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Abstract  
 
The effect of the presence of n-dodecane as a potential oxygen vector during oxygen-

limited continuous cultures of a Bacillus strain was studied, under extreme nutrient supply 

conditions: glucose excess, limitation and starvation. The addition of n-dodecane to the 

aqueous phase of a mechanically agitated and aerated fermentation increased the kLa by up 

to 35%. The n-dodecane additions to B. licheniformis cells during starvation (oxygen 

limitation with concomitant glucose starvation) caused a severe detrimental progressive 

change in cell physiological state with respect to cytoplasmic membrane polarisation and 

permeability which was mitigated against by alleviating either the oxygen limitation (by 

increasing the mean energy dissipation rate or by the addition of n-dodecane as an oxygen 

vector) or by alleviating the carbon limitation (by resuming the carbon feed or by the 

addition of a glucose pulse). Further that during periods of excess glucose (glucose pulse) a 

much higher kLa was required to prevent the onset of anaerobic mixed acid fermentation 

than could be provided by the addition of n-dodecane alone. N-dodecane can be used to 

increase the kLa when added in sufficient quantities to the aqueous phase of a mechanically 

agitated and aerated bioreactor but the magnitude of this increase is process and vessel 

geometry specific.  
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Introduction 

Thermophilic aerobic wastewater treatment has many of the same benefits as thermophilic 

composting and sludge digestion, such as faster waste degradation rates, rapid inactivation 

of pathogenic micro-organisms, and low sludge yields. However, the oxygen requirements 

of such systems are high and can be considered to be a disadvantage when compared to 

anaerobic technologies [1]. Indeed, the most important consideration regarding the use of 

thermophilic reactors is the requirement to match the high oxygen uptake rate imposed by 

rapid COD consumption at high temperatures given that the saturation concentration of 

dissolved oxygen in the water-like growth medium is relatively low. Oxygen requirements 

in these systems have been estimated to be ~14% higher than for conventional aerobic 

processes [2] such that Rozich and Colven [3] recommended using extremely high power 

inputs, gas blending and a greater tank depth to satisfy the large oxygen requirement of 

thermophilic treatment processes. However, these can be costly options and difficult to 

achieve in practice especially where available space is at a premium so the selection of 

alternative regimes that maximise oxygen transfer becomes one of the most critical process 

design choices. It is known that oxygen transfer in microbial fermentations can be 

enhanced by adding an organic phase with a higher affinity for oxygen i.e. an oxygen 

vector [4]. Oxygen vectors are defined as compounds that, when added to the growth 

medium, can enhance the oxygen transfer rate to the cell, resulting from the higher oxygen 

solubility in the organic phase when compared with a water-like growth medium [5]. In this 

case, oxygen transfer can occur directly to cells, or via oxygen-vectors either adsorbed or 

not to the air bubble surface. [6,7]. Whereas no more than the saturation concentration of 

oxygen can be dissolved in the aqueous phase, the supply of oxygen to the aqueous phase 

from the gas stream may be supplemented by equilibrium partitioning of dissolved oxygen 
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from the organic phase to the aqueous phase. Indeed a number of wokers have used oxygen 

vectors to successfully enhance oxygen transfer and, as a consequence, have increased the 

biomass concentration and hence process performance in a number of different culture 

systems [8,9]. Examples of common hydrocarbon oxygen vectors include n-dodecane, 

nhexadecane [10,11,12,13,14,15,16] perfluorocarbons [9,17,18] and a number of vegetable 

oils [19]. The isolation of cultures from thermophilic aerobic wastewater treatment reactors 

has revealed that thermophilic Bacillus spp. are the dominant organisms present [1,2,20]. 

During such highly aerobic processes oxygen requirements are often over estimated 

because DOT measurements are impossible to make because the DOT probe rapidly 

becomes coated with a biofilm. This often leads to excessive power inputs of >30 kWm-3 

and aeration rates of ~4 vvm being used to ‘ensure’ oxygen-sufficient conditions [21]. 

Therefore in this work the effect of the presence of n-dodecane as a potential oxygen vector 

during oxygen-limited continuous cultures of a Bacillus strain (previously isolated from an 

aerobic bioremediation reactor) was studied, under extreme nutrient supply conditions: 

glucose excess, limitation and starvation. Such conditions are often present in large-scale 

fermentations (>5000L dependent on vessel geometry) due to poor mixing [22] where cells 

experience rapidly changing microenvironments with respect to substrate concentrations 

when circulating around a bioreactor. In order to evaluate the physiological response of 

Bacillus licheniformis to the range of conditions described individual cell physiological 

response was measured by multi-parameter flow cytometry as well as more conventional 

microbiological analytical techniques and a comparison made. 
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Materials and Methods 

Organism 

B. licheniformis was previously isolated from an aerobic wastewater treatment reactor  

(Sustainable Biowaste Solutions Ltd, Peterborough, UK) and deposited in the Industrial 

Micro-organisms Culture Collection (National Institute of Engineering, Technology and 

Innovation, Lisbon, Portugal), with the reference code CCMI 1034. Lyophilized cell 

cultures of Bacillus cereus NCTC1143 were also used to provide control data. 

 

Bioreactor experiments 

Cells from six nutrient agar plates grown for 24 h at 45 ºC were transferred to the growth 

medium (GM) which was made up as follows: glucose 5 g l-1; KH2PO4 1 g l-1; (NH4)2SO4 

1.5 g l-1; yeast extract 0.25 g l-1; CaCl2·2H2O 0.1 g l-1; MgCl2·7H2O 0.25 g l-1 and 

supplemented with 2 ml Vishniac trace elements solution [23] to inoculate the bioreactor. 

