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Abstract

We obtain a class of exact solutions representing null particles moving in three-dimensional
(anti-) de Sitter spaces by boosting the corresponding static point source solutions given by
Deser and Jackiw. In de Sitter space the resulting solution describes two null particles mov-
ing on the (circular) cosmological horizon, while in anti-de Sitter space it describes a single
null particle propagating from one side of the universe to the other. We also boost the BTZ
black hole solution to the ultrarelativistic limit and obtain the solution for a spinning null
particle moving in anti-de Sitter space. We find that the ultrarelativistic geometry of the
black hole is exactly the same as that resulting from boosting the Deser-Jackiw solution when
the angular momentum of the hole vanishes. A general class of solutions is also obtained
which represents several null particles propagating in the Deser-Jackiw background. The
differences between the three-dimensional and four-dimensional cases are also discussed.
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1 Introduction

Although the Einstein equations still hold in three-dimensional spacetime, the nature of gravity
is quite different from that in four-dimensional spacetime. Because the Einstein and Riemann
tensors are equivalent in three-dimensional spacetime, general relativity is dynamically trivial
there. That is, the vacuum spacetime is flat. The localised sources have effects only on the
global geometry. In 1984, Deser, Jackiw, and ’t Hooft [1] investigated in detail the Einstein
gravity with static point sources in three-dimensional spacetime. For a single static particle, the
geometry is given by cutting a sector out of the Euclidean two-plane along two straight lines,
and identifying the edges to form a cone. Gravity theories with lightlike sources and spacelike
source in three-dimensional flat spacetime have also been analysed in [2] and [3], respectively.

When a nonvanishing cosmological constant is introduced to the three-dimensional Einstein
gravity, some significant changes occur. In this case, the spacetime has constant curvature
and corresponds either to de Sitter or to anti-de Sitter space. In the de Sitter space, the static
two-particle solution is a sphere minus a wedge with the edges identified. This is because the two-
space is a sphere in a three-dimensional covering space. To obtain the effect of a point particle
one can cut the sphere from the location of the source along two great circles. On a sphere,
these cuts meet again at the antipodal point. By identifying along the cuts, this procedure
automatically creates a “mirror” source. There is no pure one-particle solution globally. For
the anti-de Sitter case, the two-space is a hyperboloid. This can be cut along two lines and the
cuts identified to produce single particle solutions. Deser and Jackiw [4] have obtained a metric
(hereafter denoted the DJ solution) and confirmed the above geometrical picture for static point
sources by directly solving the Einstein equations with a cosmological constant.

In this paper we investigate the Einstein gravity with null particle sources in the three-
dimensional de Sitter and anti-de Sitter spaces. Initially, we employ the boost method that was
first used by Aichelburg and Sexl [5] to derive the gravitational field generated by a photon.
By boosting the Schwarzschild solution to the ultrarelativistic limit in which the velocity of the
source approaches the speed of light and the mass is scaled to zero in an appropriate manner,
Aichelburg and Sexl derived a solution describing an impulsive gravitational wave propagating in
a flat spacetime. This method has subsequently been widely used to investigate the gravitational
fields generated by various null sources moving in flat spacetimes (for a brief review see [6] and
references cited therein). Due to the fact that the four-dimensional (anti-) de Sitter space can
be represented as a four-dimensional hyperboloid embedded in a five-dimensional flat spacetime,
Hotta and Tanaka [7] succeeded in obtaining exact solutions for null particles moving in (anti-)
de Sitter spacetimes by boosting the Schwarzschild–(anti-)de Sitter solutions. The impulsive
wave surfaces generated have been discussed in detail by Podolský and Griffiths [8]. Further
they considered more general gravitational wave solutions in (anti-) de Sitter spaces [9]. These
can be interpreted as impulsive gravitational waves generated by an arbitrary distribution of
null particles each with arbitrary multipole structure.

