On the real zeroes of the Hurwitz zeta-function and Bernoulli polynomials

February 7, 2002

A.P.Veselov *,** and J.P.Ward *
*Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE 11 3TU, UK
** Landau Institute for Theoretical Physics, Kosygina 2, Moscow, 117940, Russia
e-mails: A.P.Veselov@lboro.ac.uk, J.P.Ward@lboro.ac.uk

Abstract. The behaviour of real zeroes of the Hurwitz zeta function

$$
\zeta(s, a)=\sum_{r=0}^{\infty}(a+r)^{-s} \quad a>0
$$

is investigated. It is shown that $\zeta(s, a)$ has no real zeroes $(s=\sigma, a)$ in the region $a>\frac{-\sigma}{2 \pi e}+\frac{1}{4 \pi e} \log (-\sigma)+1$ for large negative σ. In the region $0<a<\frac{-\sigma}{2 \pi e}$ the zeroes are asymptotically located at the lines $\sigma+4 a+2 m=0$ with integer m. If $N(p)$ is the number of real zeroes of $\zeta(-p, a)$ with given p then

$$
\lim _{p \rightarrow \infty} \frac{N(p)}{p}=\frac{1}{\pi e} .
$$

As a corollary we have a simple proof of Inkeri's result that the number of real roots of the classical Bernoulli polynomials $B_{n}(x)$ for large n is asymptotically equal to $\frac{2 n}{\pi e}$.

1 Introduction.

The classical Hurwitz zeta-function is defined for any positive real a as an analytic continuation of the series

$$
\zeta(s, a)=\sum_{r=0}^{\infty}(a+r)^{-s} .
$$

When $a=1$ it reduces to the Riemann zeta-function.

We should note that sometimes the definition of the Hurwitz zeta-function is restricted to $0<a \leq 1$ (see e.g. [1, 2]). From our point of view this is not natural and we follow the definition of the Hurwitz zeta-function from [3] where all positive a are allowed (cf. also the original Hurwitz paper [4]).

It is known (see e.g. [2], volume 1, page 27) that in the special cases when s is a negative integer this function (as a function of the parameter a) reduces, up to a factor, to a Bernoulli polynomial: explicitly when $s=-m, m=0,1,2,3, \ldots$.

$$
\zeta(-m, a)=-\frac{B_{m+1}(a)}{m+1} .
$$

The Bernoulli polynomials $B_{k}(a)$ can be defined through the generating function:

$$
\frac{z e^{z a}}{e^{z}-1}=\sum_{k=0}^{\infty} \frac{B_{k}(a)}{k!} z^{k}
$$

giving, for example:

$$
B_{0}(a)=1 \quad B_{1}(a)=a-\frac{1}{2} \quad B_{2}(a)=a^{2}-a+\frac{1}{6} \quad B_{3}(a)=a^{3}-\frac{3 a^{2}}{2}+\frac{a}{2}, \ldots
$$

Bernoulli polynomials possess many interesting properties and arise in many areas of mathematics (see [1, 2]).

Inkeri [5] proved a remarkable fact that the number $N(n)$ of real roots of the Bernoulli polynomials B_{n} for large n asymptotically equals to $\frac{2 n}{\pi e}$. More precise estimates for $N(n)$ have been found by Delange [6, 7].

In this paper we investigate the behaviour of the real zeroes of the Hurwitz zeta function $\zeta(\sigma, a)$ in the upper half-plane $a>0$. As a corollary we have a simple proof of Inkeri's result. Our approach is different from [5, 6, 7] and we believe is more elementary. It is based on the remarkable Hurwitz representation of the $\zeta(s, a)$ on the interval $0<a \leq 1$ and $\operatorname{Re}(s)=\sigma<0$:

$$
\zeta(s, a)=\frac{2 \Gamma(1-s)}{(2 \pi)^{1-s}} \sum_{r=1}^{\infty} \frac{\sin \left(2 \pi r a+\frac{1}{2} \pi s\right)}{r^{1-s}}
$$

