive enumerability of these telltales is evident, we therefore can conclude
the correctness of Theorem 17 from Theorem 3.

4.2 Some remarks on the learnability of terminal-free E-pattern languages

Evidently, and as stated above, our reasoning in Section 4.1 proves the learn-
ability of ePATtf,Σ, |Σ| ≥ 3, by a purely combinatorial argument which, in
turn, is equivalent to a structural property of ePATtf,Σ. Hence, we do not give
a particular learning strategy for ePATtf,Σ, and therefore we can merely refer
to the general procedure for learnable indexed families that is provided by
Angluin [2].

We regard it as a worthwile (albeit challenging) problem for the future research
on the learnability of terminal-free E-pattern languages to find a tailor-made
learning strategy which more accurately matches with the characteristic of the
subject. In this regard, an inconsistent learning strategy such as the procedure
provided by Lange, Wiehagen [16] on the full class of NE-pattern languages,
which contrary to Angluin’s approach does not use any test for the member-
ship problem, might be the overall goal of the corresponding considerations.
Since the telltales identified by our reasoning in the previous section contain
rather long words (whereas those for general NE-pattern languages used in
[16] simply consist of the shortest words in the respective language), it even
seems inevitable to avoid membership tests as far as possible.

In addition to this, one might wish to seek for shorter telltale words in terminal-
free E-pattern languages, and Example 13 gives a first idea about how such
telltales might look like for selected languages. We expect that Theorem 10 can
serve as a powerful tool for such a task. In general, however, we consider our
telltales to be optimally chosen. Referring to the current state of knowledge on
the ambiguity of morphisms in free monoids (cf. Freydenberger et al. [7]), we
conjecture that the assignment of a number of distinct segments abm

a, m ∈ N,
to each variable is the only uniform method for generating those “moderately
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ambiguous” words required by Theorem 10. If we now replace σtf-tt,i by a sub-
stitution mapping the variables on just two distinct segments then this shorter
substitution fails in generating telltales. In order to verify this statement we
regard the following substitution which omits the inner segment that, for every
xj ∈ X, is contained in σtf-tt,i(xj):

Definition 26 Let Σ be an alphabet, {a, b, c} ⊆ Σ. Then, for every i, j ∈ N,
the substitution σ2-seg,i : Pattf −→ Σ∗ is given by

σ2-seg,i(xj) :=







ab
2j−1

a c ab
2j
a , i = j,

ab
2j−1

a ab
2j
a , else.

As explained above, the following lemma states that, for every alphabet Σ
which consists of at least three distinct letters, there exists a terminal-free E-
pattern language L ⊆ Σ∗ such that the substitutions σ2-seg,i are not appropriate
for defining a telltale for L with respect to ePATtf,Σ:

Lemma 27 Let Σ be an alphabet, {a, b, c} ⊆ Σ. Then there exists a succinct
pattern α ∈ Pattf such that the set Wα := {σ2-seg,j(α) | xj ∈ var(α)} is not a
telltale for LΣ(α) with respect to ePATtf,Σ.

PROOF. Let the pattern α ∈ Pattf be given by

α := x1x2x3x4x1x2x3x4x5x2x6x5x7x8x6x8x6x9x7x9x7x10x4x10x11x12x4x12x11.

The succinctness of α can be straightforward verified by Theorem 7. In addi-
tion to this, let the substitution τ3 be given by

τ3(x1) := aba ab
2
a ab

3
a ab

4
a ab

5
a c ab

3,

τ3(x2) := b
3
a ab

3,

τ3(x3) := ε,

τ3(x4) := b
4
a ab

8
a,

τ3(x5) := ab
9
a ab

10
a a,

τ3(x6) := ba ab
11
a ab

12
a,

τ3(x7) := b
13
a ab

14
a,

τ3(x8) := ab
15
a ab

15,

τ3(x9) := ab
17
a ab

18
a a,

τ3(x10) := ab
19
a ab

20
a ab

3,

τ3(x11) := b
18
a ab

22
a,

τ3(x12) := ab
23
a ab

24
a ab

3.
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Then τ3 and σ2-seg,3 generate the same word when applied to α:

σ2-seg,3(x1)
︷ ︸︸ ︷

σ2-seg,3(x2)
︷ ︸︸ ︷

σ2-seg,3(x3)
︷ ︸︸ ︷

σ2-seg,3(x4)
︷ ︸︸ ︷

σ2-seg,3(α)= aba ab
2
a ab

3
a ab

4
a ab

5
a c ab

3
︸ ︷︷ ︸

τ3(x1)

b
3
a ab

3
︸ ︷︷ ︸

τ3(x2)

b
4
a ab

8
a

︸ ︷︷ ︸

τ3(x4)

σ2-seg,3(x1)
︷ ︸︸ ︷

σ2-seg,3(x2)
︷ ︸︸ ︷

σ2-seg,3(x3)
︷ ︸︸ ︷

σ2-seg,3(x4)
︷ ︸︸ ︷

aba ab
2
a ab

3
a ab

4
a ab

5
a c ab

3
︸ ︷︷ ︸

τ3(x1)

b
3
a ab

3
︸ ︷︷ ︸

τ3(x2)

b
4
a ab

8
a

︸ ︷︷ ︸

τ3(x4)