After a period of batch culture, a pump was used to feed sterile GM into the fermenter at a 

dilution rate of 0.20 h−1. Steady-state parameters were determined by periodic analysis of 

biomass concentration (g l-1) and residual glucose concentration (g l-1). All experiments 

were carried out in an Infors HT benchtop fermenter (Infors, Reigate, Surrey, UK), with a 

1.2 l working volume, equipped with two six-bladed Rushton impellers (d=0.048 m). The 

two impellers were positioned 0.042 m apart with the lower impeller situated 0.032 m 

above the bottom of the vessel. The vessel was fitted with three equally spaced baffles, 

width 0.015 m. The working volume was kept constant by using a surface dipped levelling 

tube linked to a variable speed peristaltic pump. Culture agitation was set at 500 rpm unless 

otherwise stated, and the aeration rate at 1 vvm. Continuous, DOT measurements were 

impossible because the polarographic dissolved oxygen probe used in this work became 
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rapidly coated with a biofilm early on during fermentations. However, the biofilm was 

aseptically removed from the oxygen probe in all steady-states prior to the batch periods 

(starvation and glucose pulse), so that steady-state DOT readings could be taken. The 

temperature was controlled at 45 ºC and pH was controlled automatically by the addition of 

2M NaOH or 2M HCl on demand to 6.8+0.1.  

 

Oxygen vector 

n-dodecane  (Merck, Darmstadt, Germany; oxygen solubility 54.9x10-3 g l-1 at 35ºC and 

atmospheric air pressure) was added to the sterile fermentation broth at different volumetric 

fractions 1, 2.5 and 5 % (v/v) as appropriate. 

 

kLa measurements 

kLa measurements were made using a polarographic dissolved oxygen electrode (Ingold, 

USA) in sterile growth medium because of the problems associated with DOT probe 

membrane fouling. The gas-liquid mass transfer coefficient (kLa) was calculated by 

measuring the rate of oxygen transfer in nitrogen purged fermentation broth, at 45ºC 

following the method described in [24].  

 

Glucose pulse 

Once the steady-state was reached (D= 0.20 h−1), the medium feed pump was switched-off, 

and a glucose pulse (6 g l-1 final concentration) containing the other GM nutrients (at the 

same proportion to the feed) were added to allow a period of batch growth and carbon 

source exhaustion to occur. N-dodecane was added  at either 1, 2.5 and 5 % v/v final 

concentration, simultaneously with the glucose and the GM nutrients. In some cases the 
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impeller speed was also increased from 500 rpm to 1000 rpm at the same time as the 

glucose pulse was added. Samples were withdrawn from the bioreactor at regular time 

intervals for determination of biomass, glucose and organic acids concentration as well as 

for analysis by multi-parameter flow cytometry. 

 

Starvation period 

Starvation periods were carried out under the same conditions as the glucose pulse but 

without any nutrients added at all. N-dodecane was added in the same concentrations as 

previously described. The dilution rate before the starvation period (0.20 h-1) was kept the 

same for each experiment in order to try and ensure comparable physiological starting 

conditions in all cases (glucose pulse and starvation period). Once the steady-state was 

reached, the nutrient feed-line and outlet culture pumps were switched-off to allow a period 

of nutrient starvation to occur. Samples were withdrawn from the bioreactor at regular time 

intervals for determination of biomass, glucose and organic acids concentration as well as 

for analysis by multi-parameter flow cytometry. 

 

Flow cytometry  

The analytical methods used were essentially the same as in previous articles [21,25], so 

only an outline will be given here. Multi-parameter flow cytometry was used to establish 

the physiological state of the cells, using a Coulter Epics Elite analyser (BeckmanCoulter, 

UK). The advantages of multiparameter flow cytometry over the more conventional 

microbiological techniques such as dilution plating (c.f.u. per ml) are well documented 

[26,27] but, briefly, using various mixtures of fluorescent dyes it is possible to resolve an 

individual microbial cells physiological state beyond culturability based on the presence or 
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absence of an intact polarised cytoplasmic membrane and the transport mechanisms across 

it, enabling assessment of population heterogeneity. In all cases the properties of at least 

50,000 cells were measured. In addition, cell biomass (OD600nm, dry cell weight, g l-1), 

glucose and organic acids concentrations (g l-1) were measured throughout the 

fermentations.  

 

Results and Discussion 

Flow cytometry controls 

A number of flow cytometry control data sets were established in order to show that 

Bacillus licheniformis could be reliably stained with PI and DiOC6(3) and to provide base 

line data for comparison with that taken from the steady state of the continuous culture and 

subsequent experimental perturbations. The cytoplasmic membrane potential in 

prokaryotes is known to be between 100 – 200 mV, the exact magnitude depending on the 

metabolic activity of the cell with the inside of the cell negative with respect to its exterior 

[28]. In general Gram +ve cells have a lower maximum cytoplasmic membrane potential 

than Gram -ve cells. Therefore cationic stains that accumulate proactively (i.e. it enters and 

stains the cell when the cytoplasmic membrane is polarised) are often thought to be 

preferential for reflecting changes in membrane potential in Gram +ve organisms [39] to 

those anionic stains commonly used with Gram –ve cells. Indeed only ~40% of a 

Rhodococus sp. cell population was able to generate a sufficiently high cytoplasmic 

membrane potential to exclude bis-(1, 3-dibutylbarbituric acid) trimethine oxonol (anionic) 

during nutrient sufficient conditions [30]. In this work it is shown that even when Bacillus 

licheniformis cells are taken from the steady state of a continuous culture and stained with a 

mixture of PI and BOX only two populations of cells could be readily identified (Figure 
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1i). Sub-population located in the lower left quadrant, with no staining was largely absent. 

