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Abstract

Recent developments in Transition State Theory brought about by dynamical systems theory

are extended to time-dependent systems such as laser-driven reactions. Using time-dependent

normal form theory, we construct a reaction coordinate with regular dynamics inside the transition

region. The conservation of the associated action enables one to extract time-dependent invariant

manifolds that act as separatrices between reactive and non-reactive trajectories and thus make it

possible to predict the ultimate fate of a trajectory. We illustrate the power of our approach on

a driven Hénon-Heiles system, which serves as a simple example of a reactive system with several

open channels. The present generalization of Transition State Theory to driven systems will allow

one to study processes such as the control of chemical reactions through laser pulses.

PACS numbers:
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I. INTRODUCTION

The Transition State (TS), a dividing hypersurface between the reactant and the product

regions in phase space,1–3 is one of the central concepts in the theory of chemical reactions.

It plays an important role in determining the rate constant, and also provides an intuitive

understanding of the reaction through the geometrical structure of the phase space. The

validity of TS theory is based on the “no-recrossing” assumption, which demands that all

the reactive trajectories that go from the reactant to the product region or vice versa must

cross the TS once and only once, whereas non-reactive trajectories do not cross it at all.

Through a recent approach to TS theory1–9 based on the geometric theory of dynamical

systems, a dividing surface that satisfies this condition can be constructed for autonomous

Hamiltonian systems with arbitrarily many degrees of freedom. The approach assumes only

that the reactant and product regions are separated by an energy barrier, i.e. a rank-1

saddle point of the effective potential, where the local dynamics decouples into a single

unstable reactive mode and several stable bath modes. The dividing surface thus obtained

is bounded by a normally hyperbolic invariant manifold (NHIM).10 The stable and unstable

manifolds of the NHIM act as separatrices between reactive and non-reactive trajectories

that funnel enclosed trajectories towards and away from the TS. (An analogous mechanism

had previously been described in system with two degrees of freedom.11–13) These manifolds

encode a detailed microscopic description of the reaction dynamics.

On a different front, the development of laser technology14–17 in the past decades has

led to laser pulses whose duration is on the time scale of the molecular motion, that is,

pico- or femtosecond. It is thus becoming feasible to manipulate and control chemical

reactions on a microscopic level through the application of judiciously shaped laser pulses

(see Refs. 14,15,18 for reviews). However, to determine the required pulse shapes one needs

to understand the dynamics of laser-driven reactions in microscopic detail. The geometric

TS theory has the potential to provide such knowledge if it can be generalized to problems

with external driving fields. This is the aim of the present paper.

Recent work by Bartsch et al.19–21 on TST for time-dependent problems has addressed

the inclusion of stochastic time-dependent forces (due to solvents in liquid phase reactions,

for example). Starting from the Langevin equation of motion, they showed the existence of

a “transition state trajectory,” which stays in the vicinity of the barrier for all time. The
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TS trajectory generalizes the saddle point that is of central importance to autonomous TST

to the time-dependent setting. Time-dependent invariant manifolds that separate reactive

from non-reactive trajectories in the known manner are attached to the TS trajectory.

In this paper, we combine the concept of the TS trajectory with the method of normal

form (NF) expansions based on Lie transformations22 which has been shown to be an effective

tool to calculate invariant manifolds in autonomous systems1–9 (see also Refs. 23,24 for a

quantum version of Lie transformations). Preceding work on time-dependent normal form

(TDNF) in the field of celestial mechanics25 assumes the external driving to be periodic or

quasi-periodic, which precludes an application of the algorithm to short laser pulses. In

contrast, the TDNF scheme developed here can be applied to any form of time dependence

of the external force. We will compare the result of the TDNF with those of a harmonic

approximation and of time-independent NF theory and thereby demonstrate that both the

nonlinearity and the time dependence are equally important and can be correctly handled

by TDNF theory.

Section II presents the technical details of the TDNF scheme. The basic finding there

is that, although resonances between the external field and the bath modes do not allow

reducing the dynamics to an integrable NF, it is possible to separate the reactive mode

from all other modes even under the influence of the laser field. This separation yields a

constant of the motion, viz. the action variable associated with the reactive mode. The sign

of this action variable distinguishes reactive from non-reactive trajectories and thus also

characterizes the separatrices between them.

In Sec. III, an application of the TDNF to a simple two-dof model is given: a Hénon-

Heiles potential with a Gaussian interaction with the external field. That potential,26 whose

contour plot is shown in Fig. 1, has one minimum at the origin and three saddle points that

separate a central region from three asymptotic regions. We regard the asymptotic regions

as depicting the reactant channel and two different product channels, the central region as

corresponding to an intermediate activated complex. The system then serves as a simple

model for multi-channel reactions like

R1 + R2 ® M∗




→ P1 + P2,

→ P′1 + P′2,
(1)

where R1 and R2 denote reactant molecules that collide to form a metastable complex M∗,

which then dissociates either into one of the two product channels P1 + P2 or P′1 + P′2, or
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back into the reactant channel R1 + R2.

The laser field influences both the formation and the decay of the intermediate complex.

Some of the trajectories starting in the reactant region of phase space are simply reflected

by the first barrier (marked by SR in Fig. 1) and never form the complex, whereas others

surmount the barrier and reach the intermediate region. Once the complex has been formed,

it can decay across any of the three barriers (SR, SA, SB) that lead into the three channels.

The outcome of the reaction is determined by the channel chosen. It is therefore important

to specify the conditions for a trajectory to enter into the intermediate region in the first

place and then to react into a given channel. We will construct time-dependent normal

forms around all three saddle points and show that the invariant manifolds extracted in this

way provide such conditions that allow one to predict the ultimate fate of a trajectory a

priori, without having to carry out a numerical simulation.

II. THEORY

In this section, we develop a scheme to calculate the phase space structures in the vicinity

of a saddle point for laser-driven reactions. The algorithm, which is based on time-dependent

normal form theory, consists of three main steps that are illustrated schematically in Fig. 2:

(a) diagonalization of the linearized time-independent dynamics, (b) a time-dependent shift

of origin that eliminates the time-dependence to lowest order, and (c) a sequence of nonlinear

coordinate transformations that reduces the dynamics to a suitably chosen normal form. As

a result, we will identify a reactive mode that can be separated from all other modes even

under the influence of the external field. Although resonances between the bath modes

and the external field prevent the reduction of the Hamiltonian to an integrable normal

form, it is possible to construct one constant of the motion, viz. the action variable of the

reactive mode. It defines phase space structures such as separatrices between reactive and

non-reactive trajectories.