σ2-seg,3(x5)
︷ ︸︸ ︷

σ2-seg,3(x2)
︷ ︸︸ ︷

σ2-seg,3(x6)
︷ ︸︸ ︷

σ2-seg,3(x5)
︷ ︸︸ ︷

σ2-seg,3(x7)
︷ ︸︸ ︷

ab
9
a ab

10
a a

︸ ︷︷ ︸

τ3(x5)

b
3
a ab

3
︸ ︷︷ ︸

τ3(x2)

ba ab
11
a ab

12
a

︸ ︷︷ ︸

τ3(x6)

ab
9
a ab

10
a a

︸ ︷︷ ︸

τ3(x5)

b
13
a ab

14
a

︸ ︷︷ ︸

τ3(x7)

σ2-seg,3(x8)
︷ ︸︸ ︷

σ2-seg,3(x6)
︷ ︸︸ ︷

σ2-seg,3(x8)
︷ ︸︸ ︷

σ2-seg,3(x6)
︷ ︸︸ ︷

ab
15
a ab

15
︸ ︷︷ ︸

τ3(x8)

ba ab
11
a ab

12
a

︸ ︷︷ ︸

τ3(x6)

ab
15
a ab

15
︸ ︷︷ ︸

τ3(x8)

ba ab
11
a ab

12
a

︸ ︷︷ ︸

τ3(x6)

σ2-seg,3(x9)
︷ ︸︸ ︷

σ2-seg,3(x7)
︷ ︸︸ ︷

σ2-seg,3(x9)
︷ ︸︸ ︷

σ2-seg,3(x7)
︷ ︸︸ ︷

ab
17
a ab

18
a a

︸ ︷︷ ︸

τ3(x9)

b
13
a ab

14
a

︸ ︷︷ ︸

τ3(x7)

ab
17
a ab

18
a a

︸ ︷︷ ︸

τ3(x9)

b
13
a ab

14
a

︸ ︷︷ ︸

τ3(x7)

σ2-seg,3(x10)
︷ ︸︸ ︷

σ2-seg,3(x4)
︷ ︸︸ ︷

σ2-seg,3(x10)
︷ ︸︸ ︷

σ2-seg,3(x11)
︷ ︸︸ ︷

ab
19
a ab

20
a ab

3
︸ ︷︷ ︸

τ3(x10)

b
4
a ab

8
a

︸ ︷︷ ︸

τ3(x4)

ab
19
a ab

20
a ab

3
︸ ︷︷ ︸

τ3(x10)

b
18
a ab

22
a

︸ ︷︷ ︸

τ3(x11)

σ2-seg,3(x12)
︷ ︸︸ ︷

σ2-seg,3(x4)
︷ ︸︸ ︷

σ2-seg,3(x12)
︷ ︸︸ ︷

σ2-seg,3(x11)
︷ ︸︸ ︷

ab
23
a ab

24
a ab

3
︸ ︷︷ ︸

τ3(x12)

b
4
a ab

8
a

︸ ︷︷ ︸

τ3(x4)

ab
23
a ab

24
a ab

3
︸ ︷︷ ︸

τ3(x12)

b
18
a ab

22
a

︸ ︷︷ ︸

τ3(x11)

= τ3(α) .

Moreover, τ3(x3) = ε and, for every j ∈ N with xj ∈ var(α) \ {x3} and for
every letter A occurring in σ2-seg,j(x3), |σ2-seg,j(x3)|A ≥ 2. Thus, with regard to
x3, Wα does not satisfy the characteristic criterion given in Theorem 10. This
proves the lemma. 2

Recall that Example 14 gives the analogous result for a substitution which
maps each variable onto a word that just consists of a single segment.

Thus, Example 14, Lemma 25 and Lemma 27 suggest that, in general, the
rather long and very special words generated by the σtf-tt,i are required for
drawing unequivocal conclusions on the respective generating pattern under
consideration. If there is no option to switch to shorter significant words then
we expect this to cause major problems for stochastic finite learning of ePATtf

(as introduced by Rossmanith, Zeugmann [33] with respect to the full class
of NE-pattern languages)—even if it is possible to give a learning strategy
for the terminal-free E-pattern languages over suitable alphabets that is not
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based on exhaustive membership tests.

5 Inductive inference of general E-pattern languages over small
alphabets

In the present section, we shall examine whether the positive learnability result
on ePATtf presented in Theorem 17 can be extended to general E-pattern
languages.

At first glance—due to the previous insights into regular E-pattern languages
(generated by patterns where every variable occurs at most once) gained by
Shinohara [36]—such an extension seems to be possible. Since, according to
the cited work, the class of regular E-pattern languages is inferrable from
positive data, one might interpret this result in such a way that, in the limit,
the shape and position of the terminal substrings in a generating pattern
can be inferred from its language. Thus, roughly speaking, it seems to be
an auspicious strategy to present the text for a general E-pattern language
to a (possibly modified) learner for regular E-pattern languages, then use its
output to identify those parts of the words that have been generated by the
substitution of variables and, finally, have these subwords read by a learner
for terminal-free E-pattern languages, so as to specify the dependencies of the
variables in the generating pattern. The main result of the present section,
however, states that such an approach necessarily fails since the full class of E-
pattern languages is not learnable (at least in the case that the corresponding
alphabet consists of three or four distinct letters):

Theorem 28 Let Σ be an alphabet |Σ| ∈ {3, 4}. Then ePATΣ is not inferrable
from positive data.