where Γ is the Euler gamma-function (see e.g [2], volume 1, page 26).
Our main observation is that for a large negative σ this formula gives a good approximation for $\zeta(\sigma, a)$ on a much wider interval: $0<a<-\frac{\sigma}{2 \pi e}$. As a result we prove that

$$
\frac{\zeta(\sigma, a)}{Q(\sigma)}=\sin \left(2 \pi a+\frac{1}{2} \pi \sigma\right)+o(1) \quad \text { as } \quad \sigma \rightarrow-\infty \quad \text { provided } \quad 0<a<-\frac{\sigma}{2 \pi e}
$$

where $Q(s)=\frac{2 \Gamma(1-s)}{(2 \pi)^{1-s}}$. We show also that in the region $a>-\frac{\sigma}{2 \pi e}+\frac{1}{4 \pi e} \log (-\sigma)+1$ the Hurwitz zeta-function has no real zeroes for large negative σ.

Figure 1
Our results are illustrated in Figure 1 which shows the behaviour of the real zeroes of $\zeta(\sigma, a)$. Since $\frac{1}{2 \pi e}$ is a small number we have chosen different scales on the axes to make the picture more illuminating. Notice that $\zeta(s, 1)$ coincides with the Riemann zeta-function $\zeta(s)$ which only has real zeroes (for $s<0$) at negative even numbers $s=-2,-4,-6, \ldots$ Also, using the well-known identity $\zeta(s, 1 / 2)=\left(2^{s}-1\right) \zeta(s)$, we see that the only real zeroes of $\zeta(s, a)$ on $a=1$ are $s=-2,-4,-6, \ldots$ and on $a=\frac{1}{2}$ they are $s=0,-2,-4, \ldots$ As we have mentioned above when s is a non-positive integer $\zeta(s, a)$ reduces to a Bernoulli polynomial. We have used this fact to compute numerically the corresponding values of $\zeta(s, a)$ and to draw the picture in the regions II and IV. When $s=1$ the Hurwitz zeta-function has a simple pole with the residue 1 and for $\sigma=\operatorname{Re}(s)>1$ it is given by the convergent series with positive elements and therefore has no zeroes.

2 Asymptotic behaviour of the Hurwitz zetafunction $\zeta(\sigma, a)$ for large negative σ.

The Hurwitz zeta-function (or generalised Riemann zeta-function) is defined as a series

$$
\zeta(s, a)=\sum_{r=0}^{\infty}(a+r)^{-s} \quad a>0
$$

in the complex domain $\operatorname{Re}(s)>1$ and can be analytically continued to a meromorphic function in the whole complex plane with the only pole at $s=1$ (see [1],[2],[3]). When $a=1$ it reduces to the Riemann zeta-function

$$
\zeta(s)=\sum_{k=1}^{\infty} k^{-s} .
$$

The Hurwitz zeta-function can be extended to the whole of the complex s-plane through the formula

$$
\zeta(s, a)=-\frac{\Gamma(1-s)}{2 \pi \mathrm{i}} \int_{\infty}^{(0+)} \frac{(-z)^{s-1} e^{-a z}}{1-e^{-z}} \mathrm{~d} z \quad a>0
$$

in which the integral is taken over a curve starting at 'infinity' on the real axis, encircles the origin in a positive direction and returns to the starting point (see [2]). By using an alternative integral formulation for $\zeta(s, a)$ it can be shown that $\zeta(s, a)$ is analytic everywhere except for the simple pole at $s=1$.

The Hurwitz zeta-function obviously satisfies the functional relation:

$$
\begin{equation*}
\zeta(s, a)=\zeta(s, n+a)+\sum_{r=0}^{n-1}(r+a)^{-s} \quad n=1,2, \ldots \tag{1}
\end{equation*}
$$

Since each term in this relation is analytic we can assume this relation is true for the whole of the complex s plane, except for $s=1$.

