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A class of exact solutions of the Einstein–Maxwell equations is presented which describes an accel-
erating and rotating charged black hole in an asymptotically de Sitter or anti-de Sitter universe.
The metric is presented in a new and convenient form in which the meaning of the parameters is
clearly identified, and from which the physical properties of the solution can readily be interpreted.

I. INTRODUCTION

The Plebański–Demiański [1] family of solutions is
known to include the case which describes an accelerat-
ing and rotating black hole. Significantly, the parameters
contained in the metric include an arbitrary cosmological
constant Λ and electric and magnetic charge parameters.
The solutions must therefore also contain particular cases
which describe accelerating and rotating charged black
holes in asymptotically de Sitter or anti-de Sitter uni-
verses. However, in the original form of the metric, these
special cases are not clearly identified. Moreover, that
form is not well suited for their physical interpretation.
As these solutions are now being used for various new
purposes, it is most important that they be better under-
stood at the classical level. The purpose of the present
paper is to contribute to such an understanding, partic-
ularly by expressing the metric in a form that is suitable
for interpretation and in which the parameters involved
have clear physical meanings.

For the non-rotating case, the Plebański–Demiański
family includes the C-metric whose analytic extension
describes a causally separated pair of black holes which
accelerate away from each other under the action of
“strings” represented by conical singularities located
along appropriate sections of the axis of symmetry.
Hawking and Ross [2] have used this solution to describe
the possible creation of a black hole pair by the break-
ing of a cosmic string. The inclusion of a cosmological
constant could alternatively be considered to supply the
potential energy that is necessary for such a pair creation
process. This has been analysed in [3]–[6], where the cos-
mological constant was included in the traditional way.
However, as shown in [7], it would have made more sense
physically if Λ had been inserted in an alternative way.
This has been investigated in [8, 9]. A particular case
of the C-metric with Λ < 0 has also been used for the
costruction of a solution describing a black hole on the
brane [10, 11].

In addition, it was previously thought appropriate to
use a coordinate freedom to remove the linear terms in
the quartic functions which characterise the Plebański–
Demiański family of solutions. This was thought to re-
move the NUT parameter. However, Hong and Teo [12]
have recently shown that, at least for some special cases,

the available freedom is much better used to simplify the
roots of these functions. In the rotating case, they ob-
tained a new solution [13] for an accelerating and rotating
black hole which differs from what is usually called the
“spinning C-metric” [14]–[16] in which the linear terms
are set to zero. Surprisingly, it is the new solution of
Hong and Teo which represents the NUT-free case, while
the “spinning C-metric” retains NUT-like properties (i.e.
part of the axis corresponds to a “torsion” singularity
which is surrounded by a region containing closed time-
like lines).

For the case in which Λ = 0, a more general form of the
metric was presented in [17]. This has confirmed that the
“spinning C-metric” does indeed possess an effective non-
zero NUT parameter. It also introduces new parameters
which explicitly describe the acceleration and rotation
of the sources. In general, it covers the complete family
of exact solutions which represent accelerating and rotat-
ing black holes with possible electromagnetic charges and
an arbitrary NUT parameter, and describes the internal
horizon and singularity structure as far as the associated
acceleration horizon. The extension of this solution to
boost-rotation-symmetric coordinates which cover both
black holes is given in [18].

It may also be mentioned that the Hong–Teo paper
[12], for the non-rotating case with Λ = 0, has already
been extremely useful in leading to a better understand-
ing of the higher-dimensional (rotating) black ring so-
lution [19]. The improved factorizable structure intro-
duced in [12] was explicitly used in [20] and [21], and
this new version has now became commonly employed
in more recent investigations of black rings such as [22]–
[24]. To this form, we have here included both a Kerr-
like rotation and an arbitrary cosmological constant. We
have also adopted more physically motivated (Boyer–
Lindquist-type) coordinates. It may be hoped that the
solution described here may enable further solutions in
higher dimensions and different backgrounds to be ob-
tained and analysed.