The proof for Theorem 28 is given in Section 5.1.

Contrary to the reasons for the discontinuous properties of terminal-free E-
pattern languages with regard to their learnability discussed in Section 4, we
feel those for this second discontinuity (i. e. the non-extensibility of Theo-
rem 17) identified in the present paper to be well understood. In the subse-
quent section we demonstrate that terminal-preserving morphisms lead to a
more involved ambiguity of words than standard morphisms, and therefore we
can give E-pattern languages which do not have a telltale with respect ePATΣ

for the alphabets Σ under consideration.

We now summarise the current state of knowledge on the learnability of the
full class of E-pattern languages:
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Corollary 29 Let Σ be an alphabet. Then ePATΣ is inferrable from positive
data if |Σ| ∈ {1,∞}, and it is not inferrable from positive data if |Σ| ∈
{2, 3, 4}.

PROOF. With regard to unary and infinite alphabets, Corollary 29 is proven
by Mitchell [24], and the negative results on the other alphabet sizes are given
in Theorem 16 and Theorem 28. 2

Resulting from the considerations in the subsequent section, we conjecture
that there is no discontinuity in the learnability of E-pattern languages over
alphabets with at least five distinct letters:

Conjecture 30 Let Σ1,Σ2 be arbitrary finite alphabets with |Σ1| ≥ 5 and
|Σ2| ≥ 5. Then ePATΣ1

is inferrable from positive data if and only if ePATΣ2

is inferrable from positive data.

We expect that any progress on the open cases requires deep insights into
the ambiguity of terminal-preserving morphisms over alphabets with five or
more letters. As shown by Reidenbach [28], this topic is closely related to the
equivalence problem for E-pattern languages.

5.1 Proof of Theorem 28

As to be shown in the present section, the non-learnability of ePATtf,Σ, |Σ| ∈
{3, 4}, results from the non-learnability of a natural subclass. This class is
generated by the set of all patterns which do not contain at least two distinct
terminal symbols occurring in the alphabet:

Definition 31 Let Σ be an alphabet, |Σ| ≥ 2. Then a pattern α ∈ PatΣ

is said to be quasi-terminal-free (on Σ) provided that |Σ| − | term(α)| ≥ 2.
The set of all quasi-terminal-free patterns on Σ is denoted by Patq-tf,Σ. An E-
pattern language L is called quasi-terminal-free (on Σ) if there exists a pattern
α ∈ Patq-tf,Σ with L = LΣ(α). The class of all quasi-terminal-free E-pattern
languages on Σ is referred to by ePATq-tf,Σ.

It can be easily derived from Theorem 3 that any considerations on the inferra-
bility of a class of languages essentially depend on insights into the inclusion
problem for this class. Therefore, our subsequent reasoning on Theorem 28
greatly benefits from the fact that the inclusion of two quasi-terminal-free E-
pattern languages is a well understood topic provided that these languages
are generated by similar patterns:
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Theorem 32 (Ohlebusch, Ukkonen [25]) Let Σ be an alphabet, |Σ| ≥ 2,
and let α, β ∈ Patq-tf,Σ be similar patterns. Then LΣ(β) ⊆ LΣ(α) if and only
if there exists a terminal-preserving morphism φ : (Σ∪X)∗ −→ (Σ∪X)∗ with
φ(α) = β.

Note that Theorem 32 explains the term “quasi-terminal-free” since it can
be seen as the natural extension of Theorem 2, which describes the inclusion
of terminal-free E-pattern languages and which is crucial for our analysis of
the learnability of ePATtf (see Section 4.1 and, additionally, the proof for
Theorem 10).

We now begin our proof for Theorem 28 by the definition of the corresponding
quasi-terminal-free example patterns:

Definition 33 The patterns αabc and αabcd are given by

αabc := x1 a x2 x
2
3 x

2
4 x

2
5 x

2
6 a x7 a x2 x

2
8 x

2
4 x

2
5 x

2
6 ,

αabcd := x1 a x2 x
2
3 x

2
4 x

2
5 x

2
6 x

2
7 x8b x9 a x2 x

2
10 x

2
4 x

2
5 x

2
6 x

2
11 x8 b x12 .

The pattern αabc is used in Lemma 34 for the proof of Theorem 28 in case
of |Σ1| = 3, and αabcd is examined in Lemma 35 with regard to |Σ2| = 4. In
these lemmata we show that LΣ1

(αabc) does not have a telltale with respect
to ePATq-tf,Σ1

and that LΣ2
(αabcd) does not have a telltale with respect to

ePATq-tf,Σ2
.