The plan of this paper is as follows. In the next section, we will introduce the DJ solution
and boost the spacetime to the ultrarelativistic limit in the three-dimensional de Sitter and
anti-de Sitter spaces and then analyse the resulting geometries. We will also boost the Bañados–
Teitelboim–Zanelli (BTZ) black hole [10] in the anti-de Sitter space in section 3. Although the
BTZ black hole solution is quite different from the DJ solution globally, we find that, when the
angular momentum of the BTZ black hole vanishes, the resulting geometries are equivalent to
each other. In section 4 we will consider the null-particle solution in the DJ background, and
further confirm the result derived using the boost method. A brief discussion of the main results
is included in section 5.
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2 Boosting the DJ solutions in the (anti-) de Sitter spaces

The three-dimensional Einstein equations with a nonvanishing cosmological constant can be
written as

Rµν − 1
2Rgµν + Λ gµν = 8π Tµν , (1)

where Λ denotes the cosmological constant and Tµν the energy-momentum tensor of the sources.
Here the gravitational constant G has been set to one.

The solutions which describe a static point particle at the origin in the (anti-) de Sitter
spaces were found to be [4]

ds2 = −N2(R)dt2 + Φ(R)(dR2 +R2dφ2), (2)

where

Φ(R) =
4α2

ΛR2[(R/R0)α + (R/R0)−α]2
,

N(R) =
(R/R0)α − (R/R0)−α

(R/R0)α + (R/R0)−α
, (3)

R0 is an integration constant and α = 1−4M . The constant M is the mass of the point particle.
Performing a simple coordinate transformation in (2) gives

ds2 = −(1− Λr2/α2)dt2 + α−2(1− Λr2/α2)−1dr2 + r2dφ2. (4)

When Λ > 0, the solution (4) has a cosmological event horizon at rc = α/
√

Λ with surface
gravity κ =

√
Λ. When α = 1, that is for the vacuum case M = 0, the DJ solution (4) reduces

to the familiar form

ds2 = −(1− Λr2)dt2 + (1− Λr2)−1dr2 + r2dφ2, (5)

which is just the three-dimensional de Sitter (Λ > 0) or anti-de Sitter (Λ < 0) space in static
coordinates.

Similar to the case in four dimensions, the three-dimensional (anti-) de Sitter space can also
be represented as a hyperboloid embedded in a four-dimensional flat spacetime. Let us first
consider the case of the de Sitter space.

(i). In de Sitter space. In this case, the hyperboloid satisfies

−Z2
0 + Z2

1 + Z2
2 + Z2

3 = a2, (6)

where a2 = 1/Λ. The de Sitter space can be expressed as the following SO(1, 3) invariant line
element satisfying the constraint (6)

ds2
ds = −dZ2

0 + dZ2
1 + dZ2

2 + dZ2
3 . (7)

Obviously, when we parametrize the hypersurface (6) with the following coordinates

Z0 =
√
a2 − r2 sinh(t/a), Z1 = r cosφ,

Z3 = ±
√
a2 − r2 cosh(t/a), Z2 = r sinφ, (8)

the metric (5) can be deduced from (7). When boosting the DJ solution in the de Sitter space
(7), it is appropriate first to expand the solution (4) up to the first order of the mass M (higher
order contributions will vanish due to the boost). This yields

ds2 ≈ ds2
ds + 8MΛr2dt2 +

8M
(1− Λr2)2

dr2, (9)
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where ds2
ds denotes the de Sitter space (5). Using the coordinates (8), we can rewrite (9) as

ds2 = ds2
ds +

8M
(Z2

3 − Z2
0 )2

[
(a2 + Z2

0 − Z2
3 )(Z3dZ0 − Z0dZ3)2

+
a4

(a2 + Z2
0 + Z2

3 )
(Z3dZ3 − Z0dZ0)2

]
. (10)

We now make a Lorentz boost in the Z1-direction, that is, a Lorentz transformation

Z0 →
Z0 + vZ1√

1− v2
, Z1 →

vZ0 + Z1√
1− v2

, Z2 → Z2, Z3 → Z3, (11)

where v is the boost velocity. To obtain a result of physical interest, the mass must be reduced
to zero in an appropriate way. Following [5], we scale mass as