The immediate purpose of the present paper, however,
is to clarify the physical interpretation of the class of clas-
sical solutions in 3+1-dimensions when the cosmological
constant is non-zero. We will concentrate here on the
physically most significant case in which the space-time
has no NUT-like properties.
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II. ACCELERATING AND ROTATING
CHARGED BLACK HOLES WITH Λ 6= 0

The Plebański–Demiański metric covers a large family
of solutions which includes that of an accelerating and
rotating charged black hole. Among the various sub-
families identified in [25], we now present the following
metric as the most convenient form for this particular
case

ds2 =
1

Ω2

{
Q

ρ2

[
dt− a sin2 θ dφ

]2 − ρ2

Q
dr2

−ρ2

P
dθ2 − P

ρ2
sin2 θ

[
adt− (r2 + a2)dφ

]2}
,

(1)

where

Ω = 1− α r cos θ ,

ρ2 = r2 + a2 cos2 θ ,

P = 1− 2αm cos θ

+
(
α2(a2 + e2 + g2) + 1

3Λa2
)

cos2 θ,

Q =
(
(a2 + e2 + g2)− 2mr + r2

)
(1− α2r2)

− 1
3Λ(a2 + r2)r2.

This contains six arbitrary parameters m, e, g, a, α and
Λ which can each be varied independently. Besides the
cosmological constant Λ, these parameters have distinct
physical interpretations: m is the mass of the black hole
(at least in the non-accelerating limit), e and g are its
electric and magnetic charges, a measures its angular ve-
locity, and α is its acceleration. (The possible NUT pa-
rameter l has been put to zero here although, as shown in
[17], the Plebański–Demiański parameter n must then be
non-zero to avoid any NUT-like behaviour of the space-
time.) The metric is accompanied by an electromagnetic
field F = dA, where the vector potential is

A =
−er[dt− a sin2 θ dφ

]
− g cos θ[adt− (r2 + a2)dφ]

r2 + a2 cos2 θ
.

As advocated (for the case with Λ = 0) by Hong and
Teo [13] and clarified in [17], a coordinate freedom has
been used in the derivation of (1) to simplify the roots
of the Plebański–Demiański quartic function P̃ in this
more general case. In particular, we can put P̃ (p) =
(1 − p2)P (p). This enables us to put p = cos θ, so that
we can work with conventional spherical polar coordi-
nates (rather than complicated Jacobian elliptic func-
tions) with θ ∈ [0, π] and φ a periodic coordinate whose
precise period will be determined below. In accordance
with this approach, the simpler function P (cos θ) has
been adopted above.

The only non-zero components of the curvature tensor

relative to a natural null tetrad are

Ψ2 =
(
−m(1− iαa) + (e2 + g2)

1 + αr cos θ

r − ia cos θ

)
×

(
1− αr cos θ

r + ia cos θ

)3

,

Φ11 =
1
2

(e2 + g2)
(1− αr cos θ)4

(r2 + a2 cos2 θ)2
, and Λ.

These indicate the presence of a Kerr-like ring singular-
ity at r = 0, θ = π

2 . The vanishing of the conformal fac-
tor Ω corresponds to conformal infinity. Thus, we may
take the range of r as r ∈ (0, α−1 sec θ) if θ < π/2, and
r ∈ (0,∞) otherwise. For θ ∈ (π

2 , π], the r coordinate
does not reach conformal infinity. In fact, an analytic
extension through r = ∞ indicates [18] the presence of
a second (mirror) region, as required for solutions ex-
pressed in boost-rotation-symmetric coordinates [26].

As fully described in [17] for the case with Λ = 0,
conical singularities generally occur on the axis. How-
ever, by specifying the range of φ appropriately, the
singularity on one half of the axis can be removed.
For example, that on θ = π is here removed by tak-
ing φ ∈

[
0, 2π(1 + a3 − a4)−1

)
, where a3 = 2αm and

a4 = −α2(a2 + e2 + g2) − 1
3Λa2. In this case, the accel-

eration of the “sources” would be achieved by “strings”
of deficit angle

δ0 =
8π α m

1 + 2αm + α2(a2 + e2 + g2) + 1
3Λa2

, (2)

connecting them to infinity. Alternatively, the singularity
on θ = 0 could be removed by taking φ ∈

[
0, 2π(1− a3−

a4)−1
)
, and the acceleration would then be achieved by

a “strut” between them in which the excess angle is

−δπ =
8π α m

1− 2αm + α2(a2 + e2 + g2) + 1
3Λa2

. (3)

Of course, the expressions (2) or (3) are closely related
to the forces in the string or strut respectively and these
should be equal, at least according to Newtonian theory.
However, it may be noticed that the deficit/excess an-
gles are the same fractions of the range of the periodic
coordinate in each case. Thus, they do correspond to
identical expressions for the forces in the string or strut
as expected, at least in the linear approximation.