We start with a general Hamiltonian of the form

Htot(q,p, t) =Hsys(q, p) + Hex(q,p, t), (2)

where Hsys is the Hamiltonian of the isolated system, and Hex describes the interaction with

the time-dependent external field.
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We assume that q = p = 0 is a rank-1 saddle point of Hsys, i.e. it denotes the location

of an energy barrier. We expand the Hamiltonian in Taylor series as follows:

Hsys(q, p) =
∞∑

ν=2

∑
P

`(j`+k`)=ν

αjkq1
j1 · · · qn

jnp1
k1 · · · pn

kn , (3)

Hex(q, p, t) =
∞∑

ν=1

∑
P

`(j`+k`)=ν

βjk(t)q1
j1 · · · qn

jnp1
k1 · · · pn

kn , (4)

where the exponents j` and k` (` = 1, . . . , n) are nonnegative integers and αjk and βjk(t)

are expansion coefficients. The expansion of Hsys begins with ν = 2 because q = p = 0 is an

equilibrium point. The expansion of Hex starts with ν = 1 since terms with ν = 0 have no

influence on the motion and can therefore be neglected. For example, a dipole interaction

with an external electric field leads to βjk(t) = 0 for k 6= 0 and βj0(t) = E(t) · µj , where

E(t) is the electric field and

µ(q) =
∞∑

ν=1

∑
P

` j`=ν

µjq1
j1 · · · qn

jn , (5)

is the dipole moment of the system as a function of the nuclear coordinates q.

Since the NF theory is a perturbative approach, we introduce formal a perturbation

parameter ε that will be set equal to 1 in the end. We scale according to

q 7→ εq, p 7→ εp, βjk(t) 7→ εβjk(t), Htot 7→ ε−2Htot. (6)

After the scaling, Hsys and Hex can be expressed as a power series in ε:

Hsys(q,p) =
∞∑

ν=0

ενHsys
ν (q,p), (7)

Hex(q,p, t) =
∞∑

ν=0

ενHex
ν (q,p, t), (8)

where

Hsys
ν (q,p)

def
=

∑
P

`(j`+k`)=ν+2

αjkq1
j1 · · · qn

jnp1
k1 · · · pn

kn , (9)

Hex
ν (q, p, t)

def
=

∑
P

`(j`+k`)=ν+1

βjk(t)q1
j1 · · · qn

jnp1
k1 · · · pn

kn . (10)
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The total Hamiltonian reads

Htot(q, p, t) =Hsys(q,p) + Hex(q,p, t)

=
∞∑

ν=0

εν {Hsys
ν (q,p) + Hex

ν (q, p, t)}

=H0 +
∞∑

ν=1

εν {Hsys
ν (q,p) + Hex

ν (q, p, t)} . (11)

As a consequence of the scaling prescription (6), its leading-order term

H0(q,p, t)
def
= Hsys

0 + Hex
0

=
∑

P
`(j`+k`)=2

αjkq1
j1 · · · qn

jnp1
k1 · · · pn

kn

+
∑

P
`(j`+k`)=1

βjk(t)q1
j1 · · · qn

jnp1
k1 · · · pn

kn (12)

has an autonomous part of degree 2 in coordinates and momenta and a time-dependent

part of degree 1. The associated equations of motion are therefore linear in p and q and

have time-dependent driving terms independent of coordinates and momenta. For this

situation, although in a non-Hamiltonian setting, a time-dependent Transition State Theory

based on an exact solution of the equations of motion was developed in Refs. 19–21. Our

treatment of the leading-order Hamiltonian in Secs. II A and IIB will be closely patterned

after this earlier approach. On the other hand, anharmonicities of the system Hamiltonian

and position-dependent couplings to the external fields, both of which cannot be handled

within the framework of Refs. 19–21, are relegated to higher-order terms in (11). A scheme

for the perturbative treatment of these terms will be introduced in Sec. II C. It represents

a considerable generalization of our earlier method and is the central result of the present

paper.

A. Diagonalization of the linearized time-independent dynamics

As a first step of the normal form procedure, we diagonalize the autonomous part of the

leading-order Hamiltonian H0 in the standard way. We introduce normal mode coordinates

through the linear transformation

Qr
` =C

(`)
1 q1 + C

(`)
2 q2 + · · ·+ C(`)

n qn + C
(`)
n+1p1 + · · ·+ C

(`)
2Npn, (13)

P r
` =C

(n+`)
1 q1 + C

(n+`)
2 q2 + · · ·+ C(n+`)

n qn + C
(n+`)
n+1 p1 + · · ·+ C

(n+`)
2N pn (14)
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with appropriate coefficients C
(`)
j such that H0 takes the form

H0 =
λ

2

(
P r

1
2 −Qr

1
2
)

+
n∑

`=2

ω`

2

(
P r

`
2 + Qr

`
2
)−

n∑

`=1

ξr
`(t)Q

r
` −

n∑

`=1

ηr
`(t)P

r
` , (15)

where ξr
`(t) and ηr

`(t) (` = 1, . . . , n) can be calculated from βjk(t) by substituting Eqs. (13)

and (14) into Eq. (12). We further introduce the coordinates [see Fig. 2 (a) for the reactive

mode]

Qc
1

def
=

Qr
1 + P r

1

21/2
, P c

1
def
=

P r
1 −Qr

1

21/2
, (16)

Qc
`

def
=

Qr
` − iP r

`

21/2
, P c

`
def
=

P r
` − iQr

`

21/2
, (` = 2, . . . , n), (17)

which are illustrated in Fig. 2(a) for the reactive mode. For the bath modes, Qc
` and P c

`

take complex values, whereas Qc
` and P c

` are real. This is indicated by the superscripts ‘r’

and ‘c’. In these coordinates, H0 becomes

H0 =λQc
1P

c
1 +

n∑

`=2

iω`Q
c
`P

c
` −

n∑

`=1

ξc
` (t)Q

c
` −

n∑

`=1

ηc
`(t)P

c
` , (18)

where ξc
` (t), η

c
`(t) (` = 1, . . . , n) are obtained by substituting Eqs. (16) and (17) into Eq. (15).