Indeed in this study (not all data shown) B. licheniformis was unable to generate a 

sufficiently high cytoplamsic membrane potential to exclude BOX at any time during its 

growth cycle (including uncontrolled rapid growth) and in this and other such cases BOX 

cannot be used reliably to monitor changes in individual cell cytoplasmic membrane 

potential. Therefore in this work we have shown that the Gram +ve bacteria Bacillus cereus 

NCTC1143 and Bacillus licheniformis can be rapidly stained with a mixture of PI and 

DiOC6(3). DiOC6(3) is cationic and accumulates intracellularly when the cytoplasmic 

membrane is polarised or hyperpolarized. Normally, as is the case with, B. cereus (Figure 1 

ii), up to three sub-populations are readily identifiable. These correspond to cells with an 

intact polarised cytoplasmic membrane, stained with DiOC6(3) (A), cells with an intact 

depolarised cytoplasmic membrane, not stained (B) and cells with a permeablised 

depolarised cytoplasmic membrane stained with PI only (C). However, in the case of 

stationary phase Bacillus licheniformis cells a fourth sub-population can be identified (D) 

(Figure 1 iii). This corresponds to cells stained with both PI and DiOC6(3), paradoxically 

this would mean that cells had a permeablised but polarised cytoplasmic membrane. To 

investigate this phenomenon further B. lichenformis cells were taken from the steady state 

of the continuous culture and either incubated  in the presence of 15μg ml-1 (for 10 min) of 

carbonyl cyanide m-chlorophenylhydrazone (CCCP, a known ionophore used to collapse 

cytoplasmic membrane potential [29]), heat treated at 60oC for 30s or washed in 100% 

ethanol. Such cells were then stained with a mixture of PI and DiOC6(3) and compared 

with untreated cells. Only cells treated with the CCCP excluded DiOC6(3) (Figure 2) and 

PI whilst only the untreated cells excluded the PI. These data support (experimentally) the 

theories put forward by earlier studies [28,31], that  with lipohilic cationic carbocyanine 
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dyes such as DiOC6(3) non-specific energy independent binding can occur when the 

hydrophobic regions of disrupted cytoplasmic membranes, become exposed to such harsh 

conditions as exposure to lethal heat, dehydration in ethanol and sometimes severe nutrient 

limitation. 

 

kLa measurements 

Figure 3 shows the variation of kLa with the impeller speed (500 rpm and 1000 rpm) and 

with 1, 2.5 and 5% n-dodecane added to the sterile culture broth with a volumetric gas flow 

rate of 1 vvm. The highest kLa was obtained at 1000 rpm (71.3 h-1) as compared with the 

kLa obtained at 500 rpm (31.0, 36.4, 38.0 and 28.1 h-1 obtained at 1, 2.5 and 5% v/v n-

dodecane and no n-dodecane added, respectively). Therefore the kLa was increased in ~10, 

30 and 35% when the n-dodecane was added to the sterile culture broth stirred at 500 rpm, 

at 1, 2.5 and 5% (v/v), respectively. This is in contrast to a ~150% increase in kLa when the 

impeller speed was raised from 500 rpm to 1000 rpm in essentially the same system. 

However, the later represents a ~10 fold increase in mean specific energy dissipation rate 

( Tε ) from 0.7 – 7W Kg-1. These findings are in agreement with other work where n-

dodecane was used as an oxygen vector in microbial fermentations [12,13,32], although the 

exact kLa values are strongly dependent on other factors such as bioreactor geometry and 

growth medium composition. 

 

Starvation period 

Figures 4 and 5 show representative biomass, organic acid and physiological profiles of a 

B. licheniformis steady-state culture subjected to a starvation period (nutrient feed shut off) 

of 6 h duration at two agitation intensities (500 rpm and 1000 rpm) and in the presence or 
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not of one of three concentrations of n-dodecane (1, 2.5 and 5% v/v). In all cases just 

before the starvation period the biomass concentration was in the range ~1.5 – 2 g l-1, 

glucose was 0 g l-1, both acetic acid and formic acid had accumulated to between ~1-1.2 g 

l-1 and ~0.05 – 0.12 g l-1 respectively and DOT was less than 5%,. This indicated that 

oxygen was limiting during the preceding period of steady-state growth (held at 500 rpm) 

and both formic as well as acetic acid are known to accumulate via the redirection of 

pyruvate during mixed acid fermentation when oxygen is limiting 

[33,34,35,36,37,38,39,40]. Interestingly, though this did not result in a large proportion of 

cells with depolarised or permebalised (dead) cytoplasmic membranes probably because 

this B. licheniformis strain is known to be a facultative anaerobe [37]. Further, during a 

similar steady-state (data not shown) but held at 1000 rpm no organic acids were detected, 

and the biomass yield was higher ~0.5 g biomass (g glucose)-1 when compared to that of ~ 

0.3 g biomass (g glucose)-1 observed at 500 rpm. This indicates and supports the work of 

others who showed that under oxygen sufficient conditions, B. licheniformis can convert 

glucose to biomass more efficiently but it is still able to consume glucose under oxygen 

limiting conditions [39,41]. In all cases formic acid had been completely consumed 2h into 

the starvation period with acetic acid completely consumed by 5h both with similar 

volumetric uptake rates (Table 1) but, during this period there was little increase or 

decrease in biomass concentration presumably the ATP derived was being used for cell 

maintenance rather than growth. In the case of the starvation period held at 500 rpm 

without any n-dodecane added and with 1% v/v n-Dodcecane added there was a substantial 

and progressive detrimental change in cell physiological state throughout the six hour 

period with a decrease in the proportion of cells stained with only DiOC6(3) which was 
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more pronounced in the former rather than the latter case. This meant that the ‘healthy 

biomass’ (i.e. stained with DiOC6(3) only) was consuming more of the organic acids on a  

g g-1 ‘healthy biomass’ basis. In all other cases there was little change in cell physiological 

state throughout. This is attributed to conditions of both oxygen limitation and glucose 

exhaustion in the case of the starvation periods held at 500 rpm with no n-dodecane added 

and with 1% v/v n-dodcecane added. Presumably, the oxygen limitation could have been 

less in the latter case because of the presence of the oxygen vector. In all other cases whilst 

conditions of glucose exhaustion existed there was reduced oxygen limitation because of a 

higher KLa due to either a higher agitation intensity or the presence of n-dodecane in a 

sufficiently high enough concentration to prevent oxygen limitation and hence a 

detrimental change in cell physiological state. However, the beneficial effect of n-dodecane 

may not be entirely attributable to the alleviation of oxygen limitation because n-dodecane 

can be metabolised if it is the sole carbon source present [10,42] and a reliable method for 

measuring n-dodecane concentration was not available during this study so this warrants 

further investigation. Examination of samples collected during the starvation period using 

traditional optical light microscopy did not show any increase in the proportion of 

endospores when compared to the steady-state in all the cases. N-dodecane toxicity at the 

concentrations used can be discounted because there was little detrimental change in 

physiological state when even 5% was added to the steady-state culture (Figure 5). 