In this paper we restrict ourselves to the case when s is real: $s=\sigma \in \mathbf{R}$. When σ is negative Hurwitz has found the following Fourier representation for $\zeta(\sigma, a)$ on the interval $0<a \leq 1$:

$$
\begin{equation*}
\zeta(\sigma, a)=\frac{2 \Gamma(1-\sigma)}{(2 \pi)^{1-\sigma}} \sum_{r=1}^{\infty} \frac{\sin \left(2 \pi r a+\frac{1}{2} \pi \sigma\right)}{r^{1-\sigma}} \tag{2}
\end{equation*}
$$

From this formula we see that

$$
\frac{\zeta(\sigma, a)}{Q(\sigma)}=\sin \left(2 \pi a+\frac{1}{2} \pi \sigma\right)+o(1) \quad \text { when } \quad \sigma \rightarrow-\infty
$$

where $Q(\sigma)=\frac{2 \Gamma(1-\sigma)}{(2 \pi)^{1-\sigma}}$. Our first theorem proves that this is actually true on a much larger interval.

As part of the theorem proofs we will use the following inequality for the function $S(p, n)=1^{p}+2^{p}+\ldots+n^{p}:$

$$
S(p, n)<n^{p}\left(\frac{1-e^{-p}}{1-e^{-p / n}}\right)
$$

Indeed,

$$
S(p, n)=n^{p}\left(1+\left(1-\frac{1}{n}\right)^{p}+\left(1-\frac{2}{n}\right)^{p}+\ldots+\left(1-\frac{n-1}{n}\right)^{p}\right)
$$

But since $1-x<e^{-x}$ for $x<1$ we have

$$
1-\frac{1}{n}<e^{-1 / n} \quad 1-\frac{2}{n}<e^{-2 / n} \quad \cdots \quad 1-\frac{n-1}{n}<e^{-(n-1) / n}
$$

and therefore

$$
S(p, n)<n^{p}\left(1+e^{-p / n}+e^{-2 p / n}+\ldots+e^{-(n-1) p / n}\right)=n^{p}\left(\frac{1-e^{-p}}{1-e^{-p / n}}\right)
$$

We shall also need an estimate for the sum of the series: $\sum_{r=2}^{\infty} \frac{1}{r^{1+p}}$. Now

$$
\frac{1}{2^{1+p}}+\frac{1}{3^{1+p}}+\frac{1}{4^{1+p}}+\ldots=\frac{1}{2^{p}}\left(\frac{1}{2}+\frac{1}{3}\left(\frac{2}{3}\right)^{p}+\frac{1}{4}\left(\frac{2}{4}\right)^{p}+\ldots\right)
$$

But $\left(\frac{2}{n}\right)^{p}<\frac{1}{n}$ if $p>4$ and $n \geq 3$ so we easily deduce

$$
\sum_{r=2}^{\infty} \frac{1}{r^{1+p}}<\left(\zeta(2)-\frac{3}{4}\right) 2^{-p} \quad p>4
$$

Finally, we will also make particular use of Stirling's inequality for the gamma function:

$$
(2 \pi p)^{\frac{1}{2}} p^{p} e^{-p}<\Gamma(1+p)<(2 \pi p)^{\frac{1}{2}} p^{p} e^{-p} e^{\frac{1}{12 p}} \quad p \gg 1
$$

Theorem 1. Let $\sigma=-p, p \geq 0$ and $0<a<\alpha p$ for some positive α then the Hurwitz zeta-function satisfies the inequality

$$
\begin{equation*}
\left|\frac{\zeta(-p, a)}{Q(-p)}-\sin \left(2 \pi a-\frac{1}{2} \pi p\right)\right|<C_{1} p^{-1 / 2}(2 \pi e \alpha)^{p}+C_{2} 2^{-p} \tag{3}
\end{equation*}
$$

where C_{1}, C_{2} are constants, which do not depend on p. In particular, on the interval $0<a<\frac{1}{2 \pi e} p$ we have the asymptotic behaviour

$$
\frac{\zeta(-p, a)}{Q(-p)}=\sin \left(2 \pi a-\frac{1}{2} \pi p\right)+o(1) \quad \text { when } \quad p \rightarrow \infty .
$$