B. Shift to a time-dependent origin

To eliminate the time dependence from H0, we perform a time-dependent shift of the

origin, as suggested in Refs. 19–21 and illustrated in Fig. 2(b):

qc
`

def
= Qc

` −Q‡
`(t), (19)

pc
`

def
= P c

` − P ‡
` (t), (` = 1, . . . , n). (20)

The shifts Q‡
` and P ‡

` are given by

Q‡
1 =− S [λ, ηc

1], (21)

P ‡
1 =S [−λ, ξc

1], (22)

Q‡
` =− S [iω`, η

c
` ], (23)

P ‡
` =S [−iω`, ξ

c
` ], (` = 2, . . . , n), (24)
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where the symbol S [·, ·] is defined as follows. For a function f(t) with the Fourier transform

f̂(ω) =
1

(2π)1/2

∫ +∞

−∞
f(t) exp(−iωt)dt, (25)

f(t) =
1

(2π)1/2

∫ +∞

−∞
f̂(ω) exp(iωt)dω, (26)

and for a complex number µ,

S [µ, f ](t)
def
=

1

(2π)1/2

∫ +∞

−∞

f̂(ω)

−µ + iω
exp(iωt)dω. (27)

If Reµ 6= 0, the S-functional can be written explicitly as in Ref. 20:

S [µ, f ](t) =





−
∫ ∞

t

f(τ) exp(µ(t− τ)) dτ : Reµ > 0,

+

∫ t

−∞
f(τ) exp(µ(t− τ)) dτ : Reµ < 0.

(28)

Therefore, the components Q‡
1(t) and P ‡

1 (t) correspond to the TS trajectory of Refs. 19–

21, which was defined as a particular solution of the lowest-order equations of motion that

remains in the vicinity of the barrier for all times. If f(t) describes a short pulse, i.e.

f(t) → 0 as t → ±∞, it is clear from (28) that S [µ, f ](t) → 0 as t → ±∞, as is required

for the components of the TS trajectory.

If, however, µ = iω0 is purely imaginary, the integral in Eq. (27) is ill-defined because

the integrand has a pole on the integration path. This divergence must be regularized to

yield a suitable expression for the TS trajectory. An obvious way to do this is to add an

infinitesimal real part to the eigenvalues, i.e. to replace the S-functional in Eqs. (23) and

(24) by

S±[iω0, f ](t)
def
= S [iω0 ± ε, f ], ε > 0. (29)

These regularizations are well-defined if the Fourier transform f̂(ω) is regular at ω = ω0.

They differ in the boundary conditions they satisfy: By (28), S+[iω0, f ](t) tends to zero as

t → +∞. As t → −∞,

S+[iω0, f ](t) →− exp(iω0t)

∫ ∞

−∞
f(τ) exp(−iω0τ)

=− (2π)1/2f̂(ω0) exp(iω0t). (30)

Conversely, S−[iω0, f ](t) → 0 as t → −∞, and S−[iω0, f ](t) → (2π)1/2f̂(ω0) exp(iω0t) as

t → +∞. Both regularizations remain bounded for all times and are therefore equally
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suitable as components of the TS trajectory. We thus find that in the presence of purely

imaginary eigenvalues the TS trajectory is no longer uniquely defined. Dynamically speak-

ing, imaginary eigenvalues correspond to undamped oscillations. The motion in these modes

always remains bounded for all times, so that the requirement that the TS trajectory must

never leave the vicinity of the barrier does not single out a specific trajectory. In the bath

modes, we are therefore free to pick an arbitrary trajectory and designate it as the TS

trajectory. By convention, we will choose the symmetrized version

S [iω0, f ](t)
def
=

1

2
(S+[iω0, f ](t) + S−[iω0, f ](t)) , (31)

which corresponds to replacing the integral in Eq. (27) by its principal value. With this

definition, Eqs. (21)-(24) specify a TS trajectory if the Fourier spectra of the driving forces

ξc
` (t) and ηc

`(t) are smooth, which is true for realistic laser pulses.

For functions f(t), g(t) and constants a, b, µ, ν, the following properties of the S symbol

can readily be shown:

S [µ, af + bg] = aS [µ, f ] + bS [µ, g], (32)
(

d

dt
− µ

)
S [µ, f ] = f, (33)

S [µ, S [λ, f ]] = S [λ, S [µ, f ]] =
1

µ− λ
{S [µ, f ]− S [λ, f ]} , (34)

S [µ, 1] = − 1

µ
, (35)

If

∫ +∞

−∞
f(t)dt = 0, then

∫ +∞

−∞
S [µ, f ](t)dt = 0. (36)

If f(t) is proportional to an electric field strength, as for the dipole coupling (5), the hy-

pothesis of (36), i.e. f̂(0) = 0, is always satisfied as a consequence of Maxwell’s equations.16

The shift (19) and (20) to the TS trajectory as a time-dependent origin is described by

the generating function

F (qc,P c, t) =
n∑

`=1

{
qc
`P

c
` − qc

`P
‡
` (t) + Q‡

`(t)P
c
`

}
. (37)

The new Hamiltonian H̃(qc,pc, t) is given by

H̃(qc,pc, t) =Htot − ∂F

∂t
(38)

=H0 − ∂F

∂t
+

∞∑
ν=1

εν {Hsys
ν + Hex

ν } . (39)
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A simple calculation using (33) shows that

H0 − ∂F

∂t
=λqc

1p
c
1 − ξ1(t)Q

‡
1(t) +

n∑

`=2

{
iω`q

c
`p

c
` + ξ`(t)Q

‡
`(t)

}
. (40)

Terms independent of pc
` and qc

` have no influence on the equations of motion and can

be omitted. We then obtain a Hamiltonian [that will not be confused with the original

Hamiltonian (2)]

H(qc, pc, t)
def
= H

(0)
0 (qc,pc) +

∞∑
ν=1

ενHν(q
c,pc, t), (41)

where the harmonic part

H
(0)
0 (qc,pc)

def
= λqc

1p
c
1 +

n∑

`=2

iω`q
c
`p

c
` (42)

is formally the same as the autonomous part of the leading-order Hamiltonian H0 in (19)

and the higher-order terms Hν(q
c,pc, t) = Hsys

ν +Hex
ν are the same as in (11), but rewritten

in the new coordinates.