In view of the fact that the complete space-time con-
tains two accelerating black holes while the above coor-
dinates only cover one of these, and also in view of the
necessary presence of conical singularities, it may be ob-
served that the space-time is not strictly asymptotic to
de Sitter or anti-de Sitter space in all directions, except
in the weak field limit.

Let us now note the following special cases in which
one of the parameters α, Λ or a vanishes respectively.
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A. The Kerr–Newman–(anti-)de Sitter solution

When α = 0, the metric (1) reduces to that for the
Kerr–Newman–(anti-)de Sitter space-time. It can be
expressed in standard Boyer–Lindquist-type coordinates
[27] using the simple rescaling

t = t̄ Ξ−1, φ = φ̄ Ξ−1, (4)

where Ξ = 1 + 1
3Λa2. This puts the metric in the form

ds2 =
∆r

Ξ2ρ2

[
dt̄− a sin2 θdφ̄

]2

− ρ2

∆r
dr2 − ρ2

∆θ
dθ2

−∆θ sin2 θ

Ξ2ρ2

[
adt̄− (r2 + a2)dφ̄

]2

,

(5)

where

ρ2 = r2 + a2 cos2 θ,

∆r = (r2 + a2)(1− 1
3Λr2)− 2mr + (e2 + g2),

∆θ = 1 + 1
3Λa2 cos2 θ.

(6)

Formally, there is no need to introduce the constant
rescaling Ξ in t and φ. However, this is included (at
least for φ) so that the metric has a well-behaved axis at
θ = 0 and θ = π with φ̄ ∈ [0, 2π). It should also be noted
that the metric (5) only retains Lorentzian signature for
all θ ∈ [0, π] provided 1

3Λa2 > −1.

B. Accelerating and rotating black holes in a
Minkowski background

When Λ = 0, the metric (1) corresponds to that of
Hong and Teo [13] (and described in detail in [17]) which
represents an accelerating and rotating pair of black holes
without any NUT-like behaviour and in which the accel-
eration is identified as α. In this case, if m2 ≥ a2+e2+g2,
the expression for Q factorises as

Q = (r− − r)(r+ − r)(1− α2r2),

where

r± = m±
√

m2 − a2 − e2 − g2. (7)

The expressions for r± are identical to those for the
locations of the outer and inner horizons of the non-
accelerating Kerr–Newman black hole. However, in the
present case, there is another horizon at r = α−1 which
is already familiar in the context of the C-metric as an
acceleration horizon.

In this case with Λ = 0, the metric is equivalent to
that given in equations (11)–(13) of Hong and Teo [13],
in which their coordinates (t′, x, y, φ) are related to those
used here by the transformation

t′ = −α(t− aφ), x = cos θ, y = 1/(αr),

with φ unchanged, A = α and

G(y) =
1

α2r4
Q(r), G(x) = − sin2 θ P (θ).

However, the Boyer–Lindquist-type coordinates em-
ployed here seem to be physically more natural than the
Plebański–Demiański-type coordinates x and y. (The
transformation in t′ is required for the existence of the
axis at θ = 0, π.)

C. The charged C-metric with a cosmological
constant

For the case in which a = 0, the metric (1) reduces to
the simple diagonal form

ds2 =
1

(1− α r cos θ)2

(
Q

r2
dt2 − r2

Q
dr2

−r2

P
dθ2 − P r2 sin2 θ dφ2

)
,

where

P = 1− 2αm cos θ + α2(e2 + g2) cos2 θ,

Q = (e2 + g2 − 2mr + r2)(1− α2r2)− 1
3Λr4.