Proof

Let us represent a as $n+b, \quad 0<b \leq 1$ and with n integer. It follows from the functional relation (1) that

$$
\left|\frac{\zeta(\sigma, a)}{Q(\sigma)}-\frac{\zeta(\sigma, b)}{Q(\sigma)}\right|=\left|\frac{\zeta(\sigma, n+b)}{Q(\sigma)}-\frac{\zeta(\sigma, b)}{Q(\sigma)}\right| \leq \frac{1}{|Q(\sigma)|} \sum_{r=0}^{n-1}(r+b)^{-\sigma}
$$

Since $0<b \leq 1$ we obviously have

$$
\sum_{r=0}^{n-1}(r+b)^{-\sigma} \leq S(p, n) \quad 0<p=-\sigma
$$

and, as we obtained above,

$$
S(p, n)<n^{p}\left(\frac{1-e^{-p}}{1-e^{-p / n}}\right) .
$$

Also, from the Stirling formula for the Γ-function we have the following asymptotically exact inequality $\Gamma(1+p)>(2 \pi p)^{1 / 2} p^{p} e^{-p}$ and therefore

$$
\frac{1}{Q(-p)}=\frac{(2 \pi)^{1+p}}{2 \Gamma(1+p)}<\left\{\frac{2 \pi e}{p}\right\}^{p} \frac{\pi}{\sqrt{2 \pi p}}
$$

Thus for a large p

$$
\begin{align*}
\left|\frac{\zeta(-p, a)}{Q(-p)}-\frac{\zeta(-p, b)}{Q(-p)}\right|< & \left\{\frac{2 \pi e n}{p}\right\}^{p} \frac{\pi}{\sqrt{2 \pi p}}\left(\frac{1-e^{-p}}{1-e^{-p / n}}\right) \\
& <\left\{\frac{2 \pi e n}{p}\right\}^{p} \frac{\pi}{\sqrt{2 \pi p}} \frac{1}{\left(1-e^{-\frac{1}{\alpha}}\right)} \quad \text { if } \quad \frac{n}{p}<\alpha \tag{4}
\end{align*}
$$

which is true since $\frac{n}{p}<\frac{a}{p}<\alpha$ by assumption.
However, from Hurwitz' formula (2) it follows that
$\frac{\zeta(-p, b)}{Q(-p)}=\sum_{r=1}^{\infty} \frac{\sin \left(2 \pi r b-\frac{1}{2} \pi p\right)}{r^{1+p}}=\sin \left(2 \pi b-\frac{1}{2} \pi p\right)+\frac{\sin \left(4 \pi b-\frac{1}{2} \pi p\right)}{2^{1+p}}+\frac{\sin \left(6 \pi b-\frac{1}{2} \pi p\right)}{3^{1+p}}+\ldots$.
Therefore
$\left|\frac{\zeta(-p, b)}{Q(-p)}-\sin \left(2 \pi b-\frac{1}{2} \pi p\right)\right|=\left|\frac{\zeta(-p, b)}{Q(-p)}-\sin \left(2 \pi a-\frac{1}{2} \pi p\right)\right|<\sum_{r=2}^{\infty} r^{-p-1}<\left(\zeta(2)-\frac{3}{4}\right) 2^{-p}$
if $p>4$. The estimates (4) and (5) imply the theorem.
By a slight modification of the previous arguments we can prove the following result.
Theorem 2 In the region

$$
a>\frac{p}{2 \pi e}+\frac{1}{4 \pi e} \log p+1
$$

$\zeta(-p, a)$ is negative if p is sufficiently large.
Proof From the same functional relation (1)

$$
\frac{\zeta(-p, a)}{Q(-p)}<\frac{\zeta(-p, b)}{Q(-p)}-\frac{(a-1)^{p}}{Q(-p)}
$$

