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Abstract: Wave group dynamics is studied in the framework of the extended

Korteweg-de Vries equation. The nonlinear Schrodinger equation is derived for

weakly nonlinear wave packets, and the condition for modulational instability

is obtained. It is shown that wave packets are unstable only for a positive sign

of the coe�cient of the cubic nonlinear term in the extended Korteweg-de Vries

equation, and for a high carrier frequency. At the boundary of this parameter

space, a modi�ed nonlinear Schrodinger equation is derived, and its steady-state

solutions, including an algebraic soliton, are found. The exact breather solution

of the extended Korteweg-de Vries equation is analyzed. It is shown that in

the limit of weak nonlinearity it transforms to a wave group with an envelope

described by soliton solutions of the nonlinear Schrodinger equation and its

modi�cation as described above. Numerical simulations demonstrate the main

features of wave group evolution and show some di�erences in the behavior of

the solutions of the extended Korteweg-de Vries equation, compared with those

of the nonlinear Schrodinger equation.

1 Introduction

Long-wave weakly nonlinear models are very popular in many physical �elds,

notably for the dynamics of strati�ed 
ows in the ocean and atmosphere. They

have been derived for various environmental conditions of the density and shear


ow strati�cation. The famous Korteweg-de Vries equation is the basic model

obtained at the leading order of a perturbation theory based on the small pa-

rameters of nonlinearity (amplitude is less than a characteristic depth scale)

and dispersion (wavelength is more than this depth scale). For certain envi-

ronmental conditions, the coe�cient of the quadratic nonlinear term is close to
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zero (for instance, when the pycnocline lies at the middle depth in a two-layer

model of density strati�cation). In such cases the cubic nonlinear term in the

second order of perturbation theory should be included, so that the extended

Korteweg-de Vries equation is obtained. It contains both quadratic and cubic

nonlinearity, and is given by

@u

@t
+ �u

@u

@x
+ �u2

@u

@x
+ �

@3u

@x3
= 0; (1)

where u(x; t) is the amplitude of the relevant wave mode (e.g. u may be the

vertical displacement of pycnocline), x is a horizontal coordinate and t is time.

The coe�cients of this equation are obtained from the environmental density

and shear 
ow strati�cation. It is important to note that the dispersion coe�-

cient � is always positive, but that the nonlinear coe�cients, � and �, can have

either sign. The review paper by Grimshaw [5] discusses the derivation of the

extended Korteweg-de Vries equation (1) from the governing equations of the


uid motion, and also gives the expressions for all these coe�cients.

The extended Korteweg-de Vries equation is a fully integrable model. A

simple shift in the wave variable u transforms it to the modi�ed Korteweg-de

Vries equation
@v

@t
+ �v2

@v

@y
+ �

@3v

@y3
= 0; (2)

where v = u+�=2�, y = x+�2t=2�2. Its dynamics is determined by the sign of

� (assuming that � > 0). If � < 0, the modi�ed Korteweg-de Vries equation can

be reduced to the Korteweg-de Vries equation through the Miura transformation

[11]. No soliton solution (vanishing at in�nity) exists in this case, but they can

exist on a pedestal. Taking into account that the transformation from (1) to (2)

also contains a pedestal, soliton solutions which are bounded at in�nity, exist

in the framework of the extended Korteweg-de Vries equation. The polarity

of this soliton is determined by the sign of the coe�cient � of the quadratic

nonlinear term. The amplitude is bounded by Alim = ��=� and in this limiting

case, the soliton becomes \thick" i.e. its width tends to in�nity. Recently, the

interaction of \thick" and \thin" solitons was studied by Slunyaev & Pelinovsky

[18]; a small soliton moving through a soliton of limiting amplitude changes its

polarity.

If � > 0, the wave dynamics is completely di�erent. In particular, the soliton

of the extended Korteweg-de Vries equation can have either polarity, but the

soliton amplitude whose polarity is opposite in sign to the coe�cient � of the

quadratic nonlinear term, should exceed (in modulus) the minimal value Aal =

�2�=�. The last case corresponds to an algebraic standing soliton. Additionally,
the extended Korteweg-de Vries equation, with a positive coe�cient � of the

cubic nonlinear term, has solutions in the form of oscillating packets (breathers),

whose analytical expressions were found by Pelinovsky & Grimshaw [14]. They

showed also that the algebraic soliton is unstable transforming into a breather

due to structural instability. The generation of solitons and breathers from an

initial disturbance for the case � = 0 recently was studied by Clarke et al., [3].
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If the extended Korteweg-de Vries equation is weakly perturbed (for instance,

through variable coe�cients), the soliton can transform into a breather and vice

versa [7].