This may be considered as a generalized and modified
form for the charged C-metric that was introduced re-
cently by Hong and Teo [12]. It describes a black hole
of mass m and electric and magnetic charges e and g
which accelerates along the axis of symmetry under the
action of forces represented by a topological (string-like)
singularity, for which α is the acceleration, with an addi-
tional cosmological constant. When Λ = 0 the black hole
horizons (7) and the acceleration horizon at r = α−1 are
clearly displayed. However, when Λ 6= 0, the location of
all horizons is modified.

Further properties of the charged C-metric in a de Sit-
ter or anti-de Sitter background have been analysed in [7]
and [28]–[32], using however different and less convenient
forms of the metric to that presented above. When trans-
formed to boost-rotation-symmetric coordinates, the new
form above has a particularly simple structure, at least
when Λ = 0, as given in [18].

III. ACCELERATING TEST PARTICLES AND
THE NATURE OF THE NEW COORDINATES

To elucidate the nature of the new coordinates intro-
duced in the metric (1), we now consider the weak field
limit in which m, a, e and g are reduced to zero while α
and Λ remain arbitrary. The resulting metric is

ds2 =
1

(1− α r cos θ)2
[(

1− (α2 + 1
3Λ)r2

)
dt2

− dr2

1− (α2 + 1
3Λ)r2

− r2(dθ2 + sin2 θ dφ2)
]
,

(8)
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which reduces to the standard form of the Minkowski or
(anti-)de Sitter metric in static coordinates when α = 0.

Let us first observe that for Λ = 0, the transformation

T =
√

α−2 − r2

1− α r cos θ
sinh(α t) ,

Z = ±
√

α−2 − r2

1− α r cos θ
cosh(α t) ,

R =
r sin θ

1− α r cos θ
,

(9)

leads to the standard form of the Minkowski line element

ds2 = dT 2 − dZ2 − dR2 −R2 dφ2,

confirming that all points with constant values of r, θ
and φ are in uniform acceleration in the positive or
negative Z-direction relative to the Minkowski back-
ground. In particular, a test particle located at the origin
r = 0 of the new coordinates has acceleration given ex-
actly by α as it moves along either of the trajectories
T = α−1 sinh(α t), Z = ±α−1 cosh(α t), R = 0.

Similarly, when Λ 6= 0, the metric (8) just describes
a de Sitter or anti-de Sitter universe but expressed in
new accelerating coordinates. These space-times can be
represented as the four-dimensional hyperboloid

Z0
2 − Z1

2 − Z2
2 − Z3

2 − εZ4
2 = −3/Λ ,

in the flat five-dimensional space

ds2 = dZ0
2 − dZ1

2 − dZ2
2 − dZ3

2 − εdZ4
2 ,

where ε = signΛ.
Provided α2 + 1

3Λ > 0, the metric (8) can be expressed
in this notation by the parametrization

Z0 =

√
(α2 + 1

3Λ)−1 − r2

1− α r cos θ
sinh(

√
α2 + 1

3Λ t) ,

Z1 = ±

√
(α2 + 1

3Λ)−1 − r2

1− α r cos θ
cosh(

√
α2 + 1

3Λ t) ,

Z2 =
r sin θ sinφ

1− α r cos θ
,

Z3 =
r sin θ cos φ

1− α r cos θ
,

Z4 =
α− (α2 + 1

3Λ) r cos θ√
1
3 |Λ|

√
α2 + 1

3Λ (1− α r cos θ)
.

(10)

(Notice that, in this case, a possibility exists to perform
either of the limits α → 0 or Λ → 0.) The trajectory of
a test particle located at r = 0 is given by

Z0 = (α2 + 1
3Λ)−1/2 sinh(

√
α2 + 1

3Λ t) ,

Z1 = ±(α2 + 1
3Λ)−1/2 cosh(

√
α2 + 1

3Λ t) ,

(11)

Z2 = Z3 = 0, Z4 = const. This actually represents the
trajectories of a pair of uniformly accelerated particles in
a de Sitter or anti-de Sitter space-time (see e.g. [7, 28,
29, 33]).