Now assuming that p is sufficiently large we can use Stirling's inequality $\Gamma(1+p)<$ $\sqrt{2 \pi p}\left(\frac{p}{e}\right)^{p} e^{\frac{1}{12 p}}$, so

$$
Q(-p)=\frac{2 \Gamma(1+p)}{(2 \pi)^{1+p}}<\frac{\sqrt{2 \pi p}}{\pi}\left(\frac{p}{2 \pi e}\right)^{p} e^{\frac{1}{12 p}}
$$

However, we know from the Hurwitz formula, that when $p \rightarrow \infty$

$$
\frac{\zeta(-p, b)}{Q(-p)}=\sin \left(2 \pi b-\frac{1}{2} \pi p\right)+o(1)
$$

Therefore if $\frac{(a-1)^{p}}{Q(-p)}>1$ and p large enough then $\zeta(-p, a)<0$. But as we have shown

$$
\frac{(a-1)^{p}}{Q(-p)}>\left(\frac{2 \pi e(a-1)}{p}\right)^{p} \sqrt{\frac{\pi}{2 p}} e^{-\frac{1}{12 p}}
$$

which is greater than 1 if

$$
a-1>\frac{p}{2 \pi e}\left(\frac{2 p}{\pi}\right)^{\frac{1}{2 p}} e^{\frac{1}{12 p^{2}}}=\frac{p}{2 \pi e} e^{\left\{\frac{(\log 2 p-\log \pi)}{2 p}+\frac{1}{12 p^{2}}\right\}}
$$

Now, using the inequality $e^{x}<1+x+x^{2}$ for sufficiently small x we find that to guarantee that $\frac{(a-1)^{p}}{Q(-p)}>1$ it is enough to demand that

$$
a>\frac{p}{2 \pi e}+\frac{1}{4 \pi e} \log p+1 .
$$

This implies the theorem.

3 The Real Zeroes of the Hurwitz Zeta-function and Bernoulli Polynomials.

Let us now fix $\sigma=-p$ and consider $\zeta(-p, a)$ as a function of a. It follows from theorem 2 that the zeroes of this function for large p are located in the interval $0<$ $a<\frac{p}{2 \pi e}+\frac{1}{4 \pi e} \log p+1$. For given p let $N(p)$ be the number of real zeroes of $\zeta(-p, a)$, and $A(p)$ be the largest of these zeroes.
Theorem 3 For p sufficiently large

$$
\begin{gather*}
\frac{p-1}{2 \pi e}-\frac{1}{2}<A(p)<\frac{p}{2 \pi e}+\frac{1}{4 \pi e} \log p+1 \tag{6}\\
\frac{p-1}{\pi e}-1<N(p)<\frac{p-1}{\pi e}+\frac{1}{2} \log p+2 \pi e+2 \tag{7}
\end{gather*}
$$

The zeroes of $\zeta(-p, a)$ on the interval $0<a<\frac{p-1}{2 \pi e}$ are simple and close to the half-integer lattice: $a=\frac{p}{4}+\frac{l}{2}, \quad l \in \mathbf{Z}$.