The dynamics of the harmonic part H
(0)
0 can be solved exactly. It conserves the action

variables I1 = qc
1p

c
1, and I` = iqc

`p
c
` (` = 2, . . . , n). In the next section, we will incorporate

the effect of the anharmonic terms Hν (ν = 1, 2, . . .) by regarding them as perturbations to

the integrable system H
(0)
0 .

C. Time-dependent normal form theory

This section describes a final nonlinear canonical transformation (qc, pc) 7→ (q̄c, p̄c) illus-

trated Fig. 2 (c). This transformation will be chosen such as to decouple the reaction coor-

dinate from the bath modes. To this end, we will use time-dependent Lie transformations22

in the formulation of Dragt and Finn.27 First we extend the phase space from (qc,pc) to

(qc, τ, pc, Pτ ) with Hamiltonian

K(qc, τ, pc, Pτ )
def
= H(qc,pc, τ) + Pτ , (43)

where the canonical coordinate τ takes the same value as t and Pτ is its conjugate momentum.

The Taylor expansion of K is given by

K(qc, τ, pc, Pτ ) = K0(q
c, τ, pc, Pτ ) +

∞∑
ν=1

ενKν(q
c, τ, pc), (44)
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where

K0(q
c, τ, pc, Pτ )

def
= H

(0)
0 (qc,pc, τ) + Pτ = λqc

1p
c
1 +

n∑

`=2

iω`q
c
`p

c
` + Pτ , (45)

Kν(q
c, τ, pc)

def
= Hν(q

c, pc, τ) for ν ≥ 1. (46)

We will now construct a canonical transformation (qc, τ, pc, Pτ ) 7→ (q̄c, τ, p̄c, Pτ ) that

leaves the time coordinate τ unchanged and that decouples the reactive mode from the bath

modes to an arbitrarily high order N of perturbation theory. It will be given by a sequence

of Lie transformations:

q̄c
` = exp(−εF1) exp(−ε2F2) · · · exp(−εNFN)qc

` , (47)

p̄c
` = exp(−εF1) exp(−ε2F2) · · · exp(−εNFN)pc

`, (48)

where

Fν = {·, fν}. (49)

is the operation of Poisson bracket with a function fν that will be specified below. The

Hamiltonian K is transformed into

K̄ = exp(εNFN) · · · exp(ε2F2) exp(εF1)K. (50)

It is now our goal to find functions fν that achieve the desired decoupling in K̄.

If we define a sequence of partially transformed Hamiltonians K̄(µ) =
∑∞

ν=0 ενK̄
(µ)
ν by

K̄(0) = K and

K̄(µ) = exp(εµFµ)K̄(µ−1)

= exp(εµFµ) · · · exp(ε2F2) exp(εF1)K, (51)

we find the recursion formulae

ν < µ : K̄(µ)
ν =K̄(µ−1)

ν , (52)

ν = µ : K̄(µ)
µ =K̄(µ−1)

µ + FµK̄
(0)
0 , (53)

ν > µ : K̄(µ)
ν =K̄(µ−1)

ν +
∞∑

s=1

(Fµ)s

s!
K̄

(µ−1)
ν−sµ . (54)
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Because the term of the order ν is unchanged for µ > ν, in the final Hamiltonian K̄ = K̄(N)

it reads

K̄ν = K̄(N)
ν = K̄(N−1)

ν = · · · = K̄(ν)
ν =K̄(ν−1)

ν + FνK̄
(0)
0 . (55)

Thus, fν should be chosen so that the decoupling of the reactive mode is achieved in the

term K
(ν)
ν .

In the present case,

K̄(ν−1)
ν (qc,pc) =

∑

j ,k

h
(ν)

jk
(τ) (q̄c

1)
j1 (q̄c

2)
j2 · · · (q̄c

n)jn (p̄c
1)

k1 (p̄c
2)

k2 · · · (p̄c
n)kn , (56)

is a polynomial, where h
(ν)

jk
(τ) are coefficients that depend on τ . We can also express fν as

a polynomial

fν =
∑

j ,k

w
ν,jk(τ) (q̄c

1)
j1 (q̄c

2)
j2 · · · (q̄c

n)jn (p̄c
1)

k1 (p̄c
2)

k2 · · · (p̄c
n)kn , (57)

containing the same monomials jk that occur in Eq. (56). With K̄
(0)
0 given by Eq. (45),

Eq. (55) yields

K̄(N)
ν =

∑

j ,k

[
h

(ν)

jk
(τ)−

(
d

dτ
− γjk

)
w

ν,jk

]
(q̄c

1)
j1 (q̄c

2)
j2 · · · (q̄c

n)jn (p̄c
1)

k1 (p̄c
2)

k2 · · · (p̄c
n)kn ,

(58)

where

γjk
def
= λ (k1 − j1) + i

n∑

`=2

ω` (k` − j`) . (59)

Thus, by setting

w
ν,jk =S

[
γjk, h

(ν)

jk

]
, (60)

we can eliminate the term jk from K̄(ν) [see Eq. (33)]. If h
(ν)

jk
does not depend on τ , we

obtain

w
ν,jk =

h
(ν)

jk

γjk
, (61)

which is well-known in the theory of time-independent NF.1–3
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In the calculation of the coefficients in Eq. (60), once again one has to pay attention to

convergence. If γjk is purely imaginary, the integrand in the definition (27) has a singularity

on the real axis. It was noted in Sec. II B that taking the principal value circumvents this

problem for the calculation of the TS trajectory because the Fourier transform of the laser

pulse is regular. However, the Fourier transform of the coefficients h
(ν)

jk
may be singular

there because through Eqs. (19) and (20) these coefficients depend on the TS trajectory,

the Fourier transform of which has a pole. Thus, the S-functional in Eq. (60) may diverge

for purely imaginary γjk. This effect can be interpreted as due to a resonance between

a bath mode and the laser pulse. It prevents us from eliminating the resonant term from

the Hamiltonian and thereby from constructing a coordinate system in which all degrees of

freedom decouple.