First, due to the intricacy of these patterns, we consider it helpful for the un-
derstanding of the proofs of the lemmata to briefly discuss the meaning of some
of their variables and terminal symbols in our reasoning; we focus on αabc since
αabcd is a natural extension thereof. In a first step, our argumentation on the
lemmata utilises the insight that, with regard to terminal-free E-pattern lan-
guages, the ambiguity of a word decides on the question of whether this word
can be a useful part of a telltale (cf. Theorem 10). More precisely, concerning
the terminal-free pattern α0 := x2

4x
2
5x

2
6 it is explained by Theorem 10 and, in

particular, by Example 13 that any telltale for L(α0) necessarily has to contain
words which consist of three distinct letters since these words, first, must be
“reasonably unambiguous” with respect to α0 (which can only be guaranteed
by words over at least two different letters) and, second, have to contain an
additional unique letter that is unequivocally related to a distinct variable in
α0. Hence—and because of the fact that α0 is a subpattern of αabc—there
must be a word in any telltale for LΣ1

(αabc) that is generated by a substitu-
tion σ which maps α0 onto a word over all letters provided by Σ1 := {a, b, c};
evidently, this means that σ(α0) necessarily contains the letter a. Therefore, in
a second step, we can rely on the fact that, for the prefix α1 := x1a x2x

2
3α0 of

αabc, now σ(α1) is ambiguous with respect to α1 and may always be generated
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by a second substitution τ with τ(α0) := ε, τ(x1) := σ(x1a x2x
2
3)[σ(α0)/a],

τ(x2) := [a\σ(α0)]. Due to the existence of τ , in turn, we can give an inverse
substitution leading to a tailor-made pattern that assuredly can be part of a
passe-partout. Thus, for α1 we can state a gap between, on the one hand, the
need of substituting α0 by three different letters and, on the other hand, the
ambiguity of all words that conform to this requirement. However, due to the
unique variable x2 in α1, this pattern is prolix, and the language generated by
α1 equals that of α2 := x1a x2 (cf. Theorem 32), turning the core subpattern
α0 of α1 to be redundant. Since our formal argumentation on the subsequent
Lemma 34 requires a succinct pattern which, nevertheless, allows for the am-
biguity of words described above, the variable x2 and the subpattern α0 have
to occur at least twice in the pattern. This is guaranteed by introducing the
suffix α′

1 := x7a x2x
2
8α0, so that our first crucial example pattern finally reads

αabc = α1aα
′
1.

With regard to αabcd, the underlying principle is similar. As stated above, three
distinct letters are needed for an appropriate “telltale substitution” σ of α0.
However, if b, c, d are chosen as these letters, the abovementioned ambiguity
of σ(α1), which depends on an occurrence of the letter a in σ(α), cannot be
guaranteed. Hence, in αabcd, the subpattern α1 is extended to α̂1 := α1x

2
7x8b x9,

such that every σ(α̂1) is ambiguous as soon as σ(α0) contains the letters a or b.
Furthermore, due to the reasons described above, a modification of α̂1 serves as
suffix of αabcd, namely α̂′

1 := x9a x2x
2
10α0x

2
11x8b x12. Contrary to the structure

of αabc, the prefix α̂1 and the suffix α̂′
1 in this case are not separated by a

terminal symbol, but they are overlapping.

With regard to |Σ| = 3, we now specify and formalise the approach discussed
above:

Lemma 34 Let Σ := {a, b, c}. Then for αabc and for every finite W ⊂
LΣ(αabc) there exists a passe-partout β ∈ Patq-tf,Σ .

PROOF. If W is empty then Lemma 34 holds trivially. Hence, let W :=
{w1, w2, . . . , wn} be non-empty. Then, as W ⊂ LΣ(αabc), for every wi ∈ W
there exists a substitution σi satisfying σi(αabc) = wi. Using these σi the
following procedure constructs a passe-partout β ∈ Patq-tf,Σ:

Initially, we define

β0 := γ1,0 a γ2,0 γ
2
3,0 γ

2
4,0 γ

2
5,0 γ

2
6,0 a γ7,0 a γ2,0 γ

2
8,0 γ

2
4,0 γ

2
5,0 γ

2
6,0

with γj,0 := ε for every j, 1 ≤ j ≤ 8.
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For every wi ∈W we define an inverse substitution σ̄i : Σ∗ −→ X∗ by

σ̄i(A) :=







x3i−2 , A = a ,

x3i−1 , A = b ,

x3i , A = c .

For every i = 1, 2, 3, . . . , n we now consider the following cases:

Case 1: There is no A ∈ Σ with |σi(x6)|A = 1 and |σi(tf(αabc))|A = 4.
Define γj,i := γj,i−1 σ̄i(σi(xj)) for every j, 1 ≤ j ≤ 8.

Case 2: There is an A ∈ Σ with |σi(x6)|A = 1 and |σi(tf(αabc))|A = 4.

Case 2.1: A = a.
Define γ1,i := γ1,i−1 σ̄i(σi(x1 a x2 x

2
3 x

2
4 x

2
5)) σ̄i([σi(x

2
6)/a]) ,

γ2,i := γ2,i−1 σ̄i([a\σi(x
2
6)]) ,

γ7,i := γ7,i−1 σ̄i(σi(x7 a x2 x
2
8 x

2
4 x

2
5)) σ̄i([σi(x

2
6)/a]) ,

γj,i := γj,i−1, j ∈ {3, 4, 5, 6, 8} .