Proof Let us introduce the function $Z_{p}(a)=\frac{\zeta(-p, a)}{Q(-p)}$. From theorem 1 it follows that

$$
Z_{p}(a)=\sin \left(2 \pi a-\frac{1}{2} \pi p\right)+o(1)
$$

on the interval $I_{p}: 0<a<\frac{p}{2 \pi e}$ when $p \rightarrow \infty$. Actually this is true also for the $k^{\text {th }}$ derivative of $Z_{p}(a)$ but on a smaller interval I_{p-k}. Indeed, from the definition of the Hurwitz zeta-function we see that

$$
\frac{\partial}{\partial a} \zeta(s, a)=(-s) \zeta(s+1, a)
$$

From the property of the Γ-function $\Gamma(p+1)=p \Gamma(p)$ it follows that

$$
Q(-p)=\frac{2 \Gamma(1+p)}{(2 \pi)^{1+p}}=\frac{p}{2 \pi} Q(-p+1)
$$

Thus the derivative of $Z_{p}(a)$ is equal to

$$
Z_{p}^{\prime}(a)=2 \pi Z_{p-1}(a)=2 \pi \sin \left(2 \pi a-\frac{1}{2} \pi(p-1)\right)+o(1)=2 \pi \cos \left(2 \pi a-\frac{1}{2} \pi p\right)+o(1)
$$

on the interval I_{p-1}. Similarly we have for the $k^{\text {th }}$ derivative of $Z_{p}(a)$

$$
Z_{p}^{(k)}(a)=\sin ^{(k)}\left(2 \pi a-\frac{1}{2} \pi p\right)+o(1)
$$

on the interval I_{p-k}.
In particular, on the interval I_{p-1} the function $Z_{p}(a)$ (and its derivative) tend to $\sin \left(2 \pi a-\frac{1}{2} \pi p\right)$ (and its derivative) when $p \rightarrow \infty$ which ensures that for large p all the roots of $\zeta(-p, a)$ on this interval are simple and located near the points $a=\frac{p}{4}+\frac{l}{2} \quad l \in \mathbf{Z}$. This implies the last statement of the theorem and the lower estimates of (6) and (7).

The upper estimates for $A(p)$ follows directly from theorem 2. To prove the upper estimates for $N(p)$ we need the following simple lemma.
Lemma If a function $f(x)$ (with a continuous $n^{\text {th }}$ derivative) on some interval (a, b) has the property that the sign of the $n^{\text {th }}$ derivative is constant throughout the interval then f has no more than n roots on this interval.

Now we apply this lemma to the function $Z_{p}(a)$ on the interval $J_{p}:\left(\frac{p-1}{2 \pi e}, \frac{p}{2 \pi e}+\right.$ $\left.\frac{1}{4 \pi e} \log p+1\right)$ to estimate the number of roots there. The idea of this calculation is clear from Figure 2 (in which $\kappa \equiv \frac{1}{2 \pi e}$).

Figure 2
Using the fact that

$$
Z_{p}^{(n)}(a)=(2 \pi)^{n} Z_{p-n}(a)
$$

we differentiate $Z_{p}(a)$ many times until we have a negative function and then apply the lemma. As one can see from Figure 2 if $n>[y]$ then $Z_{p}^{(n)}(a)$ will be negative in the interval J_{p} and, as such, cannot have more than n simple roots in this interval. Now y is the solution to the equation

$$
\kappa\left((p-y)+\frac{1}{2} \log (p-y)\right)+1=\kappa(p-1)
$$

or

$$
-y+\frac{1}{2} \log (p-y)+\left(\kappa^{-1}+1\right)=0
$$

We claim that the solution to this equation for large p satisfies the inequality

$$
y<\frac{1}{2} \log p+2 \pi e+1
$$

Indeed the function $F(y)=-y+\frac{1}{2} \log (p-y)+(2 \pi e+1)$ is monotonically decreasing and

$$
\begin{aligned}
F\left(\frac{1}{2} \log p+2 \pi e+1\right) & =-\frac{1}{2} \log p-2 \pi e-1+\frac{1}{2} \log \left(p-\frac{1}{2} \log p-2 \pi e-1\right)+(2 \pi e+1) \\
& =\frac{1}{2} \log \left(1-\frac{1}{2 p} \log p-\frac{2 \pi e+1}{p}\right)<0
\end{aligned}
$$

for large p. Thus according to the lemma $Z_{p}(a)$ has no more than $\frac{1}{2} \log p+2 \pi e+1$ roots on the interval $\left(\frac{p-1}{2 \pi e}, \frac{p}{2 \pi e}+\frac{1}{4 \pi e} \log p+1\right)$. Since on the interval $\left(0, \frac{p-1}{2 \pi e}\right]$ we have no more than $\frac{p-1}{\pi e}+1$ zeroes this proves theorem 3 .