A resonance that makes γjk purely imaginary can only occur if j1 = k1. We propose

to retain all such terms in the normal form Hamiltonian and to eliminate all terms with

j1 6= k1. Such a partial normalization avoids resonances, which makes it a powerful tool in

many applications (see, e.g., Refs. 1,8,28,29).

The transformation functions fν in (57) are independent of Pτ , so that the time coordinate

τ̄ = exp(−εF1) exp(−ε2F2) · · · exp(−εNFN)τ = τ (62)

is unchanged under the transformation, as desired. In addition, because of the special form

of K
(µ)
ν in (45) and (46), FµK

(0)
ν = {K(0)

ν , fµ} is independent of Pτ for all µ and ν. Therefore,

the normal form Hamiltonian K̄ depends on Pτ only through its lowest-order term K̄0 = K0.

We can thus return to a time-dependent formulation in the non-extended phase space with

the normal form Hamiltonian

H̄(q̄c, p̄c, t) = K̄(q̄c, t, p̄c, P̄τ )− P̄τ = H
(0)
0 (q̄c, p̄c) +

∞∑
ν=1

ενK̄ν(q̄
c, t, p̄c), (63)

where we write t again instead of the time coordinate τ .

Because the normal form Hamiltonian contains only terms with j1 = k1, it takes the form

H̄(q̄c, p̄c, t) =λq̄c
1p̄

c
1 +

n∑

`=2

iω`q̄
c
` p̄

c
` +

∑

j ,k

ā
(ν)

jk
(t) (q̄c

1p̄
c
1)

j1 (q̄c
2)

j2 · · · (q̄c
n)jn (p̄c

2)
k2 · · · (p̄c

n)kn (64)

where it is understood that terms of order larger than N , which are not in normal form,

should be dropped. For the Hamiltonian (64), the action of the reactive mode Ī1
def
= q̄c

1p̄
c
1 is
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conserved. This reflects the desired separation of the reactive mode from the bath modes.

When projected onto the (q̄c
1, p̄

c
1) plane, trajectories follow a hyperbola, as depicted in Fig. 3.

Trajectories with Ī1 > 0 are (forward or backward) reactive, those with Ī1 < 0 are not. The

separatrices between reactive and non-reactive trajectories are thus given by Ī1 = 0.

Through the normal form coordinates, geometrical objects such as the normally hyper-

bolic invariant manifold (NHIM) M, its stable manifold Ws and unstable manifold Wu, and

the transition state dividing surface T can be defined in a way analogous to that of Refs. 1,2

(see Fig. 3):

M def
= {(q̄c, p̄c, t)|(q̄c, p̄c, t) ∈ Ω, q̄c

1 = p̄c
1 = 0} , (65)

Ws def
= {(q̄c, p̄c, t)|(q̄c, p̄c, t) ∈ Ω, q̄c

1 = 0} , (66)

Wu def
= {(q̄c, p̄c, t)|(q̄c, p̄c, t) ∈ Ω, p̄c

1 = 0} , (67)

T def
=

{
(q̄c, p̄c, t)|(q̄c, p̄c, t) ∈ Ω, q̄r

1 =
q̄c
1 − p̄c

1

21/2
= 0

}
. (68)

These definitions are valid locally within the region of convergence Ω of the NF expan-

sion. They can be put in the original coordinates by inverting the nonlinear transformation

[Eqs. (47) and (48)], the shift [Eqs. (19) and (20)], and then the linear trasformations

[Eqs. (13), (14), (16), and (17)]. The stable and unstable manifolds can be continued nu-

merically beyond the region Ω as in the autonomous setting.4,5 The dimensions of M, Ws,

Wu, and T are 2n− 1, 2n, 2n, and 2n, respectively, in the (2n+1)-dimensional phase space

(including time). These dimensions are increased by 2 compared to the time-independent

case because the manifolds are time-dependent and are not confined to an energy shell.

The normal form procedure requires the truncation of the Hamiltonian to a finite expan-

sion order N . It is therefore important to monitor the error caused by the truncation and the

convergence of the expansion with increasing N . In Ref. 30, we suggested to use the energy

error for this purpose in an autonomous system. Here we will use an alternative criterion

that is more directly related to the equations of motion, that is, the error of Hamiltonian

vector field. We monitor the Euclidean norm of the difference of the vector fields calculated

by the original Hamiltonian and the TDNF Hamiltonian:

∆v
def
=

[
n∑

`=1

(
d

dt
q̄c
` (qc(t),pc(t), t)− ∂H̄

∂p̄c
`

)2

+
n∑

`=1

(
d

dt
p̄c

` (qc(t),pc(t), t) +
∂H̄

∂q̄c
`

)2
]1/2

. (69)

Here, q̄c
` (qc(t),pc(t), t) and p̄c

` (qc(t), pc(t), t) mean q̄c
` and p̄c

` as function of the original
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coordinates (qc, pc), with qc(t) and pc(t) calculated by trajectory simulation with the orig-

inal Hamiltonian. The Hamiltonian vector field
(

∂H̄
∂p̄c

`
, ∂H̄

∂q̄c
`

)
is calculated by the transformed

Hamiltonian H̄. If (qc,pc) is in the convergence range, and if the NF expansion is taken up

to the infinite order, then ∆v becomes zero. Thus, we use a decrease in the value of ∆v as

a numerical criterion for convergence. To judge whether the error ∆v is small, we compare

it with the norm v of the Hamiltonian vector field:

v
def
=

[
n∑

`=1

(
∂H̄

∂p̄c
`

)2

+
n∑

`=1

(
∂H̄

∂q̄c
`

)2
]1/2

. (70)

III. THE DRIVEN HÉNON-HEILES SYSTEM

In this section we will apply the theory developed in the preceding section to an externally

driven Hénon-Heiles system, which serves as a simple model for a reaction with several open

channels. Through numerical trajectory calculations we find that the set of trajectories

that lead into any given channel possesses a structure reminiscent of the “reactive islands”

known in autonomous systems.4,6,11–13 The time-dependent invariant manifolds introduced

here form the boundaries of the reactive islands and thus provides a geometric interpretation

of the island structure. Time-dependent normal form theory will prove to be an effective

tool for their calculation.