The dynamics of quasi-periodic disturbances in the framework of these long

wave models is much less well understood. First we note the work by Zakharov

& Kuznetsov [20] who obtained the nonlinear Schrodinger equation from the

Korteweg-de Vries equation for weakly nonlinear wave packets. They showed

that a wave group should demodulate. Numerical simulation of wind wave

groups in shallow water, based on the Korteweg-de Vries equation, demonstrate

the demodulation of wave groups for various amplitudes [19], [17]. It was shown

that the envelope of a wave packet of moderate amplitudes varies signi�cantly,

becomes asymmetric and the wave packet splits into several groups with di�erent

carrier frequencies. Interesting examples of nonlinear wave focusing in shallow

water are presented by Pelinovsky et al., [15] with application to the \freak"

wave phenomenon. The nonlinear Schrodinger equation was also derived from

the extended Korteweg-de Vries equation by Parkes [12], but the dynamics of

the wave packets in this case was not investigated.

The aim of this paper is to study the dynamics of modulated wave groups

in the framework of the extended Korteweg-de Vries equation. Both signs of

the coe�cient � of the cubic nonlinear term are taken into account. For the

limiting case of weakly nonlinear waves a nonlinear Schrodinger equation for

the wave envelope is derived from the extended Korteweg-de Vries equation

(section 2). The condition for modulational instability is found, and the wave

group is unstable only when the coe�cient of the cubic nonlinear term, �, is
positive and the carrier wavenumber is large. If the wavenumber is less than kcr
(kcr =

p
�2=6��) the wave packet is stable. A modi�ed Schrodinger equation

is derived for wave parameters at the boundary of this parameter space (sec-

tion 3). Steady-state solutions of this equation describing envelope solitons are

found. It is shown that if the carrier wavenumber is less than kcr the soliton

exists only when its amplitude exceeds the minimal value corresponing to the al-

gebraic soliton. The exact breather solution of the extended Korteweg-de Vries

equation is analysed in the weakly nonlinear limit (section 4). It is shown that

this breather describes a wave group with an envelope of the form of the soliton

of the modi�ed nonlinear Schrodinger equation. Numerical simulations of the

extended Korteweg-de Vries equation and the nonlinear Schrodinger equation

are described in section 5. These simulations demonstrate the main features

of wave group dynamics: demodulation of the wave packet, or its self modula-

tion with formation of envelope solitons and breathers. The dynamics of wave

groups within the extended Korteweg-de Vries equation is \richer" than that

predicted by the nonlinear Schrodinger equation, in particular, wave packets

develop asymmetry of the wave envelope during the evolution process. Further,

wave packets may separate out.
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2 Dynamics of weakly nonlinear wave packets

First, the dynamics of very weak disturbances should be considered. In this case,

the nonlinear terms in equation (1) are of less importance than the dispersive

term. Such a situation typically produces the nonlinear Schrodinger equation

for the envelope of quasi-sinusoidal waves. The applicability of the nonlinear

Schrodinger equation in this context is well known (see, for instance, Ablowitz

& Segur [1]). In particular, the link between the classical Korteweg-de Vries

equation, as well as the extended Korteweg-de Vries equation, and the nonlinear

Schrodinger equation was studied by Zakharov & Kuznetsov [20] and Parkes

[12] respectively. Here we derive the nonlinear Schrodinger equation from the

extended Korteweg-de Vries equation (1) using a slightly di�erent asymptotic

procedure to that of [12].

A solution of the extended Korteweg-de Vries equation is sought in the form

u(x; t) = �A(X;T ) exp(i�) + �2A2(X;T ) exp(2i�)+ c:c+ �2A0(X;T ) + :::; (3)

where � = kx � !t, ! = ��k3, X = �x, T = �t, � << 1 and c.c. is the com-

plex conjugate. After substitution of (3) into (1), we obtain a set of equations

corresponded to the di�erent carrier harmonics. For the �rst harmonic it is

�2
�
@A

@T
+ cg

@A

@X

�
+ �3

�
i3�k

@2A

@X2
+ i�k(A2A

� +A0A) + i�kjAj2A
�
+ ::: = 0;

(4)

where cg = �3�k2 is the group velocity of the basic wave. Introducing the

system of coordinates moving with group velocty, � = X � cgT and � = �T ,
equation (4) becomes, to an accuracy of 0(�4) as