M = p
√

1− v2, (12)

where p is a constant which can be interpreted as the energy of the null particle. Substituting
(11) and (12) into (10), we obtain

ds2 = ds2
ds +

8p
√

1− v2

(Z2
3 − z2)2

[
(a2 + z2 − Z2

3 )(Z3dz − zdZ3)2

+
a4

(a2 + z2 − Z3)
(Z3dZ3 − zdz)2

]
, (13)

where z2 = (Z0 + vZ1)2/(1− v2). Using the identity

lim
v→1

1√
1− v2

f(z2) = δ(Z0 + Z1)
∫ ∞
−∞

f(z2)dz, (14)

and taking the limit v → 1 in (13), we obtain

ds2 = ds2
ds − 8πp|Z2|δ(Z0 + Z1)(dZ0 + dZ1)2. (15)

This looks like an impulsive wave solution in the de Sitter space, located on the surface Z0+Z1 =
0, Z2

2 + Z2
3 = a2 which at any time is a circle of constant radius.

In order to further analyse this solution, it proves convenient to use the following coordi-
nates [8]

Z0 =
1
2η

[a2 − η2 + (x− a)2 + y2], Z1 =
a

η
(x− a),

Z3 =
1
2η

[a2 + η2 − (x− a)2 − y2], Z2 =
a

η
y. (16)

Further we can put
x = ρ cosφ, y = ρ sinφ, (17)

with ρ ∈ [0,∞), φ ∈ [0, 2π). The de Sitter space can then be described as

ds2
ds =

a2

η2
(−dη2 + dρ2 + ρ2dφ2), (18)

which is in conformally flat form. The solution (15) can then be rewritten as

ds2 = ds2
ds − 8πp a| sinφ|[δ(η − ρ)(dη − dρ)2 + δ(η + ρ)(dη + dρ)2]. (19)
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This looks like two impulsive wavefronts. However, as pointed out in [8] in the four-dimensional
case, both components are required for the conformal picture to be geodesically complete. Be-
cause ρ ≥ 0, the term δ(η − ρ) does not vanish for η ≥ 0 only, while δ(η + ρ) is required for
η ≤ 0. From (19), it is clear that the particles are located on the circle ρ = |η| which is the
cosmological horizon of the de Sitter space.

It can then be shown that the energy-momentum tensor is only non-zero at the two points
Z0 + Z1 = 0, Z2 = 0, Z3 = ±a which thus represent two null particles. At all other points on
this null surface, the impulsive component can in fact be removed by a discontinuous coordinate
transformation. The solution can thus be represented as a three-dimensional de Sitter space cut
along the cosmological horizon Z0 + Z1 = 0, with the two halves reattached in such a way as
to create two null particles at the points Z2 = 0, or y = 0, or φ = 0, π, which are at opposite
points on the horizon. This situation is very like that in the four-dimensional case, in which
instead of the circle the wave surface is spherical and the particles are located at opposite poles.
The significant difference, however, is that in the four-dimensional case the Weyl tensor has
some non-zero components on the spherical surface and these can be interpreted as describing
gravitational wave components generated by the null particles. In the three-dimensional theory
such free gravitational waves cannot occur.

(ii). In anti-de Sitter space. We now turn to the case of the three-dimensional anti-de Sitter
space. This can be regarded as a hyperboloid

−Z2
0 + Z2

1 + Z2
2 − Z2

3 = −a2, (20)

embedded in an SO(2, 2) invariant four-dimensional flat spacetime

ds2
ads = −dZ2

0 + dZ2
1 + dZ2

2 − dZ2
3 , (21)

where a2 = −1/Λ > 0. Obviously, the anti-de Sitter space (5) can be parametrized by the
following coordinates

Z0 =
√
a2 + r2 sin(t/a), Z1 = r cosφ,

Z3 =
√
a2 + r2 cos(t/a), Z2 = r sinφ. (22)

We now boost the DJ solution in the anti-de Sitter space. Again expanding the solution up to
the first order in the mass M and using the coordinates (22), we arrive at

ds2 = ds2
ads +

8M
(Z2

0 + Z2
3 )2

[
(Z2

0 + Z2
3 − a2)(Z3dZ0 − Z0dZ3)2

+
a4

(Z2
0 + Z2

3 − a2)
(Z3dZ3 − Z0dZ0)2

]
. (23)

Repeating the same steps as in the case of the de Sitter space, that is, using the Lorentz
transformation (11), rescaling the mass as (12), and taking the limit v → 1, finally we can
obtain

ds2 = ds2
ads − 8πp|Z2|δ(Z0 + Z1)(dZ0 + dZ1)2. (24)