Case 2.2: A = b, and therefore σi(x
2
4 x

2
5) ∈ {a, c}∗.

Case 2.2.1: σi(x
2
4 x

2
5) ∈ {a}∗ ∪ {c}∗.

Define γ4,i := γ4,i−1 σ̄i(σi(x4 x5)) ,

γ5,i := γ5,i−1 σ̄i(σi(x6)) ,

γ6,i := γ6,i−1 ,

γj,i := γj,i−1 σ̄i(σi(xj)), j ∈ {1, 2, 3, 7, 8} .

Case 2.2.2: σi(x
2
4 x

2
5) ∈ {a, c}+ \ ({a}+ ∪ {c}+).

Define γ1,i := γ1,i−1 σ̄i(σi(x1 a x2 x
2
3)) σ̄i([σi(x

2
4 x

2
5)/a]) ,

γ2,i := γ2,i−1 σ̄i([a\σi(x
2
4 x

2
5 x

2
6)]) ,

γ7,i := γ7,i−1 σ̄i(σi(x7 a x2 x
2
8)) σ̄i([σi(x

2
4 x

2
5)/a]) ,

γj,i := γj,i−1, j ∈ {3, 4, 5, 6, 8} .

Case 2.3: A = c, and therefore σi(x
2
4 x

2
5) ∈ {a, b}∗.

If, in the conditions of Cases 2.2.1 and 2.2.2, c is replaced by b then the sub-
cases and definitions of Case 2.2 exactly corresponds to what is appropriate
for Case 2.3.

Finally, define

βi := γ1,i a γ2,i γ
2
3,i γ

2
4,i γ

2
5,i γ

2
6,i a γ7,i a γ2,i γ

2
8,i γ

2
4,i γ

2
5,i γ

2
6,i .

When this has been accomplished for every i, 1 ≤ i ≤ n, then define β := βn.

Now, in order to conclude the proof, the following has to be shown: β is a
passe-partout for αabc and W , i.e.
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(1) W ⊆ LΣ(β) and
(2) LΣ(β) ⊂ LΣ(αabc).

ad 1. For every i, 1 ≤ i ≤ n, we define a substitution σ′
i by

σ′
i(xj) :=







a , j = 3i− 2 ,

b , j = 3i− 1 ,

c , j = 3i ,

ε , else .

We now demonstrate that, for every i, 1 ≤ i ≤ n, σ′
i(β) = wi. We start

by the observation that, in a sense, σ′
i is simply the inverse morphism to σ̄i.

This is guaranteed by the fact that σ′
i maps a variable xj onto ε whenever

the occurrences of xj in β result from some inverse substitution σ̄i′ satisfying
i′ 6= i. Hence, we only need to verify that, for every i, 1 ≤ i ≤ n, the relevant
variables in β occur in the same order as the corresponding letters in σi(αabc).
If σi satisfies Case 1 then this holds immediately as, for every xj ∈ var(αabc),
we apply σ̄i simply to σi(xj). If σi satisfies Case 2 then wi is ambiguous with
respect to αabc (which, e. g., can be verified by a closer look at our explanations
on the structure of αabc given below Definition 33). In this case, the application
of σ̄i does not correspond to σi but to a particular substitution τ satisfying
τ(αabc) = σi(αabc). Thus, for every i, 1 ≤ i ≤ n, the order of the variables
in β that are generated by the application of σ̄i to wi equals the order of the
respective letters in wi, and therefore σ′

i(β) = wi, which immediately implies
wi ∈ LΣ(β). Consequently, W ⊆ LΣ(β).

ad 2. As there exists a terminal-preserving morphism φ : (Σ∪X)∗ −→ (Σ∪X)∗

with φ(αabc) = β, which is given by φ(xj) := γj,n for every xj ∈ var(αabc),
LΣ(β) ⊆ LΣ(αabc) follows directly from Theorem 1.

We now prove that LΣ(β) is a proper subset of LΣ(αabc). If αabc and β are
not similar then it can be easily verified that one of the following words is
in LΣ(αabc) \ LΣ(β): baaa, abbaa, aaba or aaabb. Consequently, LΣ(αabc) 6=
LΣ(β) which implies LΣ(β) ⊂ LΣ(αabc). Hence, we turn our attention to the
case that αabc and β are similar. In this case, we wish to use Theorem 2 for
proving that LΣ(αabc) 6⊆ LΣ(β). To this end, we have to show that there is
no morphism ψ : (Σ ∪ X)∗ −→ (Σ ∪ X)∗ with ψ(β) = αabc. For that pur-
pose, assume to the contrary there is such a morphism ψ. Then, as there is
no variable in var(αabc) with more than four occurrences in αabc, ψ(xk) = ε
for all xk ∈ var(β) with |β|xk