As we have already mentioned, when $p=-\sigma=m, m \in \mathbf{Z}^{+}$the Hurwitz-zeta function reduces to certain polynomials related in a simple way to the Bernoulli polynomials:

$$
\begin{equation*}
\zeta(-m, a)=-\frac{B_{m+1}(a)}{m+1} \tag{8}
\end{equation*}
$$

Theorem 3 applied to these special values of p gives some estimates on the real positive roots of the Bernoulli polynomials but because of their well-known symmetry properties:

$$
\begin{equation*}
B_{m}(1-a)=(-1)^{m} B_{m}(a) \tag{9}
\end{equation*}
$$

we can immediately extend this result for all real roots of $B_{m}(a)$. In particular if $\mathbf{N}(m)$ is the number of all real roots of $B_{m}(a)$ and $\mathbf{A}(m)$ is the largest of these roots then from Theorem 3 it follows that for a large m

$$
\begin{align*}
& \frac{m}{2 \pi e}-\left(\frac{1}{\pi e}+\frac{1}{2}\right)<\mathbf{A}(m)<\frac{m}{2 \pi e}+\frac{1}{4 \pi e} \log m+\left(1-\frac{1}{2 \pi e}\right) \tag{10}\\
& \frac{2 m}{\pi e}-\left(\frac{2}{\pi e}+2\right)<\mathbf{N}(m)<\frac{2 m}{\pi e}+\log m+\left(4 \pi e+3-\frac{4}{\pi e}\right) \tag{11}
\end{align*}
$$

Corollary (K. Inkeri).

$$
\lim _{m \rightarrow \infty} \frac{\mathbf{N}(m)}{m}=\frac{2}{\pi e}, \quad \lim _{m \rightarrow \infty} \frac{\mathbf{A}(m)}{m}=\frac{1}{2 \pi e} .
$$

Remark. H. Delange in $[6,7]$ has found sharper estimates for $\mathbf{A}(m)$ and $\mathbf{N}(m)$. In particular he showed that the additional logarithmic terms exist in both upper and lower bounds. This should be true also for the real zeroes of the Hurwitz zeta-function but it does not follow from our elementary arguments.

Acknowledgements. We are grateful to John Gibbons and Peter Shiu for helpful and stimulating discussions.

References

[1] E.T.Whittaker and G.N.Watson, A Course of Modern Analysis., Cambridge University Press, 1963.
[2] A.Erdelyi (Editor) Higher Transcendental Functions., Vol.1-3. McGrawHill Book Company, 1953.
[3] G.E. Andrews, R. Askey, R. Roy Special Functions. Encyclopedia of Mathematics and its Applications. 71. Cambridge Univ. Press, 1999.
[4] A.Hurwitz Einige Eigenschaften der Dirichlet'schen Functionen $F(s)=$ $\Sigma\left(\frac{D}{n}\right) \frac{1}{n^{s}}$, die bei der Bestimmung der Classenzahlen binärer quadratischer Formen auftreten. Zeitschrift für Math. und Phys., XXVII (1882), 86-101.
[5] K. Inkeri The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I, 37 (1959), 3-19.
[6] H. Delange Sur les zéros réels des polynomes de Bernoulli. C.R. Acad. Sc. Paris, série I, 303 (1986), 539-542.
[7] H. Delange Sur les zéros réels des polynomes de Bernoulli. Ann. Inst. Fourier, Grenoble, 41, 2 (1991), 267-309.