Comparing with (15), it is easy to see that the expression for the apparent impulsive part is the
same as that in the de Sitter space. However, the interpretation is quite different. In this case
the impulsive component is given by the surface Z0 +Z1 = 0, Z2

2 −Z2
3 = −a2 which at any time

is a hyperbola. Let us now analyse this solution.
In the anti-de Sitter space, introduce first the following coordinates

Z0 =
1

2x
[a2 − η2 + x2 + (y − a)2], Z1 =

a

x
(y − a),

Z2 =
1

2x
[a2 + η2 − x2 − (y − a)2], Z3 =

a

x
η, (25)
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and then use
x = ρ cosφ, y = ρ sinφ. (26)

This produces the anti-de Sitter space written in the conformally flat form

ds2
ads =

a2

ρ2 cos2 φ
[−dη2 + dρ2 + ρ2dφ2]. (27)

The solution (24) can be rewritten in these coordinates as

ds2 = ds2
ads −

8πp a| sinφ|
cos2 φ

[δ(η − ρ)(dη − dρ)2 + δ(η + ρ)(dη + dρ)2]. (28)

Here it should be stressed that the solution (28) does not mean two impulses again. As in the
de Sitter case, δ(η − ρ) works only for η > 0 while δ(η + ρ) for η < 0. The two components are
required for globally geodesic completeness. From (28), it is clear that the impulsive component
is located on the line ρ = |η|, or x2 + y2 = η2. However, this is not a circle — according to (27)
it is conformal to a circle, and the coordinate φ is restricted to −π/2 < φ < π/2. In fact it is
a hyperbola. It can then be shown that this solution represents a single null particle located at
Z2 = 0 on the null surface Z0 + Z1 = 0, i.e. at y = 0, x = η (or x = −η). The particle thus
clearly propagates from one side of the universe to the other and (since this spacetime contains
closed timelike lines) may then be considered to propagate back in the opposite direction.

Thus, by boosting the DJ solutions, we have obtained two kinds of exact solutions describing
null particles moving in the three-dimensional de Sitter and anti-de Sitter spaces. (In section 4
we will further confirm these results by directly solving the Einstein equations.) Although static
particles only have effect on the global geometry, which is quite different from the situation in
the four-dimensional case, we still find that the boost method is sufficiently powerful to derive
null particle solutions from their corresponding static particle solutions. In the next section we
will boost the BTZ black hole solution in the anti-de Sitter space. In the static situation, this is
quite different from the DJ solution from the aspect of global properties. However, the resulting
ultrarelativistic geometry is found to be identical, at least in the non-rotating case.

3 Boosting the BTZ black hole solution in the anti-de Sitter
space

Due to the special properties of three-dimensional gravity, it was a surprising discovery when
Bañados, Teitelboim, and Zanelli [10] claimed that they found a black hole solution in the
Einstein gravity with a negative cosmological constant. The solution they found is

ds2 = −N2(r)dt2 +N−2dr2 + r2(Nφ(r)dt+ dφ)2, (29)

where

N2 = −8M +
r2

a2
+

16J2

r2
, Nφ = −4J

r2
. (30)

Here −1/a2 denotes the negative cosmological constant. The integration constants M and J
can be interpreted as the mass and angular momentum of the black hole. This black hole has
two horizons at

r2
± = 4Ma2

1±
√

1−
(
J

Ma

)2
 , (31)

provided M > 0 and J < Ma. This solution is asymptotically an anti-de Sitter spacetime and
can be constructed by identifying some discrete points in the three-dimensional anti-de Sitter
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space. It is of interest to note, however, that when the mass and angular momentum of the
hole vanish, the solution does not reduce to the anti-de Sitter space. Rather, the anti-de Sitter
spacetime (5) can only be obtained from (29) in the limit as 8M → −1 and J → 0.