≥ 5. With regard to the variables in var(γ6,n),
this means the following: If every letter in σi(x6) occurs more than four times
in σi(tf(αabc)) then Case 1 is satisfied and, consequently, every variable that
is added to γ6,i occurs at least five times in β. If any letter A in σi(x6) oc-
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curs exactly four times in σi(tf(αabc))—and, obviously, it must be at least
four times as |αabc |x6

= 4—then Case 2 is applied, which, enabled by the
ambiguity of wi in that case, arranges the newly added components of γ6,i

such that σ̄i(σi(A)) is shifted to a different γj,i. Consequently, |β|xk
≥ 5 for all

xk ∈ var(γ6,n) and, therefore, ψ(γ6,n) = ε 6= x6. Hence, we analyse whether
or not var(αabc) contains an anchor variable xj′ with respect to φ and ψ
(cf. Lemma 4, which can be canonically extended to terminal-preserving mor-
phisms). Evidently, j′ 6∈ {1, 7}; for j′ ∈ {3, 4, 5, 8}, xj′ being an anchor variable
implies that, for some variables xk, xk′, ψ(γ2

j′,n) = . . . xkxk′ . . . xkxk′ . . . , but
there is no substring in αabc that equals the given shape of ψ(γ2

j′,n). Finally,
x2 cannot be an anchor variable since ψ(γ2,n) had to equal both x2x3 . . . and
x2x8 . . . . Consequently, there is no anchor variable in var(αabc). This con-
tradicts ψ(γ6,n) = ε 6= x6 and therefore the assumption is incorrect. Thus,
LΣ(β) 6⊇ LΣ(αabc) and, finally, LΣ(β) ⊂ LΣ(αabc). 2

We proceed with the analogous reasoning on |Σ| = 4:

Lemma 35 Let Σ := {a, b, c, d}. Then for αabcd and for every finite W ⊂
LΣ(αabcd) there exists a passe-partout β ∈ Patq-tf,Σ.

PROOF. We can argue similar to the proof of Lemma 34: If W is empty then
Lemma 35 obviously holds true. For any non-empty W := {w1, w2, . . . , wn} ⊂
LΣ(αabcd) there exist substitutions σi, 1 ≤ i ≤ n, satisfying σi(αabcd) = wi.
With these σi we give the following procedure that constructs a passe-partout
β ∈ Patq-tf,Σ:

Initially, we define

β0 := γ1,0 aγ2,0 γ
2
3,0 γ

2
4,0 γ

2
5,0 γ

2
6,0 γ

2
7,0 γ8,0 bγ9,0 aγ2,0 γ

2
10,0 γ

2
4,0 γ

2
5,0 γ

2
6,0 γ

2
11,0 γ8,0 bγ12,0

with γj,0 := ε for every j, 1 ≤ j ≤ 12.

For every wi ∈W we define an inverse substitution σ̄i : Σ∗ −→ X∗ by

σ̄i(A) :=







x4i−3 , A = a ,

x4i−2 , A = b ,

x4i−1 , A = c ,

x4i , A = d .

For every i = 1, 2, 3, . . . , n we now consider the following cases:

Case 1: There is no A ∈ Σ with |σi(x6)|A = 1 and |σi(tf(αabcd))|A = 4.
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Define γj,i := γj,i−1 σ̄i(σi(xj)) for every j, 1 ≤ j ≤ 12.

Case 2: There is an A ∈ Σ with |σi(x6)|A = 1 and |σi(tf(αabcd))|A = 4.

Case 2.1: A = a.
Define γ1,i := γ1,i−1 σ̄i(σi(x1 a x2 x

2
3 x

2
4 x

2
5)) σ̄i([σi(x

2
6)/a]) ,

γ2,i := γ2,i−1 σ̄i([a\σi(x
2
6)]) ,

γ9,i := γ9,i−1 σ̄i(σi(x9 a x2 x
2
10 x

2
4 x

2
5)) σ̄i([σi(x

2
6)/a]) ,

γj,i := γj,i−1, j ∈ {3, 4, 5, 6, 10} ,

γj,i := γj,i−1 σ̄i(σi(xj)), j ∈ {7, 8, 11, 12} .

Case 2.2: A = b.
Define γ8,i := γ8,i−1 σ̄(σi(x

2
4 x

2
5)) σ̄i([σi(x

2
6)/b]) ,

γ9,i := γ9,i−1 σ̄i([b\σi(x
2
6 x

2
7 x8 b x9)]) ,

γ12,i := γ12,i−1 σ̄i([b\σi(x
2
6 x

2
11 x8 b x12)]) ,

γj,i := γj,i−1, j ∈ {4, 5, 6, 7, 11} ,

γj,i := γj,i−1 σ̄i(σi(xj)), j ∈ {1, 2, 3, 10} .

Case 2.3: A = c, and therefore σi(x
2
4 x

2
5) ∈ {a, b, d}∗.

Case 2.3.1: σi(x
2
4 x

2
5) ∈ {a}∗ ∪ {b}∗ ∪ {d}∗.

Define γ4,i := γ4,i−1 σ̄i(σi(x4 x5)) ,

γ5,i := γ5,i−1 σ̄i(σi(x6)) ,

γ6,i := γ6,i−1 ,

γj,i := γj,i−1 σ̄i(σi(xj)), j ∈ {1, 2, 3, 7, 8, 9, 10, 11, 12} .