The Hénon-Heiles potential26 has one minimum at the origin and three saddle points SR =
(
31/2/2,−1/2

)
, SA =

(−31/2/2,−1/2
)
, and SB = (0, 1). They separate a central region from

three asymptotic regions (see Fig. 1) that we interpret as defining a reactant channel and

two product channels A and B. The central region corresponds to an intermediate activated

complex. As pointed out in Sec. I, this model captures salient features of multi-channel

chemical reactions. In the absence of external driving, the three saddles are equivalent.

Their barrier height relative to the origin is 1/6. Their normal mode frequencies are, in the

notation of Eq. (18), λ = 1 for the reactive mode and ω2 = 31/2 for the bath mode.

In Ref. 31, it was found that the interaction between reacting molecules and a laser field is

much larger for the activated complex than for the isolated molecules. We assume this result

to be typical of many molecular systems. This finding motivates us to model the coupling

of the molecular system to the laser field by a Gaussian that is peaked at the origin. We are
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thus led to the Hamiltonian

H =
1

2

(
px

2 + py
2
)

+
1

2

(
x2 + y2

)
+ x2y − 1

3
y3 + E1(t) exp(−αx2 − βy2). (71)

Here, x and y are position coordinates and px and py are conjugate momenta. E1(t) denotes

the electric field, and α and β are parameters that introduce an asymmetry among the

asymptotic regions. Since this is a model calculation, we use a unit system in which the

vibrational frequency at the origin is scaled to 1. We use α = 2 and β = 4 in what follows.

The laser-molecule interaction is proportional to E1(t), thus representing a dipole interaction.

Inclusion of the polarizability would result in terms proportional to the square of E1(t).
31

We use the driving field E1(t) shown in Fig. 4 and given by32

E1(t) =− ∂

∂t
A(t), (72)

A(t) =




−A0 cos2

(
ωt

2N

)
sin (ωt + φ) (for |t| < Nπ

ω
)

0 (otherwise).

(73)

The parameters ω and A0 are the laser frequency and the amplitude, respectively. The phase

φ is called the carrier-envelope phase (CEP)14,32. The parameter N is the number of cycles

contained under the envelope. This pulse satisfies the zero-area condition
∫ +∞
−∞ E1(t)dt = 0.

We use ω = 3, A0ω = 0.1, N = 4, and φ = π, which we found to exhibit the effect of the

laser field most clearly. Thus, the laser frequency ω is three times the “molecular” frequency

ω0 = 1 of small vibrations around the origin. With this choice of parameters, the external

field is zero for |t| > 4.189.

We sample initial conditions for our numerical trajectory study on the surface defined by

31/2x− y = 3, (74)

at the initial time t0 = −4.2, just before the onset of the pulse, and with the initial energy

E0 = 0.3. (Note that the energy is well-defined before the pulse starts.) These initial

conditions can be specified by the parameters

q
def
=

x + 31/2y

2
, (75)

p
def
=

px + 31/2py

2
, (76)

which coincide with the canonical normal-mode coordinates of the bath mode at SR.
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An example of the unit conversion from our scaled units to conventional units can be given

as follows: One of length, mass, and time in our units may correspond to 1.6 au (=0.84 Å),

1837 au (=1.7× 10−27 kg), and 220 au (=5.3 fs), near the time scale of proton motion (∼ 7

fs), respectively. This makes the unit of energy 0.096 au (=60 kcal/mol). Thus the barrier

height (1/6 in our scaled units) becomes 0.016 au=10 kcal/mol, which is in the right order

of the realistic systems.33,34 The harmonic frequency at the center becomes 220−1=0.0046

au, corresponding to 1000 cm−1. Thus, our initial energy of 0.3, which corresponds to 0.029

au (=18 kcal/mol = 6300 cm−1), is larger than the zero point energy of 500 cm−1.

As described above, the outcome of a reaction is determined by the channel in which a

trajectory finally leaves the interaction region. Figure 5 shows the final channel as a function

of the initial condition (q, p). In the absence of the external field, as shown in Fig. 5(a), there

is a symmetry between the channels A and B: The reflection (q, p) 7→ (−q,−p) interchanges

their roles, as should be expected from the symmetry of the Hénon-Heiles system. The time-

dependent driving, which is anisotropic because α 6= β in Eq. (71), breaks this symmetry,

as can clearly be seen in Fig. 5(b). There is an asymmetric shift of the phase space regions

that lead into different final channels, as can most clearly be seen in the regions around

(q, p) = (±0.22, 0). In addition, the branching ratio, that is, the total production of B

divided by that of A, is increased to 1.075. This is precisely the effect that needs to be

understood in detail if one wishes to control the outcome of a reaction through a suitably

tailored laser pulse.

The most conspicuous feature of Fig. 5 is the existence of several different regions, or

“islands,” of initial conditions that lead into the same final channel and that intertwine with

the islands of the other channels in a complicated manner. As Fig. 6 shows, trajectories that

reach the same channel from different islands are qualitatively different. In the example of

Fig. 6(a), trajectory 2 differs from trajectory 1 by an additional oscillation in the x direction.

This difference can be detected by counting the crossings of the trajectory with the line x = 0

(where we count only crossings from positive to negative x). As can be seen in Fig. 6(b),

trajectories within the same island have the same number of crossings with the dividing line.

However, the number of crossings does not uniquely identify the island and therefore does

not provide an exhaustive characterization of the island structure. A similar classification

can be carried out for trajectories that react into channel B or return into the reactant

channel, although different dividing lines have to be chosen (see Fig. 7). It is shown in
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Fig. 6(c) and 6(d). In the latter case, there is a large peripheral region of trajectories that

do not cross the dividing line at all. These trajectories are reflected by the barrier SR before

they can enter into the intermediate region.

A more detailed understanding of the island structure in Fig. 5 can be obtained by not-

ing its similarity with the reactive islands observed by De Leon et al.11–13 These authors

interpreted the reactive islands in a two-dimensional autonomous system as the imprints

of invariant “cylindrical manifolds” that separate reactive from nonreactive trajectories and

that intertwine in a complicated manner as they follow the intricacies of a homoclinic tangle.