Before boosting the BTZ solution, it is first appropriate to expand it about the background
of the anti-de Sitter space. To achieve this, we expand the BTZ solution (29) to first order in
the mass term 8M + 1 and the angular momentum J . The result is

ds2 ≈ ds2
ads + (8M + 1)dt2 +

8M + 1
(1 + r2/a2)2

dr2 − 8J dt dφ. (32)

Using the coordinates in (22), the above metric can be rewritten as

ds2 = ds2
ads +

(8M + 1)a2

(Z2
0 + Z2

3 )2

[
(Z3dZ0 − Z0dZ3)2 +

a2

Z2
3 + Z2

0 − a2)
(Z3dZ3 + Z0dZ0)2

]

− 8Ja
(Z2

3 + Z2
0 )(Z2

3 + Z2
0 − a2)

(Z3dZ0 − Z0dZ3)(Z1dZ2 − Z2dZ1). (33)

We now make a Lorentz boost (11) in the Z1-direction, rescaling the mass and angular momen-
tum as

8M + 1 = 8p
√

1− v2, and J = s
√

1− v2. (34)

We then proceed to the ultrarelativistic limit v → 1. In this case, the two constants p and s
can be interpreted physically as the energy and spin angular momentum of the resulting null
particle respectively. It may be observed that, in this limit, the inequality J < Ma mentioned
above is strictly violated. This is because the mass M and angular momentum J are rescaled
in different ways. However, the limit is still an exact solution even though it is not strictly the
limit of a real rotating black hole. Using this procedure in (33), we obtain

ds2 = ds2
ads + 8πp(Z3 −

√
Z3 − a2)δ(Z0 + Z1)(dZ0 + dZ1)2

−8πs
a

Z2 −
Z2Z3√
Z2

3 − a2

 δ(Z0 + Z1)(dZ0 + dZ1)2. (35)

The two linear terms in the solution (35) can be removed by the following discontinuous linear
transformation

Z2 → Z2 −
4πs
a
UΘ(U),

Z3 → Z3 − 4πpUΘ(U),
U → U,

V → V − 16π2p2UΘ(U) + 8πpZ3Θ(U) +
16π2s2

a2
UΘ(U)− 8πs

a
Z2Θ(U), (36)

where U = Z0 +Z1, V = Z0−Z1, and Θ is the Heaviside step function. Therefore, the solution
(35) can be reduced to

ds2 = ds2
ads − 8πp|Z2|δ(Z0 + Z1)(dZ0 + dZ1)2 +

8πsZ3

a
sign(Z2)δ(Z0 + Z1)(dZ0 + dZ1)2. (37)

It is now easy to see that when s = 0, that is when the angular momentum vanishes in the
original BTZ solution, the solution (37) is identical to (24). Thus, both ultrarelativistic limits of
the DJ solution for Λ < 0 and the spinless BTZ solution are equivalent to each other. Obviously,
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the third term in (37) is the spin effect of the null particle. In the coordinates (25) and (26), we
can rewrite (37) as

ds2 = ds2
ads +

(
−8πp a

| sinφ|
cos2 φ

+
8πs sign(tanφ)

cosφ| cosφ|

)
[δ(η − ρ)(dη − dρ)2

+δ(η + ρ)(dη + dρ)2]

= ds2
ads +

(
−8πp a

| sinφ|
cos2 φ

+
8πs

cos2 φ
sign(sinφ)

)
[δ(η − ρ)(dη − dρ)2

+δ(η + ρ)(dη + dρ)2] (38)

which is clearly identical to (28) when s = 0.

4 Null particles in the DJ background

In this section we will directly solve the Einstein equations with null particle sources and re-
obtain some of the results of previous sections that were derived by the boost method. In [11]
Dray and ’t Hooft considered a particle moving with the speed of light on the Schwarzschild black
hole horizon, and investigated the back reaction of the particle on the geometry. In this case, the
particle produces an impulsive gravitational wave located on the Schwarzschild horizon. Loustó
and Sánchez [12] and Sfetsos [13] further extended the work of Dray and ’t Hooft to nonvacuum
backgrounds and investigated the conditions that should be satisfied when an impulsive wave is
introduced into curved spacetimes. The null particle solution in the BTZ background (29) has
already been considered in [13].