 

Glucose pulses 

Figures 6 and 7 show representative biomass, organic acid and physiological profiles for 6h 

after a B. licheniformis steady-state culture was subjected to a ~5 g l-1 glucose pulse  at two 

agitation intensities (500 rpm and 1000 rpm) and in the presence or not of one of three 
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concentrations of n-dodecane (1, 2.5 and 5% v/v). In all cases, just before the glucose pulse 

addition, DOT was less than 5%, indicating that oxygen was limiting during the previous 

steady-states. Both formic acid and acetic acid accumulated during the steady state as 

before presumably for similar reasons. Although the biomass, organic acid concentrations 

and physiological profiles just before the glucose addition point were not exactly the same, 

such differences have been reported before [29,43] and are explained by long term 

physiological oscillations, multiple steady-states and genetic instabilities which are known 

to occur during continuous culture of some Bacillus spp. In all cases the glucose was 

consumed by 2h after the addition. For all fermentations pyruvic, lactic and propionic acids 

accumulated for 2h after the glucose addition and were then consumed when the glucose 

was exhausted. The maximum concentration of each was measured at 2h post glucose 

addition and was similar in all cases where n-dodecane was added but lower in the absence 

of the oxygen vector. Formic acid started to be consumed immediately on addition of the 

glucose in all fermentations. In the case of the fermentation carried out at 1000 rpm, acetic 

acid was the dominant organic acid that accumulated and was consumed immediately after 

glucose exhaustion (Figure 6a), this change in substrate utilisation is well documented [36] 

and allows cells to survive in the absence of a more readily assimilable carbon source [39]. 

Here the acetic acid is used for cell maintenance rather than growth since there was no 

measurable increase in biomass concentration throughout this period (Ybiomsass/acetic acid = 0 g 

biomass (g acetic acid)-1 Table 1). The switch to the use of acetic acid was accompanied by 

a transient detrimental change in cell physiological state as measured by fluorescent 

staining.  In all the other fermentations there was very little change in cell physiological 

state throughout and the patterns of acetic acid accumulation and utilisation were very 

different. In all of these fermentations acetic acid was either utilised or remained constant 
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during glucose consumption then increased rapidly on glucose exhaustion during which 

period the other organic acids present were consumed with little or no accompanying 

increase in biomass concentration, although the acetic acid yields with respect to glucose 

(Y acetic acid/glucose) were different (Table 2). As expected, the highest biomass yield with 

respect to the amount of glucose consumed (Ybiomass/glucose) was measured in the 

fermentation at 1000 rpm (0.23 g g-1), indicating that the higher oxygen availability in the 

broth due to the higher KLa allowed carbon assimilation via the tricarboxylic acid cycle, 

resulting in biomass production. The lowest Ybiomass/glucose (0 g biomass (g glucose)-1) was 

observed in the fermentation at 500 rpm with no n-dodecane added (Table 2), indicating 

that oxygen limitation occurred with carbon redirected towards the products of anaerobic 

mixed acid fermentation resulting in little cell growth. The remaining fermentations, i.e., 

500 rpm with 1, 2.5 and 5 % (v/v) n-dodecane displayed a slightly higher biomass yield 

(0.05, 0.06 and 0.08 g biomass (g glucose)-1 respectively), indicating that the increased KLa 

due to the oxygen vector increased oxygen availability in these fermentations, thus 

allowing a partial carbon conversion to biomass. Similarly, the other organic acids yields 

with respect to glucose (YPyruvic/Glucose, YPropionic/Glucose, YLactic/Glucose, Table 2) followed the 

same trend. In all cases microscopical observation indicated no endospore formation in 

response to the environmental conditions imposed. 

 

Conclusions  

 

Dual staining with PI and DiOC6(3) and simultaneous measurement of emitted 

fluorescence can be used to monitor the physiological state of some Bacillus spp. but the 
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interpretation of such data can only be reliably done when the necessary control 

experiments have been carried out. 

 

N-dodecane can be used to increase the kLa when added in sufficient quantities to the 

aqueous phase of a mechanically agitated and aerated bioreactor but the magnitude of this 

increase is process and vessel geometry specific. The toxic effects of n-dodecane on the 

Bacillus spp tested at concentrations of up to 5% (v/v) can be largely discounted. 

 

The imposition of oxygen limitation coupled with glucose starvation causes a severe 

detrimental progressive change in cell physiological state with respect to cytoplasmic 

membrane polarisation and permeability. However, this can be mitigated against by 

alleviating either the oxygen limitation (by increasing the mean energy dissipation rate or 

by the addition of n-dodecane as an oxygen vector) or by alleviating the carbon limitation 

(by resuming the carbon feed or by the addition of a glucose pulse). Further that during 

periods of excess glucose (glucose pulse) a much higher KLa was required to prevent the 

onset of anaerobic mixed acid fermentation than could be provided by the addition of n-

dodecane alone. The latter has implications for the scale-up of such aerobic waste water 

treatment systems either run continuously or as a fed-batch because in such fed systems 

chemical heterogeneities are known to occur [39] such that zones of high glucose and low 

oxygen exist which lead to a detrimental change in bioprocessing at larger scales due to 

poor mixing [22] making the design of large scale processes difficult and their performance 

hard to predict based on small-scale data obtained. 

 



 16

Acknowledgements 

Teresa Lopes da Silva and Alberto Reis wish to acknowledge Fundação Calouste 

Gulbenkian for financial support via post-doctoral Grants 76875 e 76876 respectively. The 

work was carried out with the support of FEDER funds, as a part of a study within the 

SAPIENS project POCTI/EQU/47689/2002 entitled ‘‘Enhancement of bubble and drop 

mass transfer processes using additives’’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 17

References 

 

[1] T.M. Lapara, J.E. Alleman, Thermophilic aerobic biological wastewater treatment, Wat. 

Res. 33 (1999) 895-904. 