@A

@�
+ i3�k

@2A

@�2
+ ik�(A2A

� + A0A) + ik�jAj2A = 0: (5)

For the second harmonic we obtain

�2
�
(�2i! � 8i�k3)A2 + ik�A2

�
+ ::: = 0; (6)

and with the same accuracy

A2 =
�

6�k2
A2: (7)

For the mean wave component similarly obtain

�3
�
@A0

@T
+ �

@jAj2

@X

�
+ ::: = 0: (8)

Taking into account that @=@T = �cg@=@X is at the leading order, equation

(8) may be solved with the same accuracy to give

A0 =
�

cg
jAj2 = �

�

3�k2
jAj2: (9)
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Consequently, equation (5) becomes the classical nonlinear Schrodinger equa-

tion,

i
@A

@�
= 3�k

@2A

@�2
+ k�jAj2A; (10)

where

� = � �
�2

6�k2
: (11)

The nonlinear Schrodinger equation is a well-known model for the evolution

of weakly nonlinear quasi-harmonic wave packet. The character of the wave

dynamics, as is well known, depends on the sign of the Lighthill parameter,

L = 3��k; (12)

If it is negative, the wave packet is stable and demodulates; if it is positive,

a plane wave is unstable and modulational instability (the Benjamin-Feir in-

stability) develops. For surface and internal waves � > 0, and the sign of the

Lighthill parameter depends on the sign of nonlinear coe�cients. In particular,

the classic Korteweg-de Vries equation with no cubic nonlinear term (� = 0)

has no modulational instability for any sign of � [20]. The same result can be

obtained for shallow water waves from the full hydrodynamic equations, see for

instance, [1]. A negative coe�cient of the cubic nonlinear term (� < 0) leads

to negative values of the nonlinear coe�cient � in (10) and waves are stable.

The coe�cient, � is negative for internal waves in a two-layer 
uid [9], and,

thus weakly nonlinear interfacial waves are always stable. A positive sign of the

coe�cient � may appear for internal waves in the three-layer 
uid [6], and the

modulational instability is possible when

k >
j�j
p
6��

: (13)

In particular, when equation (1) reduces to the modi�ed Korteweg-de Vries

equation (� = 0), the stability criterion does not contain the wavenumber,

and plane waves of any carrier wavelength are stable if � < 0 and unstable, if

� > 0. When the coe�cient of the quadratic nonlinear term di�ers from zero,

modulational instability exists only for high-frequency wave packets, see (13).

It is convenient to introduce new variables,

A1 =

s
j�j
6j�j

A; � = �3�k�; (14)

as that the nonlinear Schrodinger equation (10) reduces to the canonical form

i
@A1

@�
+
@2A1

@�2
� 2jA1j2A1 = 0: (15)

where the sign in front of the nonlinear cubic term coincides with the sign of

��.
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The case of a positive nonlinear term in equation (15) is the more interesting

from a physical point of view due to the modulational instability mentioned

above. The characteristic scales of this instability are the width �K of the

unstable domain in the envelope wavenumber space, the optimal wavenumber

K and the maximum value 	 for increment of the Benjamin-Feir instability,

given by

�K = 2A10; K =
p
2A10; 	 = 2A2

10
; (16)

where A10 is the amplitude of plane unperturbed wave(see, e.g. 14). Also, we

give here the expression for the envelope soliton

A1(�; �) = Dsech(D�) (17)

with arbitrary amplitude, D. It is important to mention that on the boundary

in parameter space of the modulational instability, � ! 0, the soliton amplitude

in the physical variables tends to the in�nity as ��1=2, see (14), and the wave

group collapses.

The nonlinear Schrodinger equation may be solved exactly using the inverse

scattering method [1], [11]. We give here only a few important exact solutions;

these are the rational breather [16],

A1(�; �) =

�
1�

4(1 + 4i�)

1 + 4�2 + 16�2

�
exp(2i�); (18)

the time periodical breather [10],

A1(�; �) =
cos(
� � 2i') � cosh(') cosh(p�)

cos(
�)� cosh(') cosh(p�)
exp(2i�); (19)

where p = 2 sinh('), 
 = 2 sinh(2') and ' is free real parameter, and the space

periodical breather [2],

A1(�; �) =
cosh(
� � 2i')� cos(') cos(p�)

cosh(
�) � cos(') cos(p�)
exp(2i�); (20)

where p = 2 sin('), 
 = 2 sin(2') and ' is again a free real parameter. In fact,

(19) and (20) are equivalent and are special cases of a more general solution

in which ' is allowed to be complex in either expression, while the rational

breather can be obtained in the limit ' ! 0. The breather solutions of the

nonlinear Schrodinger equation play an important role in understanding the

nonlinear origin of the \freak" wave phenomenon on the sea surface where the

wave amplitude can be ampli�ed up to three times [4], [8]. All these solutions can

be used to test numerical solutions of the extended Korteweg-de Vries equation.