Here we first note that the DJ solution (4) can be rewritten, after rescaling the coordinate
r, as

ds2 = −(1− Λr2)dt2 + (1− Λr2)−1dr2 + α2r2dφ2. (39)

Further defining φ′ = αφ with φ′ ∈ [0, 2πα), we have

ds2 = −(1− Λr2)dt2 + (1− Λr2)−1dr2 + r2dφ′2, (40)

which is obviously equivalent to the de Sitter space locally, but has a deficit angle δ = (1−α)2π.
We will first discuss solutions with null particles located on the cosmological horizon of the
de Sitter case (Λ = 1/a2 > 0). The metric (39) or (40) also can be regarded as a hypersurface
embedded in the flat spacetime (7) with

Z0 =
√
a2 − r2 sinh(t/a), Z1 = r cos(αφ),

Z3 = ±
√
a2 − r2 cosh(t/a), Z2 = r sin(αφ). (41)

Introducing the null coordinates

u = et/aF (r), v = e−t/aF (r), (42)

where the function F (r) is defined as

F (r) ≡ exp
(
−1
a

∫
dr

(1− r2/a2)

)
=
(
a− r
a+ r

)1/2

, (43)

we can re-express the DJ solution (40) as

ds2 = 2A(u, v)dudv + r2(u, v)dφ′2, (44)
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where

A(u, v) =
(a2 − r2)
2F 2(r)

, r(u, v) =
a(1− uv)

1 + uv
. (45)

We can now consider the effect of null particles located on the null surface u = 0 which is
clearly the cosmological horizon r = a. In this three-dimensional theory, this horizon is circular.
Following [11] and [13], we can adopt the coordinate shift method on the background (40). That
is, the following ansatz is employed: For u < 0 the spacetime is still the background (44) while
for u > 0 the spacetime is (44) with v shifted as v → v + f(φ′). The function f(φ′) which will
be determined later describes the effect of the sources. Using this approach, the new solution
has the form

ds2 = 2A(u, v)dudv − 2A(u, v)f(φ′)δ(u)du2 + r2(u, v)dφ′2, (46)

which comes from (44) after making the coordinate shift:

u→ u, v → v − f(φ′)Θ(u), φ′ → φ′. (47)

For this solution to be consistent with the Einstein equations, the following conditions must be
satisfied at u = 0 [13],

A,v = r2
,v = Tvv = 0, (48)

d2f

dφ′2
−
r2
,uv

2A
f =

8πr2

A
T̃uu, (49)

where T is the energy-momentum tensor of matter generating the DJ geometry, that is, the
cosmological constant and possibly some static point particles, and T̃ is the energy-momentum
tensor of any null particles located on the surface. Here it should be noticed that the only
nonvanishing component of the energy-momentum tensor for null particles is T̃uu, and that this
is zero everywhere except at the points where the particles are located.

At the u = 0 null surface — that is, on the cosmological horizon rc = a = 1/
√

Λ for the DJ
(Λ > 0) solution (40) — it is easy to see that the conditions (48) are satisfied and

A(u, v)|u=0 = 2a2, r2
,uv|u=0 = −4a2. (50)

Then (49) reduces to
d2f

dφ′2
+ f = 4πT̃uu. (51)

It may immediately be observed that a solution with f = 4πρ, where ρ is a constant,
represents a uniform distribution of null matter (of density ρ) over the circular horizon. Since
equation (51) is linear, this component can always be added to other components. However, we
will ignore this possibility in the remainder of this section.

In those parts of the null surface on which T̃uu = 0, equation (51) has the solution

f = c sin(φ′ + ω′) = c sinα(φ+ ω) (52)

where c and ω′ = αω are arbitrary constants. This solution for f around the circular horizon can
always be removed by a discontinuous coordinate transformation. However, solutions describing
several discrete particles can be constructed by patching different sections of the sine wave,
each with different amplitude and phase. Points at which f is C0 but has a discontinuous
first derivative can be interpreted as points at which null particles are located. The energy of
each particle is then represented by the jump in the derivative of f , and the energy-momentum
tensor T̃uu is given by a δ-function. On considering (38), it may be observed that discontinuities
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in f may also be permitted. These represent point particles with spin and, in this case, the
energy-momentum tensor T̃uu contains a derivative of a δ-function.