 

[2] G.A. Sücürü, R.S. Engelbrecht, E.S.K. Chian, Thermophilic microbial treatment 

strength wastewaters with simultaneous recovery of single cell protein, Biotechnol. Bioeng. 

17 (1975) 1639-1662. 

 

[3] A.F. Rosich, R.J. Colvin, Design and operational considerations for thermophilic 

aerobic reactors considerations for thermophilic aerobic reactors treating high strength 

wastes and sludges, in: Proceedings of the 52th Industrial Waste Conference(1997), Pardue 

University, ed. J.E. Alleman, Ann Arbor Press, Ann Arbour, M.I., USA. 

 

[4] D.R. Nielson, A.J. Daugulis, P.J. McLellan, A novel method of simulating oxygen mass 

transfer in two-phase partitioning bioreactors, Biotechnol. Bioeng. 83 (2003) 735–742. 

 

[5] A.I. Galaction, D. Cascaval, C. Oniscu, M. Turnea, Enhancement of oxygen mass 

transfer in stirred bioreactors using oxygen-vectors. 1. Simulated fermentation broths, 

Bioprocess Biosyst. Eng. 26 (2004) 231-238. 

 

[6] J.L. Rols, J.S. Condoret, C. Fonade, G. Goma, Mechanism of enhanced oxygen transfer 

in fermentation using emulsified oxygen-vectors, Biotechnol. Bioeng. 35 (1990) 427-435. 

 



 18

[7] J.L. Rols, G. Goma, Enhancement of oxygen-transfer rates in fermentation using 

oxygen-vectors, Biotechnol. Adv. 7 (1989) 1-14. 

 

[8] C.S. Ho, L.K. Ju, R. Baddour, Enhancing penicillin fermentations by increased oxygen 

solubility through the addition of n-hexadecane, Biotechnol. Bioeng. 36 (1990) 1110–1118. 

 

[9] M. Menge, J. Mukherjee, T. Scheper, Application of oxygen vectors to Claviceps 

purpurea cultivation, Appl. Microbiol.Biotechnol. 55 (2001) 411–416. 

 

[10] A.I. Galaction, D. Cascaval, M. Turnea, E. Folescu, Enhancement of oxygen mass 

transfer in stirred bioreactors using oxygen-vectors. 2. Propionobacterium shermanii 

broths, Bioprocess Biosyst. Eng. 27 (2005) 263–271. 

 

[11] R. Giridhar, A. Srivastava, Productivity enhancement in L-sorbose fermentation using 

oxygen vector, Enzyme Microb. Technol. 27 (2000) 537–541.  

 

[12] S. Jia, M. Wang, P. Kahar, Y. Park, M. Okabe, Enhanced of yeast fermentation by 

addition of oxygen vectors in air-lift bioreactors, J. Ferm. Bioeng. 84 (1997) 176–178. 

 

[13] W. Jialong, Enhancement of citric acid production by Aspergillus niger using n-

dodecane as an oxygen vector, Process Biochem. 35 (2000) 1079–1083. 

 

[14] L. Lai, T. Tsai, T. Wang, Application of oxygen vectors to Aspergillus terreus 

cultivation, J. Biosc. Bioeng. 94 (2002) 453–459. 



 19

 

[15] D.Z. Wei, H. Liu, Promotion of L-asparaginase production by using n-dodecane, 

Biotechnol. Tech. 12 (1998) 129–131. 

 

[16] T. Lopes da Silva, A. Mendes, R.L. Mendes, V. Calado, S. Alves, J.M.T. Vasconcelos, 

A. Reis, Effect of n-dodecane on Crypthecodinium cohnii fermentations and DHA 

production, J. Ind. Microbiol. Biotechnol. 33 (2006) 408–416. 

 

[17] K.C. Lowe, M.R. Davey, J.B. Power, Perfluorochemicals: their applications and 

benefits to cell culture, Trends Biotechnol. 16, (1998) 272–277. 

 

[18] G.T. MacLean, Oxygen diffusion rates in organic fermentation broths, Proc. Biochem. 

12 (1977) 22–28. 

 

[19] S. Zhao, S.G. Kuttava, L.K. Ju, Oxygen transfer characteristics of multiple-phase 

dispersions simulating water-in-oil xanthan fermentations, Bioproc. Eng. 20 (1999) 313–

332. 

 

[20] P.F. Strom, Identification of thermophilic bacteria in solid-waste composting, Appl. 

Environ. Microbiol. 50 (1985) 906-913. 

 

[21] T. Lopes da Silva, A. Reis, C.A. Kent, M. Kosseva, J.C. Roseiro, C.J. Hewitt, Stress-

induced physiological responses to starvation periods as well as glucose and lactose pulses 



 20

in Bacillus licheniformis CCMI 1034 continuous aerobic fermentation processes as 

measured by multi-parameter flow cytometry, Biochem. Eng. J. 24 (2005) 31-41. 

 

[22] C. J. Hewitt, A. W. Nienow, The scale-up of microbial batch and fed-batch 

fermentation processes, Ad. Appl. Microbiol. 62 (2007) 105-135. 

 

[23] W. Vishniac, M. Santer, The thiobacilli, Bacteriol. Rev. 21 (1957) 5–213. 

 

[24] M. Sobotka, A. Prokop, I.J. Dunn, A. Einsele, Review of methods for the 

measurement of oxygen transfer in microbial systems, in Annual reports on fermentation 

processes, Academic Press, London, 5 (1982) pp. 127-210. 

 

[25] C.J Hewitt, G. Nebe-Von-Caron, A.W Nienow, C.M. McFarlane. The use of multi-

staining flow cytometry to characterize the physiological state of Escherichia coli W3110 

in high cell density fed-batch cultures, Biotevhnol. Bioeng. 63 (1999) 705-711. 

 

[26] C. J. Hewitt, G. Nebe-von-Caron, An industrial application of multi-parameter flow 

cytometry: Assessment of cell physiological state and its application to the study of 

microbial fermentations, Cytometry 44 (2001) 179-187. 