This picture was later generalized to more than two degrees of freedom,1,4,6 where the stable

and unstable manifolds of the NHIM that were described above play the role of the cylin-

drical manifolds and show the same complicated behavior. While the theory of Refs. 11–13

can immediately be applied to the time-independent situation shown in Fig. 5(a), previous

approaches are not capable of handling the time-dependent case of Fig. 5(b). However,

the time-dependent normal form theory described here enables us to define and compute

the corresponding invariant manifolds even for the driven system. We will show that these

manifolds determine the structure of reactive islands in the same way as they do in the

autonomous setting.

We have constructed the time-dependent normal forms around all three saddle points.

The resulting expressions for the NF Hamiltonians and the coordinate transformations are

available as supplemental material on EPAPS.35 Once a trajectory comes close enough to

a barrier for the corresponding NF expansion to be valid, we evaluate the action Ī1 of the

reactive mode that determines the fate of the trajectory. If Ī1 > 0, the trajectory will cross

the barrier, and we assign the value of Ī1 as the escape action of that trajectory. If Ī1 < 0,

we know that the trajectory will be deflected by the barrier. Thus, trajectories with slightly

negative Ī1 suffer an entirely different fate from their neighbors with slightly positive Ī1:

They return into the intermediate region with its complicated dynamics and later attempt

to escape across a different barrier. This sensitivity of trajectories close to the separatrix is

the cause of the intricate intertwining of the reactive islands. The separatrices themselves

are given by the zeros of the escape action. Trajectories with Ī1 = 0 lie on the stable

manifold of the TS trajectory. They are trapped on the barrier and will neither escape nor

be reflected.

In practice, we calculate the coefficients in the TDNF expansion for times t ∈
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[−20.48, +20.48]. To calculate the S-functionals appearing in TDNF, we use fast Fourier

transform algorithm36 by dividing the interval t ∈ [−20.48, +20.48] into 212 grid points. For

the bath modes, we set ε = 10−7 in Eq. (29) to calculate the principal value in Eq. (31). The

normal form and the action Ī1 are evaluated once a trajectory comes so close to a saddle

point that the real normal mode coordinate satisfies |qr
1| < η, where we choose the threshold

η= 0.2 for SR and η =0.12 for SA and SB. The results of the calculation do not depend

noticeably on any of these numerical parameters. They do depend on the order N to which

the normal form expansion is carried out, and it will be crucial to monitor the convergence

of the results with increasing N .

The quality of the TDNF expansion can be monitored locally through the error [Eq. (69)]

of the Hamiltonian vector field. It is evaluated at the same phase space point and at the same

time as the action Ī1. To obtain an overall error estimate, we average over all trajectories

that lead to escape across a given saddle. We compare the average error 〈∆v〉 to the average

of the norm [Eq. (70)] of the Hamiltonian vector field itself, which is evaluated at the same

points. Figure 8 shows the relative error 〈∆v〉/〈v〉 for each saddle point and for each TDNF

order. The 0th order corresponds to the harmonic approximation described in Secs. II A

and IIB. For all the three saddle points, the error decreases as the NF order increases and

becomes about 1 % of the norm of the vector field for the 4th order. Thus, we can conclude

that the TDNF is a good approximation for this system.

The time-dependent invariant manifolds describe both steps of the reaction, i.e. both

the formation and the decay of the activated complex. To study the formation step, we

calculate the reactive-mode action Ī1 of trajectories that approach the reactant barrier from

the reactant side. For our sample of trajectories, the results are shown in Fig. 9. There

is in the space of initial conditions an island of positive action where trajectories enter the

intermediate region. It is surrounded by a region of negative action whose trajectories are

repelled by the barrier. The line Ī1 = 0 forms the separatrix between entering and non-

entering trajectories. In all cases, the numerical simulations confirm that the value of the

action predicts the fate of a trajectory correctly.

A much more complicated picture is obtained on escape, after the trajectories have taken

part in the complex internal dynamics of the activated complex. As described above, we

assign a final channel and an escape action to a trajectory once it approaches one of the

barriers with a positive action in the reactive mode. The actions obtained in this way are
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shown in Fig. 10. They take positive values within the reactive islands and decrease to zero

as the border of an island is approached. Since the invariant manifolds of the TS trajectories

on the saddles are given by Ī1 = 0, this observation confirms that the borders of the reactive

island are formed by these stable manifolds.

In order to assess the validity of the normal-form predictions more accurately, we focus

on one of the major reactive islands. Fig. 11 shows the boundary of the island around

(q, p) = (−0.22, 0) that was obtained numerically and compares it to the results of normal

form expansions of various orders. The normal-form results converge toward the exact is-

land boundaries with increasing N , and practically coincide with them for N = 4. This

confirms the validity of the normal form expansion. Nevertheless, the harmonic approxima-

tion differs significantly from the correct results, which shows that the nonlinearities that

are incorporated though the higher orders of the expansion have a strong influence on the

dynamics.

In addition, Fig. 11 shows the boundary of the island that was obtained from a 4th-

order autonomous normal form expansion that neglects the time-dependent driving (in the

trajectory calculations, the time-dependence was retained). Although this expansion order

is large enough to take account of the nonlinearities, the boundary found in this calculation

is wrong. Thus, the external driving has a noticeable impact on the escape dynamics, and it

can only be described correctly if both the time dependence and the nonlinearities are taken

into account. The manifolds calculated here are beyond the reach of earlier approaches that

can only handle either the nonlinearities or the time dependence.

A further observation can be adduced to support the identification of the island bound-

aries with time-dependent invariant manifolds: If this interpretation is correct, the bound-

aries correspond to trajectories that get trapped on a barrier top for all time. Thus, neigh-

boring trajectories that are close to a boundary should take a long time before they escape.

To verify this prediction, we study the section p = 0 through the island shown in Fig. 11

and calculate the time at which a trajectory crosses the TS dividing surface defined by (68).

Fig. 12 shows that escape time as well as the escape action as a function of the initial co-

ordinate q. The plot confirms, once again, that the boundary of the island is given by the

zero of the reactive-mode action and that trajectories that reach the barrier with negative

action do not escape. It also shows, as anticipated, that the escape time grows to infinity as

the boundary is approached. We can therefore conclude that the boundaries of the reactive
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islands are indeed formed by invariant manifolds, just as they are in autonomous systems,

and that time-dependent NF theory provides and effective way of calculating them.