3 Modi�cation of the nonlinear Schrodinger equ-

ation in the transition zone

The case when the coe�cient � of the cubic nonlinear term in (10) is close to

zero, i.e. k � j�j=
p
6��, needs special consideration. A general approach to
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obtain a modi�ed nonlinear Schrodinger equation is described in [12]. Here we

use a slightly di�erent asymptotic method to produce the modi�ed nonlinear

Schrodinger equation and obtain its solutions. When we continue the series (3)

up to 0(�3), including the third harmonic terms, introduce to re-scaled coordi-

nates, � = �(X � cgT ), � = �3T , and replace � with �2�, then equation (4) for

amplitude of the �rst harmonic transforms to

@A

@�
+ 3i�k

@2A

@�2
+
ik

�2
�
� (AA0 +A�A2) + �jAj2A

�
+

+ik
�
�A�

2
A3 + �

�
A2

0
A+A�2A3 + 2A0A

�A2 + 2AjA2j2
��

= 0 (21)

where the amplitudes of the zero, second and third harmonics can be found

from the counterparts of equations (6) and (8)

3�k2
@A0

@�
+ �2

@A0

@�
+

+
@

@�

n
�jAj2 + �2

h�
2

�
A2

0
+ 2jA2j2

�
+ �

�
2A0jAj2 + A�2A2 +A2A�

2

�io
= 0

(22)

�ik
�
6�k2A2 � �A2

�
+ �2

@

@�

h
�9�k2A2 +

�

2
A2

i
+

+2ik�2
�
� (A0A2 + A�A3) + �

�
A0A

2 + 2jAj2A2

��
= 0 (23)

�8�k2A3 + �AA2 +
�

3
A3 = 0 (24)

Using the condition that in the transition zone � � �2=6�k2 with an accuracy

of �2, the solutions of the last three equations have the following form

A3 =
�2

�2
A3 (25)

A2 =
�

6�k2
A2 � �2

�
2
�3

�3
A2jAj2 +

�

ik�

@

@�
A2

�
(26)

A0 = �
�

3�k2
jAj2 + �2

�
�
2�3

�3
jAj4 + Â0

�
(27)

where
@Â0

@�
=

4�2

�3
@

@�
jAj2 (28)

As a result, equation (21) becomes

@A

@�
+ 3ik�

@2A

@�2
+ ik�jAj2A � �A�

@

@�
A2 + ik�AÂ0 = 0 (29)

7



Calculating @jAj2=@� from (29) and substituting into (28), we �nd that

Â0 =
4�3

�3
jAj4 �

12ik��2

�3

�
A�

@A

@�
� A

@A�

@�

�
: (30)

As a result, the modi�ed nonlinear Schrodinger equation becomes

@A

@�
+ 3i�k

@2A

@�2
+ ik�jAj2A+ 4ik

�3

�2
jAj4A � 2�A2

@A�

@�
= 0: (31)

It is convenient to transform (31) to

i
@A

@�
=

@2A

@�2
+ �jAj2A+ �jAj4A + i
A2

@A�

@�
: (32)

using the following transformation

� = 3�k�; � =
�

3�
; � =

4�3

3��2
; 
 =

2�

3�k
(33)

Equations of the form (32) have been derived in several physical context (e.g.

[12] ).