 

[27] G. Nebe-von-Caron, P.J. Stephens, C.J. Hewitt, J.R. Powell, R.A. Badley, Analysis of 

bacterial function by multi-colour fluorescence flow cytometry and single cell sorting, J. 

Microbiol. Meth. 42 (2000) 97-114.  

 



 21

[28] H.M. Shapiro, Practical Flow Cytometry, Fourth Edition, Alan R. Liss Inc. (2003) 

New York. 

 

[29] A. Reis, T. Lopes da Silva, C.A. Kent, M. Kosseva, J.C. Roseiro, C.J. Hewitt, 

Monitoring population dynamics of the thermophilic Bacillus licheniformis CCMI 1034 in 

continuous cultures using multiparameter flow cytometry, J. Biotechnol. 115 (2005) 119–

210. 

 

[30] C.J. Hewitt, G. Nebe-von-Caron, The application of multi-parameter flow cytometry 

to monitor individual microbial cell physiological state, in: Advances Biochemical 

Engineering/Biotechnology, in: S.O. Enfors (Ed.), Physiological Stress Responses in 

Bioprocesses, Special vol. 89, Springer, 2004, pp. 197–223. 

 

[31] P. Monfort, B. Baleux, Cell cycle characteristics and changes in membrane potential 

during growth of Escherichia coli as determined by cyanine fluorescent dye and flow 

cytometry, J. Microbiol. Meth. 25 (1996) 79–86. 

 

[32] C. Hbid, P. Jacques, H. Razafindralambo, K. Mpoyo, M. E. Meurice, M. Paquot, P. 

Thonart, Influence of the production of two lipopeptides, Iturin A and Surfactin S1, on 

oxygen transfer during Bacillus subtilis fermentation, Appl. Biochem. Biotechnol. 8 (1996) 

571-579. 

 

[33] P. Shariati, W.J. Mitchell, A. Boyd, F. Priest, Anaerobic metabolism in Bacillus 

licheniformis NCIB 6346, Microbiology 141 (1995) 1117-1124. 



 22

 

[34] M. Nakano, Y. Daily, P. Zuber, D.P. Clark, Characterization of anaerobic fermentative 

growth of Bacillus subtilis: Identification of fermentation end products and genes required 

for growth, J. Bacteriol. 179 (1997) 6749-6755. 

 

[35] T. Hoffman, M. Frankenberg, M. Marino, D. Jahan, Ammonification in Bacillus 

subtilis utilizing dissimilatory nitrite reductase is dependent on resDe, J. Bacteriol. 180 

(1998) 186-189. 

 

[36] J. Espinosa-de-los-Monteros, A. Martinez, F. Valle, Metabolic profiles and aprE 

expression in anaerobic cultures of Bacillus subtilis using nitrate as terminal electron 

acceptor, Appl. Microbiol. Biotechnol. 57 (2001) 379-384 . 

 

[37] L.D Clements, B.S. Miller, U.N. Streips, Comparative growth analysis of the 

facultative anaerobes Bacillus subtilis, Bacillus licheniformis, and Escherichia coli, Syst. 

Appl. Microbiol. 25 (2002) 284-286. 

 

[38] E. Rosenfeld, C. Duport, A. Zigha, P. Schmitt, Characterization of aerobic and 

anaerobic growth of food-borne pathogen Bacillus cereus F4430/73 strain, Can. J. 

Microbiol. 51 (2005) 149-158. 

 

[39] A.J. Wolfe, The acetate switch, Microbiol. Mol. Biol. Rev. 69 (2005) 12-50. 

 



 23

[40] S. O Enfors, M. Jahic, A. Rozkov, B. Xu, M. Hecker, B. Jurgen, E. Kruger, T. 

Schweder, G. Hamer, D. O'Beirne, N. Noisommit-Rizzi, M. Reuss, L. Boon, C. Hewitt, C. 

McFarlane, A. Nienow, L. Fuchs, T. Kovacs, J. Revstedt, C. Tragardh, P. C. Friberg, B. 

Hjertager, G. Blomsten, H. Skogman, S. Hjort, F. Hoeks, H.Y. Lin, P. Neubauer, R. van 

der Lans, K., Luyben, P. Vrabel, A. Manelius, Physiological responses to mixing in large 

bioreactors, J. Biotechnol. 85 (2001) 175-185. 

 

[41] T. Mankad, E.B. Nauman, Modeling of microbial-growth under dual limitations, 

Chem. Eng. J. Biochem. Eng. J. 48 (1992) B9-B11. 

 

[42] R. Fuchs, D.I.C. Wang, Simple system for controlling dissolved-oxygen concentration 

in laboratory fermentors, Biotechnol. Bioeng. 16 (1974) 1529-1536. 

 

[43] J.D. Chung, G. Stephanopoulos, Studies of transcriptional state heterogeneity in 

sporulating cultures of Bacillus subtilis, Biotechnol. Bioeng. 47 (1995) 234–242. 

 

 



 24

i) 

 

 

 

 

 

 

      ii) 

 

      iii) 

Figure 1 

   

A 

B C 

  D
iO

C
6(

3)
 

 

     
PI

 

A D 



 25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  2. 

Number of events 

  

10   0    10 1   102
 103

 10 4     
DiOC 6(3)

0   

256   

Ethanol treated cells Heat treated cells  

Cells from steady-state

Cells from steady-state + CCCP (10 
min) 



 26

0

10

20

30

40

50

60

70

80

500 rpm 1000 rpm 500 rpm+1% 500 rpm+2.5% 500 rpm+5%

k L
a 

(h
-1
)

 

 

Figure 3. 