For example, consider the case in which n particles each of energy pi, i = 1 . . . n, are located
at points φ = φi around the circular wave. The solution is then given by

f = ci sinα(φ+ ωi) for φi−1 ≤ φ ≤ φi (53)

where n+ 1→ 1. It is then possible to choose the 2n arbitrary constant ci and ωi such that

ci+1 sinα(φi + ωi+1)− ci sinα(φi + ωi) = 0

ci+1 cosα(φi + ωi+1)− ci cosα(φi + ωi) =
4πpi
a

(54)

By choosing the constants appropriately, it is possible to construct solutions in which n (≥ 2)
null particles of arbitrary energy are distributed arbitrarily round the circular wave.

In particular, we can consider the two-particle solution in which the particles are located
at opposite ends of a diameter of the circle. Since 0 ≤ φ′ < 2πα around the circle, we may
consider the particles to be located at points given by φ′ = 0 and φ′ = πα. We may also restrict
attention to the case in which the two particles have identical energy p. Such a solution can be
constructed by the above method in which

c1 = c2 =
2πp
a

cosec
πα

2
, ω1 =

(1− α)π
2α

, ω2 =
(1− 3α)π

2α
. (55)

This solution represents two null particles propagating in the DJ (Λ > 0) background. In the
case in which α = 1, the background is the de Sitter space and the solution can alternatively be
written in the form

f =
2πp
a
| sinφ|. (56)

This is clearly identical (after some rescaling) to the solution (19) that was obtained by boosting
two static particles in the de Sitter background, and thus confirms this solution.

It may also be observed that, in the particular case in which α = 1/2, the deficit angle in φ′

is π and a one-particle solution at φ = 0 can easily be constructed using

f = c sin(φ/2) where 0 ≤ φ ≤ 2π. (57)

It is also possible to obtain solutions for null particles propagating in the DJ background
with Λ < 0. However, the Dray–’t Hooft [11] method cannot be directly used in this case.
Nevertheless, equivalent equations can be obtained and these will include, for α = 1, the special
cases (28) of a null particle and (38) of a spinning null particle propagating in an anti-de Sitter
space.

5 Conclusion and discussion

We have investigated null particle solutions in the three-dimensional de Sitter and anti-de Sitter
spaces by boosting the corresponding static point source solutions (DJ solutions) [4] in the
(anti-) de Sitter backgrounds. For the de Sitter case, the resulting solution describes two null
particles located at opposite points on the cosmological horizon which forms a circle of constant
size. For the anti-de Sitter case, the solution describes a single null particle located at the point
of symmetry of a propagating hyperbola. We have also boosted the BTZ black hole solution to
the ultrarelativistic limit. Although the BTZ black hole is quite different from the DJ solution
globally, we have found that these two ultrarelativistic limits are equivalent to each other when
the angular momentum of the hole is zero. This means that the boost method may loose some
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memory of the original solution in the process of the boost. In addition, we believe that the
angular momentum of the hole gives the spin effect of the corresponding null particle.

By using the coordinate shift method, we have also obtained null particle solutions in DJ
background. When α = 1, the DJ (Λ > 0) solution reduces to the de Sitter space, and the
results obtained include that derived using the boost method. It may be observed that the
boost method indeed is very powerful in the derivation of null particle solutions, not only in flat
spacetime, but also in the (anti-) de Sitter space in three dimensions as well as four.

Due to the special properties of the geometry in three-dimensional spacetime, the nature
of Einstein gravity is rather different from that in four dimensions. The static point source
solutions, given in [1] in flat spacetime and in [4] in (anti-) de Sitter space, clearly demonstrate
the differences in the local and global aspects from the four-dimensional Schwarzschild and
Schwarzschild-(anti-)de Sitter solutions. By comparing the null particle solution given by Deser
and Steif [2] in three-dimensional flat spacetime and some results given in this paper, we may
observe some similarities as well as some differences in the null particle solutions in three and four
dimensions. The main difference in four-dimensional spacetime is that the null particles generate
impulsive gravitational waves which are forbidden in three-dimensional theories. It is of some
interest to further compare spacelike source solutions in three and four-dimensional spacetimes.
Furthermore, it also might be interesting to discuss the geodesics and particle scattering in the
null particle solutions in the (anti-) de Sitter space.
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[12] C. O. Loustó and N. Sánchez, Phys. Lett. B 220, 55 (1989).

[13] K. Sfetsos, Nucl. Phys. B 436, 721 (1995).

11