The two additional two nonlinear terms in the modi�ed nonlinear Schrodinger

equation change the dynamics of large-amplitude wave groups. In particular,

presenting the complex wave amplitude in the form A = (B0+ b) exp(i(�0+�),

where �0 = (��B2

0
+ �B4

0
)t, we obtain the dispersion relation for a weak per-

turbation of the nonlinear plane wave (b;� � exp(i(
t �Kx))


2 = �(2�B2

0
+ 4�B4

0
� 
2B4

0
)K2 +K4: (34)

Modulational instability occurs if

2�+ (4� � 
2)B2

0
> 0: (35)

Here (4��
2) > 0 (see 33) and therefore modulational instability can only occur

for � > 0 (i.e. � > 0) for any amplitude. But if � < 0 (� < 0) modulational

instability can only occur if the wave amplitude exceeds the critical value

jAj > Acr =

s
2j�j

4� � 
2
=

r
j�j�2

4�3
: (36)

Soliton solutions of equation (32) can be found analytically. The complex

function A should be presented in form

A(�; �) = B(�) exp i
�
�(�) �Q2�

�
(37)

After substitution in (32), we readily obtain the following relation between the

amplitude and phase,

� = �



4

Z
B2d�; (38)
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while the amplitude B is given by the ordinary di�erential equation

d2B

d�2
�Q2B + �B3 + �B5 = 0; (39)

where

� = � �
5

16

2 =

�3

2��2
> 0: (40)

The solution of (39) gives the soliton,

B =
2Qr

�+

q
�2 + 16�Q2

3
cosh(2Q�)

(41)

If � > 0 the soliton amplitude varies from zero to in�nity. In the small-amplitude

limit, the expression (41) transforms to the envelope soliton (17), and for large

amplitudes the soliton reduces to

B =

s p
3=�Q

cosh(2Q�)
: (42)

The same expression is obtained exactly when � = 0 (the boundary of the

Benjamin-Feir instability domain). The energy (momentum) of this soliton

does not depend on the wave amplitude. Usually, such solutions are sensitive

to external perturbation terms to (31) and structurally unstable [13], but this

analysis is beyond the scope of this paper.

For � < 0 (outside of the Benjamin-Feir instability zone) the soliton exists

only if its amplitude exceeds the critical value

Bmin =

s
3j�j
2�

=

r
j�j�2

�3
: (43)

This condition can be expressed through K = k � kcr(kcr = �2=6��)

Bmin =
�

�

s
2jKj
kcr

: (44)

It is important to note that this minimal soliton amplitude exceeds twice the

critical value for the Benjamin-Feir instability. In this limit the soliton trans-

forms into the algebraic form

B =

s
6j�j

4�+ 3�2�2
: (45)

For large amplitudes the soliton is again given by (42). When j�j is large, the
soliton amplitude is also large and the weak-amplitude approximation falls.
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4 The breather solution of the extended Korteweg-

de Vries equation

The asymptotic analysis of wave group dynamics in the weakly nonlinear limit

described in the previous two sections can be compared with exact solutions of

the extended Korteweg-de Vries equation (1) representing nonlinear wave groups

(i.e. breathers). In the framework of the canonical modi�ed Korteweg-de Vries

equation it has been shown that breathers exist only for a positive sign of the

coe�cient � of the cubic nonlinear term. Taking into account that the extended

Korteweg-de Vries equation can be reduced to the modi�ed Korteweg-de Vries

equation, breathers should also exist only for � > 0. The expected solutions

for breathers in the framework of (1) were obtained by Pelinovsky & Grimshaw

[14] for this case and for any value of the coe�cient � of the quadratic nonlinear

term. It has the following form (for simplicity, � = 1, � = 12q, � = 6, where q
is arbitrary),

u = 2
@

@x
tan�1

l cosh(	) cos(�) � k cos(�) sinh(�)

l sinh(	) sin(�) + k sin(�) cosh(�)
; (46)

where � and � are \travelling" phases,

� = k(x� wt) + �0; � = l(x � vt) + �0; (47)

propagating with the velocities,

w = �k2 + 3l2; v = �3k2 + l2: (48)

This solution has four free parameters, two initial phases (�0and �0) and two

\energetic" parameters:

� + i	 = tan�1
�
l + ik

2q

�
: (49)

It is convenient to express the \local" wavenumbers, k and l, through these

parameters, � and 	,

k = q
sinh(2	)

cos2(�) cosh2(	) + sin2(�) sinh2(	)
; (50)

l = q
sin(2�)

cos2(�) cosh2(	) + sin2(�) sinh2(	)
: (51)

The relationship between the wavenumbers of the carrier and envelope waves

can vary widely. We investigate here only slowly modulated wave groups which

can be obtained from this breather solution when l << k. This limit follows

when � ! �=2, and 	 is �xed. In this case w and v are the linear phase and

group velocities, cp and cg respectively, we can omit the term with l in the
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dominator of (46) and replace tan�1(z) with z. As a result, the expression (46)

reduces to

u =
2lp

1� 4q2=k2
sech [l(x� cgt)] sin [k(x� cpt)] ; (52)

which coincides with (17) on taking into account the values of the coe�cients.