 

 



 27

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

0 1 2 3 4 5 6 7

Time (h)

A
ce

tic
 a

ci
d 

co
nc

en
tr

at
io

n 
(g

/l)

0,00

0,05

0,10

0,15

0,20

0,25

0,30

Fo
rm

ic
 a

ci
d 

co
nc

en
tr

at
io

n 
(g

/l)

500 rpm 1000 rpm 500 rpm; 1% n-dod 500 rpm; 2.5% n-dod

500 rpm; 5% n-dod 500 rpm 1000 rpm 500 rpm; 1% n-dod

500 rpm; 2.5% n-dod 500 rpm; 5% n-dod

 

 

 

 

 

 

 

 

 

Fig. 4 

Starvation period 

Steady-state 

Open symbols – Formic Acid; Full symbols – Acetic acid 

0,00

0,50

1,00

1,50

2,00

2,50

3,00

0 1 2 3 4 5 6 7 8

Time (h)

B
io

m
as

s 
(g

/l)

500 rpm 1000 rpm 500 rpm+ 1% dod 500 rpm + 2.5 % 500 + 5% 

(a) 

(b) 



 28

Starvation period 
 
 
 
 
 

                                    
 
 
 

                                     
 
 
 

                                                      
 

Steady_state 

2 h after the 
starvation 
period onset 

End of  
the experiment 
(t= 6h) 

  (a)   (b) (c) (d) (e) 

(f) (g)   (h) (i) (j) 

 (k) (l) 

A 

C B 

A D 

C B 

A 

C B 

A 

C B 

A A A 
A 

A A 
A 

A 

B 

D 

C B 

D 

C 

C 

D 

B 

D 

C B 

D 

D 
D 

C  B 

D 

C B C 

D 

B 

PI 

(m) (n) (o) 

C 

D 

A 

D A 

B 

D 

C B 

D 

A 

B 
C 

D
iO

C
6 
(3

) 

D
iO

C
6 
(3

) 

D
iO

C
6 
(3

) 

D
iO

C
6 
(3

) 

D
iO

C
6 
(3

) 
D

iO
C

6
(3

) 

D
iO

C
6 
(3

) 
D

iO
C

6 
(3

) 

D
iO

C
6 
(3

) 

D
iO

C
6 
(3

) 

D
iO

C
6 
(3

) 

   
  D

iO
C

6 
(3

) 

   
 D

iO
C

6 
(3

) 

   
D

iO
C

6 
(3

) 

 PI PI PI  PI 

   
  D

iO
C

6 
(3

) 

PI PI PI PI  PI 

PI PI PI PI PI 

B C 

D 

No n-dodecane 

500 rpm+1% dod 500 rpm+ 2.5 % dod  500 rpm + 5 % dod 

With n-dodecane 

500 rpm 1000 rpm 

Figure 5 



 29

Glucose pulse 
 
 
 

 

                                                       
 
 

                                                          
 
 
 

                                           
 
 
Figure 6 
 

2h after  
glucose 
pulse 

End of  
the 
experiment 
(t= 6h) 

Steady 
state 

(d) (e) 

(f) (g) 
(h) (i) (j) 

(k) (l) 

C B 

A 

C B 

A A A A 

A A A A 

B 

D 

C B 

D 

C 

C 

D 

B 

D 

C 
B 

D 

D D 

C  B 

D 

C B C 

D 

B 

PI 

(m) (n) (o) 

D 

A 

A 

B 

C 
B 

D 

A 

B C 

D
iO

C
6 
(3

) 

D
iO

C
6 
(3

) 

D
iO

C
6 
(3

) 

D
iO

C
6 
(3

) 
D

iO
C

6 
(3

) 

D
iO

C
6 
(3

) 
   

D
iO

C
6 
(3

) 

D
iO

C
6 
(3

) 

D
iO

C
6 
(3

) 

D
iO

C
6 
(3

) 

   
   

   
D

iO
C

6 
(3

) 

   
   

  D
iO

C
6 
(3

) 

   
D

iO
C

6 
(3

) 

PI PIPI PI 

   
  D

iO
C

6 
(3

) 

 PI 
 PI 

PI  PI PI 

 PI PI  PI  PI  PI 

No n-dodecane 

500 rpm+1% dod 500 rpm+ 2.5 % dod  500 rpm + 5 % dod 

A 

C B 

D 

C B 

A 

C B 

A 
D 

With n-dodecane 

500 rpm 1000 rpm 

C 

D 
D 

D
iO

C
6 
(3

) 



 30

-1 0 1 2 3 4 5 6 7

G
lu

co
se

 (g
/l)

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

O
rg

an
ic

 A
ci

ds
 (P

yr
uv

ic
, 

Fo
rm

ic
, a

nd
 A

ce
tic

) (
g/

l)

0,0

1,0

2,0

3,0

4,0

5,0

6,0

0,0

0,5

1,0

1,5

2,0

2,5

3,0

-1 0 1 2 3 4 5 6 7

G
lu

co
se

 (g
/l)

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

O
rg

an
ic

 A
ci

ds
 (P

yr
uv

ic
, 

Fo
rm

ic
, A

ce
tic

, P
ro

pi
on

ic
 

an
d 

La
ct

ic
  (

g/
l)

0,0

1,0

2,0

3,0

4,0

5,0

6,0

Bi
om

as
s 

(g
/l)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

Tiime (h)
-1 0 1 2 3 4 5 6 7

G
lu

co
se

 (g
/l)

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

O
rg

an
ic

 A
ci

ds
 (P

yr
uv

ic
, 

Fo
rm

ic
, A

ce
tic

, P
ro

pi
on

ic
 a

nd
 L

ac
tic

) (
g/

l)

0,0

1,0

2,0

3,0

4,0

5,0

6,0

B
io

m
as

s 
(g

/l)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

Glucose
Pyruvic acid
Formic Acid
Acetic Acid
Propionic Acid
Lactic Acid
Biomass

-1 0 1 2 3 4 5 6 7

G
lu

co
se

 (g
/l)

0

1

2

3

4

5

6

7

O
rg

an
ic

 A
ci

ds
 (P

yr
uv

ic
, 

Fo
rm

ic
, A

ce
tic

, P
ro

pi
on

ic
 a

nd
 

La
ct

ic
) (

g/
l)

0,0

1,0

2,0

3,0

4,0

5,0

6,0

Bi
om

as
s 

(g
/l)

0,0

0,5

1,0

1,5

2,0

2,5

3,0-1 0 1 2 3 4 5 6 7

G
lu

co
se

 (g
/l)

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

O
rg

an
ic

 A
ci

ds
 ( 

Py
ru

vi
c,

 
Fo

rm
ic

, A
ce

tic
, P

ro
pi

on
ic

 a
nd

 
La

ct
ic

)  
(g

/l)

0,0

1,0

2,0

3,0

4,0

5,0

6,0

Bi
om

as
s 

(g
/l)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

B
io

m
as

s 
(g

/l)

Glucose Pulse

Steady-state

(a)  1000 rpm

(b) 500 rpm

(c)  500 rpm + 1% dod

(d)  500 rpm + 2.5% dod

(e)  500 rpm + 5 % dod

 Fig. 4



 31

 

Table 1 – Organic acids volumetric uptake rates calculated for the starvation periods. 