IV. CONCLUSION AND OUTLOOK

In summary, we have developed time-dependent Transition State Theory as a tool to

investigate the dynamics of reactive systems under the influence of external driving. We

showed how to define a TS trajectory as a generalization of the saddle point in an autonomous

system. Time-dependent normal form theory then allows us to incorporate nonlinearities.

While resonances between the internal dynamics and the external driving prevent the reduc-

tion to an integrable normal form, it is possible to define a reaction coordinate with regular

dynamics that separates from the other modes. The action variable associated with the

reactive mode defines time-dependent invariant manifolds that act as separatrices between

reactive and non-reactive trajectories. In a space of initial conditions, they give rise to reac-

tive islands that are entirely analogous to those found in autonomous systems. Once these

islands are known, the ultimate fate of a trajectory can be predicted without a numerical

simulation.

We demonstrated the efficacy of this computational scheme by calculating the separatrices

for a Hénon-Heiles system with a dipole interaction, which serves as a simple model of a

reactive system with several open channels. In this system, we find an intricate pattern

of reactive islands similar to that known from time-independent systems. This pattern is

accurately described and explained by the invariant manifolds constructed through time-

dependent normal form theory. Although we discussed an example system with only two

degrees of freedom and dipole interaction, our method can readily be applied to higher-

dimensional systems and higher nonlinear laser-molecule interactions.

It will be interesting and rewarding to study the effect of field parameters such as the

frequency, pulse duration and carrier-envelope phase on these separatrices. Such a study

will lead to valuable physical insight into why certain pulses enhance a specific reaction and

others do not. This may constitute a first step towards controlling chemical reactions by

manipulating the location of the separatrices through tailored laser fields.
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Figure captions

Fig. 1 (Color online) Contour plot of the potential energy of Hénon-Heiles system. Con-

tours are spaced by 0.03. The saddle points SA, SB and SR separate a central

region from three different asymptotic channels. The the line in the reactant

channel indicates the dividing surface used to sample initial conditions.

Fig. 2 (Color online) The main steps of the time dependent normal form method

(schematic). (a) Diagonalization of the linearized autonomous dynamics,

(Qr,P r) 7→ (Qc,P c). (b) Time-dependent shift of the origin to the transition

state trajectory (Qc, P c) 7→ (qc, pc). (c) Nonlinear normal form transformation

(qc,pc) 7→ (q̄c, p̄c).

Fig. 3 (Color online) Phase space structures projected onto the NF reactive mode

(schematic). The action Ī1 = q̄c
1p̄

c
1 is conserved and restricts trajectories to the

hyperbolas shown in black.

Fig. 4 The electric field (72) used to drive the Hénon-Heiles system.

Fig. 5 (Color online) Initial conditions that result in product A, product B or a return

into the reactant channel, are shown by medium (red), dark (blue), and light

(gray) colors. (a) without an external field. (b) with the driving field (72). The

external field distorts the pattern of islands and breaks the symmetry between

channels A and B.

Fig. 6 (Color online) (a) Trajectories that reach the same final channel from different

islands show qualitatively different behavior. They can be distinguished by the

number of crossings with the dividing line LA: x = 0. (b) Number of crossings

with LA: x = 0 for trajectories with final state A. Only crossings from positive

to negative x are counted. Trajectories within one island share the same number

of crossings. The two initial conditions used to draw the trajectories in panel (a)

are marked by crossed symbols. (c) Number of crossings with LB: x− 31/2y = 0

for trajectories with final state B. (d) Number of crossings with LR: 31/2x−y = 0

for non-reactive trajectories. Trajectories in the gray peripheral region that do

not cross LR at all are reflected by the reactant barrier and never enter the

intermediate region. (The dividing lines LA, LB, and LR are illustrated in Fig. 7).
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Fig. 7 (Color online) The dividing lines LA: x = 0, LB: x−31/2y = 0 and LR: 31/2x−y =

0 used to characterize the island structure.

Fig. 8 (Color online) Error in the Hamiltonian vector fields for NF calculation as a

function of the NF order. Triangle, diamond, square symbols show the error for

the NF at SR, SA, SB, respectively. The decrease of the error means convergence

of the polynomical expansions in the NF calculation.

Fig. 9 (Color online) Reactive-mode action Ī1 of trajectories first approaching the reac-

tant barrier SR. Trajectories with Ī1 > 0 will enter into the intermediate region,

those with Ī1 < 0 are reflected. The separatrix between the entering and non-

entering trajectories is given by Ī1 = 0. The outer solid curve indicates the

boundary of possible initial conditions at energy E0 = 0.3. Trajectories within

this region for which no action is given (white) do not come close enough to the

saddle for the normal form expansion to be valid.

Fig. 10 (Color online) Escape actions as a function of initial conditions, computed from

a 4th-order NF expansion. Red: trajectories escaping into channel A, blue:

trajectories escaping into B. The outer solid curve indicates the boundary of

possible initial conditions at energy E0 = 0.3. In order not to overload the figure,

we do not indicate the escape actions of returning trajectories. The actions are

positive in the interior of a reactive island and decrease to zero as the border of

the island is approached.

Fig. 11 (Color online) Border of the reactive island around (−0.22, 0) obtained numeri-

cally and through normal form theory. The results of time-dependent NF theory

converge toward the exact result with increasing expansion order. Autonomous

NF theory (carried out in 4th order) fails.

Fig. 12 (Color online) Escape time Tesc and escape action Ī1 for trajectories starting on

the section p = 0 through the island shown in Fig. 11. At the border of the island,

shown by the dotted line, the action tends to zero, the escape time diverges.
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S. Kawai et al., FIG. 2
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S. Kawai et al., FIG. 3
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S. Kawai et al., FIG. 4
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S. Kawai et al., FIG. 5
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S. Kawai et al., FIG. 6
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S. Kawai et al., FIG. 7

33



S. Kawai et al., FIG. 8
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35



S. Kawai et al., FIG. 10

36



S. Kawai et al., FIG. 11

37



S. Kawai et al., FIG. 12

38