Case 2.3.2: σi(x
2
4 x

2
5) ∈ {a, d}+ \ ({a}+ ∪ {d}+).

Define γ1,i := γ1,i−1 σ̄i(σi(x1 a x2 x
2
3)) σ̄i([σi(x

2
4 x

2
5)/a]) ,

γ2,i := γ2,i−1 σ̄i([a\σi(x
2
4 x

2
5 x

2
6)]) ,

γ9,i := γ9,i−1 σ̄i(σi(x9 a x2 x
2
10)) σ̄i([σi(x

2
4 x

2
5)/a]) ,

γj,i := γj,i−1, j ∈ {3, 4, 5, 6, 10} ,

γj,i := γj,i−1 σ̄i(σi(xj)), j ∈ {7, 8, 11, 12} .

Case 2.3.3: σi(x
2
4 x

2
5) ∈ {a, b, d}+ \ ({a}+ ∪ {b}+ ∪ {d}+ ∪ {a, d}+).

Define γ8,i := γ8,i−1 σ̄([σi(x
2
4 x

2
5)/b]) ,

γ9,i := γ9,i−1 σ̄i([b\σi(x
2
4 x

2
5 x

2
6 x

2
7 x8 b x9)]) ,

γ12,i := γ12,i−1 σ̄i([b\σi(x
2
4 x

2
5 x

2
6 x

2
11 x8 b x12)]) ,

γj,i := γj,i−1, j ∈ {4, 5, 6, 7, 11} ,

γj,i := γj,i−1 σ̄i(σi(xj)), j ∈ {1, 2, 3, 10} .

Case 2.4: A = d, and therefore σi(x
2
4 x

2
5) ∈ {a, b, c}∗.

If, in the conditions of Cases 2.3.1, 2.3.2 and 2.3.3, d is replaced by c then
the subcases and definitions of Case 2.3 exactly corresponds to what is
appropriate for Case 2.4.
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Finally, define

βi := γ1,i a γ2,i γ
2
3,i γ

2
4,i γ

2
5,i γ

2
6,i γ

2
7,i γ8,i b γ9,i a γ2,i γ

2
10,i γ

2
4,i γ

2
5,i γ

2
6,i γ

2
11,i γ8,i b γ12,i .

When this has been accomplished for every i, 1 ≤ i ≤ n, then define β := βn.

For the proof that β indeed is a passe-partout for αabcd and W , see the proof
of Lemma 34, mutatis mutandis. 2

Thus, we can conclude that, for an alphabet Σ with three or four letters, the
class of quasi-terminal-free E-pattern languages is not learnable:

Theorem 36 Let Σ be an alphabet, |Σ| ∈ {3, 4}. Then ePATq-tf,Σ is not in-
ferrable from positive data.

PROOF. By Lemma 34, Lemma 35 and the definition of a passe-partout,
there exists a pattern α ∈ Patq-tf,Σ such that no finite W ⊆ LΣ(α) is a tell-
tale for LΣ(α) with respect to ePATq-tf,Σ. By Theorem 3, this proves Theo-
rem 36. 2

Theorem 28 follows immediately from Theorem 36 and the fact that ePATΣ ⊇
ePATq-tf,Σ.

5.2 Some remarks on the proof

Clearly, the procedures in the proofs for Lemma 34 and Lemma 35 implement
only one out of many possibilities of constructing the passe-partouts. The def-
inition of the γj,i in Case 2.3.1 in the proof of Lemma 35, for instance, could
be separated in Cases 2.3.1.1 and 2.3.1.2 depending on the question whether
or not σi(x

2
4x

2
5) ∈ {a}+. If so then Case 2.3.1.1 could equal Case 2.3.2, pos-

sibly leading to a different passe-partout. It can be easily seen that there
are numerous other options like this. On the other hand, there are infinitely
many different succinct patterns that can act as a substitute for αabc and
αabcd in the respective lemmata. Some of these patterns, for instance, can be
constructed replacing in αabc and αabcd the substring α0 = x2

4x
2
5x

2
6 by any

α′
0 = x2

px
2
p+1 . . . x

2
p+q, p > max{j | xj ∈ var(αabcd)}, q ≥ 4. Hence, the phe-

nomenon described in Lemma 34 and Lemma 35 is fairly common in ePAT.
Therefore we give some brief considerations concerning the question for the
shortest patterns generating a language without telltale with respect to ePAT.
Obviously, even for the proof concept of Lemma 34 and Lemma 35, shorter
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patterns are suitable. In αabc, e.g., the substring x2
3 and the separating ter-

minal symbol a in the middle of the pattern can be removed without loss of
applicability; for αabcd, e.g., the substrings x2

3 and x2
7 can be mentioned. Nev-

ertheless, we consider both patterns in the given shape easier to grasp, and,
moreover, we expect that the indicated steps for shortening αabc and αabcd

lead to patterns with minimum length. More precisely, we define the patterns
αabc

′ and αabcd
′ by

αabc

′ := x1 a x2 x
2
4 x

2
5 x

2
6 x7 a x2 x

2
8 x

2
4 x

2
5 x

2
6,

αabcd

′ := x1 a x2 x
2
4 x

2
5 x

2
6 x8b x9 a x2 x

2
10 x

2
4 x

2
5 x

2
6 x

2
11 x8 b x12.