Also, from (50) it follows that

k = 2q coth	; (53)

and, therefore k > 2q, as it should be from the criterion (13) for modulational

instability. It is important to mention that in the vicinity of the boundary of

the modulational instability domain, the breather amplitude grows inde�nitely

(	!1), and our approximation is not valid.

Thus, the weakly nonlinear breather is an envelope soliton, and its param-

eters satisfy the modulational instability criterion. If the coe�cient of the

quadratic nonlinear term in the extended Korteweg-de Vries equation is zero,

the wavenumber of a weakly nonlinear breather can have any value according

to the modulational instability criterion (13) of the modi�ed Korteweg-de Vries

equation.

Another limit for a slowly modulated wave packet can be obtained from the

breather solution when 	!1 for �xed 0 < � < �=2. In this case k ' 2q and
this corresponds to the boundary of the modulational instability domain and

the consequent applicability of the modi�ed nonlinear Schrodinger equation.

Introducing the deviation K from this boundary by k = 2q + K, jKj << 2q,
from (50) and (51) we get

K = �4q cos(2�) exp(�2	); (54)

l = 4q sin(2�) exp(�2	); (55)

and

tan(2�) = �
l

K
: (56)

In particular, for positive K (when the cooe�cient � of the cubic nonlinear

term in the nonlinear Schrodinger equation is positive) we have � > �=4, and
for negative K (� < 0) � < �=4. If � is not close to zero, both terms with l in
(46) are small and with accuracy l=k the solution (46) becomes

u =
2l

1 + cot2(�) tanh2(�)

�
� cosh(	) sin(�) + sinh(	) cot(�) tanh(�) cos(�)

sin(�) cosh(�)

�
:

(57)

Taking into account 	!1, this transforms to

u =
l exp(	)

sin(�) cosh(�)
�
1 + cot2(�) tanh2(�)

� [� sin(�) + cot(�) tanh(�) cos(�)] :

(58)
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Rewriting it in the form of (3), the complex amplitude of the �rst harmonic can

be obtained as

A =
l exp(	)q

2[cosh2(�)� cos2(�)]

exp�i�); (59)

where

cot(�) = cot(�) tanh(�): (60)

It is convenient to write the modulus of wave amplitude in the form of (41)

B =

s
l2 exp(2	)

2 [cosh(2l�) � cos(2�)]
: (61)

After substitution of � and 	 from (54) and (55), the �nal version is

B =

s
2ql2

K +
p
K2 + l2 cosh(2l�)

; (62)

which fully coincides with (41).

When l ! 0, or � ! 0, we should substitute (55) and( 54) into (46) and

take the limit! 0,

u = �2
@

@x
tan�1

"s
jKj
2q

cos(�) � 2q
p
2jKj=q(x� vt)

1 +
p
jKj=2q sin(�)

#
: (63)

This \algebraic" breather has an envelope in the form (45) of the algebraic

soliton of the modi�ed nonlinear Schrodinger equation.

Thus, we have full agreeement between solutions of the modi�ed Schrodinger

equation and the weakly nonlinear breather solution of the extended Korteweg-

de Vries equation. For large negative K the carrier wavenumber of the breather

decreases, its amplitude increases and the breather represents solitons of oppo-

site polarity. Because solitons of di�erent polarity have di�erent amplitudes (for

the same value of the propagation speed), and the \negative" soliton should ex-

ceeds the amplitude of the algebraic soliton (2�=�), such a breather is a strongly
nonlinear wave.

5 Numerical simulations

Our aim here is to compute the evolution of wave packets within the frame-

work of the various models described in the previous sections. The extended

Korteweg-de Vries (eKdV) equation is solved using a �nite-di�erence scheme,

while the nonlinear Schrodinger equation (NLS) is solved with a pseudo-spectral

method. The boundary conditions for both equations are periodic. The length

of the domain is 400, the carrier wavenumber is k = 1:0048 (60 wavelengths in
domain). The coe�cient of the dispersion term in the extended Korteweg-de