 Starvation 
500 rpm 

Starvation 
1000 rpm 

Starvation 
 500 rpm + 1%  
n-dodecane 

Starvation 
 500 rpm + 2.5%  
n-dodecane  

Starvation  
500 rpm+ 5% 
 n-dodecane 

racetic∗ g l-1 h-1 0.20 0.19 0.22 0.20 0.20 
rformic∗ g l-1 h-1 0.06 0.07 0.06 0.04 0.04 

 
∗Calculated as the ratio between the organic acid steady-state concentration and the time period that the micro-
organism took to exhaust that organic acid. 

 

Table 2 – Kinetic parameters calculated for the glucose pulses. 

 Glucose pulse  
1000 rpm 

Glucose pulse 
500 rpm 

Glucose pulse 
 5000 rpm + 1% 
n-dodecane 

Gucose pulse 
 500 rpm + 2.5%  
n-dodecane  

Glucose pulse 
500 rpm+ 5% 
 n-dodecane 

μ (h-1) 0.20 0 0.02 0.07 0.10 
YX/Glucose ∗ 
(g biomass g glucose-1) 

0.23 0 0.05 0.06 0.08 

Yacetic acid/glucose ∗∗ 
(g acetic g glucose-1) 

0.15 0.46 0.41 0.27 0.26 

Ypyruvic acid/glucose ∗∗ 
(g pyruvic g glucose-1) 

0.03 0.12 0.24 0.21 0.20 

Ypropionic acid/glucose∗∗ 
(g propionic g glucose-1) 

0 0. 06 0.07 0.07 0.12 

Ylactic acid/glucose∗∗ 
(g lactic g glucose-1) 

0 0.13 0.19 0.15 0.18 

 
∗ Calculated as the ration between the biomass (concentration) produced during the glucose uptake minus the 
steady-state biomass concentration, and the glucose pulse concentration. 
∗∗Calculated as the ratio between the organic acid (concentration) produced during the pulse minus the steady-state 
organic acid concentration, and the glucose pulse concentration. 
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Captions to Figures 

 

Figure 1. i) Bacillus licheniformis cells taken from the steady state of a continuous culture 

and stained with a mixture of PI and BOX. Only two populations of cells could be readily 

identified these correspond to cells with a depolarised cytoplasmic membrane (A), stained 

with BOX; and cells with a depolarised permeablised cytoplasmic membrane (D), stained 

with both PI and BOX. ii) Late exponential Bacillus cereus cells stained with a mixture of 

DiOC6(3) and PI. Three main sub-populations could be readily distinguished. These 

correspond to healthy cells with intact polarized cytoplasmic membranes (A) stained with 

DiOC6(3); stressed cells with intact but depolarised cytoplasmic membrane cells (B) no 

staining; and cells with a permeablised depolarised cytoplasmic membranes (C) stained 

with PI only. iii) Bacillus licheniformis cells taken from the steady state of a continuous 

culture and stained with a mixture of DiOC6(3) and PI. Four main sub-populations of cells 

could be identified. These correspond to healthy cells with intact polarized cytoplasmic 

membranes (A) stained with DiOC6(3); stressed cells with intact but depolarised 

cytoplasmic membrane cells (B) no staining; cells with a permeablised depolarised 

cytoplasmic membranes (C) stained with PI only; and permeabilised cells with a disrupted 

cytoplasmic membrane “ghost cells” (D), stained with both DiOC6(3) and PI. 

 

Figure 2. B. lichenformis cells taken from the steady state of the continuous culture and 

either stained immediately with DiOC6(3) and PI or incubated  in the presence of 15μgml-1 

CCCP (for 10 min) or heat treated at 60oC (for 30s) or washed in 100% ethanol and then 

stained with a mixture of PI and DiOC6(3). 
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Figure 3. Variation of kLa with the impeller speed and with 1, 2.5 and 5 % (v/v) n-dodecane 

added to the vessel. 

 

Figure 4. Fermentation profiles for a steady-state continuous culture which was perturbed by a 

glucose starvation period (nutrient feed shut off) with and without n-dodecane added. 

 

Figure 5. Cell samples taken at various times during a steady state continuous culture 

perturbed by a glucose starvation period with and without n-dodecane present stained with 

a mixture of PI and DiOC6(3). When compared with the control data (Figures1 and 2) up to 

four main sub-populations of cells can be distinguished, corresponding to healthy cells (A), 

stained with DiOC6(3); cells with a depolarised cytoplasmic membrane (B), no staining; 

cells with a permeabilised depolarised membrane (C), PI staining; and permeabilised 

depolarised cells with a disrupted cytoplasmic membrane  (D), stained with both DiOC6(3) 

and PI. 

 

Figure 6. Cell samples taken at various times during a steady state continuous culture 

perturbed by a glucose pulse with and without n-dodecane present stained with a mixture of 

PI and DiOC6(3). When compared with the control data (Figure1 and 2) up to four main 

sub-populations of cells can be distinguished, corresponding to healthy cells (A), stained 

with DiOC6(3); cells with a depolarised cytoplasmic membrane (B), no staining; cells with 

a permeabilised depolarised membrane (C), PI staining; and permeabilised depolarised 

cells with a disrupted cytoplasmic membrane  (D), stained with both DiOC6(3) and PI. 

 

Figure 7 Fermentation profiles for a steady state continuous culture perturbed by a glucose 

pulse with and without n-dodecane added. 
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