Then we conjecture that

• for Σ1 := {a, b, c}, LΣ1
(αabc

′) has no telltale with respect to ePATΣ1
,

• for Σ2 := {a, b, c, d}, LΣ2
(αabcd

′) has no telltale with respect to ePATΣ2
and

• there do not exist any shorter patterns in this property.

Finally, we wish to briefly discuss the extensibility of the proof method in
Section 5.1 to larger alphabets. We do not see any straightforward method to
extend our way of composing example patterns to |Σ| ≥ 5 and, in fact, we
conjecture the opposite of Theorem 36 to be true for the said alphabet sizes:

Conjecture 37 Let Σ be an alphabet, |Σ| ≥ 5. Then ePATq-tf,Σ is inferrable
from positive data.

For our way of reasoning on Theorem 28, the option to exclusively deal with
quasi-terminal-free patterns is vital since the decidability of the inclusion prob-
lem (as given for appropriate subclasses of ePATq-tf,Σ ; see Theorem 32) signif-
icantly facilitates any considerations on telltales and passe-partouts. Hence, if
Conjecture 37 is correct and, still, ePATtf is not learnable for alphabets with
five or more letters then the necessary argumentation might be extremely dif-
ficult. On the other hand, if ePATtf is inferrable for larger alphabets then we
anticipate that the corresponding reasoning could provide insights into com-
binatorics on terminal-preserving morphisms that should also allow to answer
the unresolved equivalence problem for E-pattern languages. For additional
information on the latter subject and its connections to the ambiguity of
terminal-preserving morphisms, see Reidenbach [28,26].

6 Conclusion

In the present paper we have examined the inferrability of E-pattern languages
from a combinatorial point of view. In Section 3 we have given two characteris-
tic criteria on the subject: The first main theorem has determined the shortest
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generators of terminal-free E-pattern languages, and it has demonstrated that
these patterns correspond to those strings which are not a fixed point of a
nontrivial morphism. The second main theorem has shown that inductive in-
ference of the full class of these languages is equivalent to a combinatorial
problem on the ambiguity of morphisms in word monoids. Using these tools,
we have proven in Section 4 that the ePATtf,Σ is inferrable from positive data
provided that |Σ| ≥ 3. Hence, referring to the negative result on |Σ| = 2 pre-
sented by Reidenbach [30], the learnability of that class is discontinuous with
respect to the alphabet size. We have explained that this counter-intuitive phe-
nomenon is caused by differences in the ambiguity of particular substitutions
(i. e. morphisms) over binary and ternary alphabets. Section 5 has demon-
strated the second discontinuity in the learnability of E-pattern languages:
the positive result on terminal-free E-pattern languages cannot be extended
to the class of general E-pattern languages if |Σ| ∈ {3, 4}. The corresponding
proof is based on the fact that terminal-preserving morphisms cause types of
ambiguity which differ from those of standard morphisms. The case |Σ| ≥ 5
has been left open.

Our combinatorial methodology has yielded several insights of intrinsic interest
into the topology of classes of E-pattern languages and into combinatorics on
words and morphisms. In particular, we have shown that, in a combinatorial
view and unlike a coding theoretical (i. e. algebraic) context, the properties of
morphisms over binary alphabets remarkably differ from those over ternary
alphabets. Additionally, we have pointed out that a deeper understanding
of general E-pattern languages requires further examinations of the special
properties (i. e., in particular, the special ambiguity) of terminal-preserving
morphisms.
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[10] T. Harju and J. Karhumäki. Morphisms. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 1, chapter 7, pages 439–510.
Springer, 1997.

[11] T. Head. Fixed languages and the adult languages of 0L schemes. International

Journal of Computer Mathematics, 10:103–107, 1981.

[12] S. Jain, D. Osherson, J.S. Royer, and A. Sharma. Systems That Learn. MIT
Press, Cambridge, MA, second edition, 1999.

[13] T. Jiang, E. Kinber, A. Salomaa, K. Salomaa, and S. Yu. Pattern languages
with and without erasing. International Journal of Computer Mathematics,
50:147–163, 1994.

[14] T. Jiang, A. Salomaa, K. Salomaa, and S. Yu. Decision problems for patterns.
Journal of Computer and System Sciences, 50:53–63, 1995.

[15] S. Lange. Algorithmic Learning of Recursive Languages. Mensch & Buch, Berlin,
2000.

[16] S. Lange and R. Wiehagen. Polynomial-time inference of arbitrary pattern
languages. New Generation Computing, 8:361–370, 1991.

[17] S. Lange and S. Zilles. Formal language identification: query learning vs. Gold-
style learning. Information Processing Letters, 91:285–292, 2004.

[18] S. Lange and S. Zilles. Relations between Gold-style learning and query
learning. Information and Computation, 203:211–237, 2005.
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