Vries equation is set as � = 1, the coe�cient of the quadratic nonlinear term is

12



set as � = 4, while the coe�cient � of the cubic nonlinear term is varied from

5 to -1, providing both modulated and demodulated regimes (the coe�cient

of the cubic nonlinear term in the nonlinear Schrodinger equation is such that

� = 0 for �cr = 2:641). The initial condition for the extended Korteweg-de Vries

equation is taken in the form

u(x; 0) = A0 exp(�K2x2) sin(kx); (64)

and for the nonlinear Schrodinger equation is

A(x) =
A0

2
exp(�K2x2); (65)

where A0 = 0:2 and K = 0:0157.
The �rst simulation is for � = 5 and corresponds to a zone of modula-

tional instability. Our simulations are presented in Fig. 1 for both models,

the extended Korteweg-de Vries equation (left) and the nonlinear Schrodinger

equation (right); note that for the latter case we restore the carrier wave to

better facilitate the comparison. First, we should point out that equation (1)

is solved in �xed coordinates, and a wave packet propagates to the left (in the

linear case with the group velocity, cgr = �3k2), but equation (10) is written

for a system of coordinates propagating with this linear group velocity. The

dynamics of the wave packet in the framework of the nonlinear Schrodinger

equation follows known scenarios: an initial disturbance transforms into enve-

lope solitons and dispersive tails. The number of solitons can be found from

the corresponding eigenvalue problem (which is written for the \classical" form

(15) of the nonlinear Schrodinger equation)

dF1

dx
= $F1 � A1(x)F2

(66)

dF2

dx
= $F2 + A1(x)F1

where A1 =
p
�=6A (see (14)) and $ is the complex eigenvalue, in general.

When the initial disturbance (65) has a single polarity, it is known [11] that

all discrete eigenvalues are real and determine the soliton amplitudes as Asol =

4
p
6=�$. Here the discrete levels $ are 0.05 and 0.026. As a result, two

envelope solitons should form with amplitudes 0.33 and 0.16. Because the group

velocities are the same, these solitons cannot split in space, and so interact

between themselves. Figure 1 demonstrates the transformation of an initial

Gaussian impulse (65). It is interesting to compare the wave groups during this

process in both models. At the time moment t = 40 an asymmetry for the

eKdV (left) is evident and a small-amplitude second harmonic group leaves the

initial group. There is full symmetry for the NLS (right) The �rst occurence

of an envelope soliton is at t = 100 for both models and corresponding plots

are very similar. As mentioned above, two envelope solitons should form, but

at t = 100; 140 they have not yet separated, and we see similar large impulses
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and two adjointing wave groups in both plots. At t = 400 two solitons and

a small dispersive tail appear in the eKdV model (left), and a large impulse

with two adjointing small wave groups, and a small symmetric tail are seen in

the right-hand side plot ((NLS). After this time, the left-hand side and right-

hand plots are not similar. The NLS model demonstrates a periodic process

of interaction of two solitons with recurrence at t = 600. The eKdV model

shows a complex interaction and separation of both solitons. The amplitudes

of the envelope solitons are in good agreement with predicted values based on

the inverse scattering method.

The next simulation is for � = �1. This case corresponds to the demodulated

nonlinear Schrodinger equation (� < 0). Simulations of a Gaussian wave packet

are presented in Fig. 2 (left for the eKdV equation and right for the NLS

equation). As expected, the wave packet disperses, its amplitude decreases, and

its length increases. The di�erence between the two models is related to the

generation of free wave groups for the second and \zero" harmonics as mentioned

above. Similar results are obtained also for � = 0 (Korteweg-de Vries equation),

see [19],[17].

The modelling of the wave group evolution in the transition zone (� � 0)

presents some technical di�culties due to an increase in the characteristic spatial

and temporal scales, that requires a more accurate numerical scheme. The

length of domain is increased to 1000, the cubic nonlinear coe�cient is set at

� = 6, the quadratic nonlinear coe�cient is set at � = 3. For these parameters,

the critical value of the carrier wavenumber is kcr = 0:5. First, we checked the

stability and steady-state (for the envelope) propagation of the breather (46), see

Fig. 3 for K > 0 (� = 0:8, 	 = 2). It is clear from Fig. 3 that no tail is formed

(compare the simulations in Fig.1), because the breather is an exact solution of

the eKdV equation. Then, this breather solution is multiplied by 1.05 and then

used as the initial condition for (1). Results of these simulations are presented

in Fig. 4. As expected, the wave \undresses" its tail and transforms to a new

breather state. In the transition zone, the wave envelope is not symmetric. The

same features occur for the \reduced" breather, where amplitude is 0.9 u0(x),
see Fig. 5. When K > 0 the breather is stable, and if an initial disturbance is

greater than the breather, it transforms back to the breather with a dispersive

tail, similar to Fig. 4. More interesting is the case, when the initial amplitude

is less than the minimal amplitude of the breather (\algebraic" breather), see

(63) and (43). In our case Bmin = 0:126 (for � = 0:25, 	 = 2, K = �0:016).
The evolution of this small breather-like initial disturbance is shown in Fig. 6,

and demonstrates the demodulation of the wave packet and its dispersion.