In the alternative case of a test particle with
small acceleration in an anti-de Sitter universe, for
which α2 + 1

3Λ < 0, the metric (8) corresponds to the
parametrization

Z0 =

√
r2 − (α2 + 1

3Λ)−1

1− α r cos θ
sin(

√
−(α2 + 1

3Λ) t) ,

Z4 =

√
r2 − (α2 + 1

3Λ)−1

1− α r cos θ
cos(

√
−(α2 + 1

3Λ) t) ,

Z1 =
α− (α2 + 1

3Λ) r cos θ√
1
3 |Λ|

√
−(α2 + 1

3Λ) (1− α r cos θ)
,

(12)

with Z2, Z3 as in (10). In this case, the trajectory r = 0
represents the motion of a single uniformly accelerated
test particle in an anti-de Sitter universe [28, 32, 34].

In fact, any world-line xµ(τ) = (t(τ), r0, θ0, φ0) in the
space-time (8), where r0, θ0, φ0 are constants and τ is
the proper time, represents the motion of a uniformly
accelerated test particle. Its 4-velocity is Uµ = (ṫ, 0, 0, 0),
ṫ = 1/

√
gtt(r0, θ0) = const., and the 4-acceleration has

constant components

Aµ ≡ Uµ
;νUν =

(
0,
−gtt,r

2gttgrr
,
−gtt,θ

2gttgθθ
, 0

)
.

Since AµUµ = 0, it is a spatial vector in the instantaneous
rest frame orthogonal to the 4-velocity, and its constant
magnitude is

A2 ≡ −AµAµ = (α2 + 1
3Λ)

(1− α r0 cos θ0)2

1− (α2 + 1
3Λ) r2

0

− 1
3Λ . (13)

In particular, the uniform acceleration of a test particle
located at the origin r = 0 is given exactly by A = α, in-
dependently of θ0, φ0 or Λ. For this reason, we may con-
clude that the new form of the line element (1) may be
interpreted as using most convenient accelerated coordi-
nates in a Minkowski or (anti-)de Sitter background (8).
(Of course, the acceleration is only that of a real physical
particle when m is non-zero and there exists a physical
cause that can be modelled by (2) or (3).)

IV. CONCLUSION

The metric (1) is presented here as the most conve-
nient form with which to analyse the properties of a ro-
tating and accelerating, possibly charged, black hole in
an asymptotically de Sitter or anti-de Sitter space-time.
In particular, the parameters employed all possess an ex-
plicit physical interpretation.
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This form of the metric nicely represents the hori-
zon and singularity structure of the solution. It cov-
ers the space-time from the singularity, through the in-
ner and outer black hole horizons, through the exterior
region, and even through the acceleration horizon. It
also nicely describes the conical singularity that is re-
quired to produce the acceleration. However, it it does
not represent the complete analytical extension of the
space-time, either through the black hole horizons or be-
yond the acceleration horizon. For such extensions, either
a Kruskal–Szekeres-like transformation or a transforma-
tion to boost-rotation-symmetric coordinates is required
respectively. Such extensions would reveal multiple pos-
sible sources inside the black hole horizon and mirror,
causally separated sources beyond the acceleration hori-
zon.

Let us finally note that the metric (1) has clear limits

both when α = 0 and when Λ = 0, so that it is actu-
ally a better representation of an accelerating charged
black hole in the above backgrounds than that given pre-
viously in [7] (to which it is related by the rescaling

t → t
√

1 + 3
Λα2, r → −r

√
1 + 3

Λα2 ). In addition, the
metric functions depend on (powers of) r and cos θ only.
More importantly, a non-vanishing Kerr-like rotation is
now also included.
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98, 98 (1976).

[2] S. W. Hawking and S. F. Ross, Phys. Rev. Lett. 75, 3382
(1995).

[3] R. B. Mann and S. F. Ross, Phys. Rev. D 52, 2254 (1995).
[4] R. B. Mann, Class. Quantum Grav. 14, L109 (1997).
[5] I. S. Booth and R. B. Mann, Phys. Rev. Lett. 81, 5052

(1998).
[6] I. S. Booth and R. B. Mann, Nucl. Phys. B 539, 267

(1999).
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