The last series of simulations were for the periodic sine modulation,

A(x) = A0 [1 + 0:1 sinKx] sin kx: (67)

Results for the case � = 4, � = 2, � = 1, k = 1:57 (kcr = 4=3), K = 0:0157,
A0 = 0:2 are presented in Fig. 7 for the eKdV equation and the NLS equation.

Snapshots show the development of the Benjamin-Feir instability with formation

of solitons and breathers, and their recurrence. Again here the simulation in the
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framework of the eKdV equation shows more asymmetric forms for the wave

envelopes. The NLS equation describes the wave evolution correctly only at the

beginning stage.

6 Conclusions

These results show the link between the solutions of the extended Korteweg-de

Vries equation and the nonlinear Schrodinger equation for the description of the

wave groups. The dynamics of solitons and breathers in the extended Korteweg-

de Vries model is determined by the sign of the coe�cient � of the cubic nonlinear
term. Correspondingly, the dynamics of wave groups in the weakly nonlinear

approximation is determined by the sign of the coe�cient of its cubic nonlin-

ear term. This parameter of the nonlinear Schrodinger equation is calculated

for the extended Korteweg-de Vries equation, and the corresponding nonlinear

Schrodinger equation is derived. It is shown that weakly nonlinear wave groups

with small carrier wavenumbers are always stable, but high wavenumber wave

groups are always unstable and form wave packets (i.e. envelope solitons). For

the transition zone where the coe�cient � � 0, a modi�ed nonlinear Schrodinger

equation is derived, and its steady-state solitary wave solutions are found. In

particular, it is shown that this equation has a soliton of algebraic form. The

exact breather solution of the extended Korteweg-de Vries equation is investi-

gated in the weakly nonlinear limit. It is shown that the breather coincides

with solutions of the nonlinear Schrodinger equation and its modi�cation in the

transition zone. Our numerical simulations demonstrate the main features of

the wave dynamics for a wide range of parameter, exhibiting modulation and

demodulation, and the formation of envelope solitons and breathers. For the

same conditions the solutions of the extended Korteweg-de Vries equation have

a more asymmetric form than that predicted in the framework of the nonlin-

ear Schrodinger equation. Also, the steady-state wave packets of the extended

Korteweg-de Vries equation move relative to each other, a feature not seen in

the nonlinear Schrodinger equation.
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Figure Captions

Fig. 1. Simulation of wave packet in the regime of modulational instability (left

- extended Korteweg-de Vries equation, right - nonlinear Schrodinger equation)

Fig. 2. Simulation of wave packet in the regime of modulational stability (left

- extended Korteweg-de Vries equation, right - nonlinear Schrodinger equation)

Fig 3. Steady-state propagation of a breather, u0(x) (k = 0:5002 > kcr = 0:5)
Fig. 4. Evolution of the initial disturbance, 1:05u0(x) for k = 0:5002> kcr = 0:5
Fig. 5. Evolution of the initial disturbance, 0:9u0(x) for k = 0:5002> kcr = 0:5
Fig. 6. Evolution of an initial disturbance with an amplitude less than the

minimal value for k = 0:484 < kcr = 0:5
Fig. 7. Snapshot of the periodically modulated wavetrain (left - the extended

Korteweg- de Vries equation, right - the nonlinear Schrodinger equation).
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Fig 1. Simulation of wave packet in the regime of modulational instability (left -

extended Korteweg-de Vries equation, right - nonlinear Schrodinger equation).
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Fig 1. Simulation of wave packet in the regime of modulational instability (left -

extended Korteweg-de Vries equation, right - nonlinear Schrodinger equation).

(continued)
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Fig. 7. Snapshot of the periodically modulated wavetrain (left - the extended

Korteweg- de Vries equation, right - the nonlinear Schrodinger equation).
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Fig. 7. Snapshot of the periodically modulated wavetrain (left - the extended

Korteweg- de Vries equation, right - the nonlinear Schrodinger equation).

(continued)

Figure 1:
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Fig. 7. Snapshot of the periodically modulated wavetrain (left - the extended

Korteweg- de Vries equation, right - the nonlinear Schrodinger equation).

(continued)
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