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Formulating polyurethanes using case based
reasoning

D. M. Segura Velandia*, R. J. Heath and A. A. West

A large amount of historical knowledge exists in the form of ‘formulation experiences’ across

polyurethane manufacturing companies. This knowledge is difficult to formalise, share and use in

new formulations. As a part of an effort to support the polyurethane formulating problem, the use

of case based reasoning (CBR) has been assessed. Two basic problems in the development of

the proposed hybrid tool that uses past formulations to solve new problems are studied. The

problems investigated are related to the retrieval of former formulations that are similar to a new

problem description by the CBR module, and the adaptation of the retrieved case to meet the

problem constraints using an artificial neural network (ANN). Results indicated that the CBR-ANN

system is useful for reusing historical data. Although the obtained ANN is unable to generalise

well when presented with more data independent from the original data set, results proved that

real formulation data can be used as a ‘knowledge repository’ that can guide CBR adaptation

without human expert intervention.

Keywords: Case based reasoning, Polyurethane formulation, Artificial neural network

Introduction
Polyurethane (PU) formulations have been developed
mostly by trial and error methods which have resulted
in many innovative and useful materials and a large
amount of historical formulation data. Owing to their
versatile chemistry, PUs can be tailor made into foams,
adhesives, sealants and elastomers for many industrial
and everyday applications (e.g. automotive,1,2 construc-
tion,3 electronics,4 environmental and medical5,6).
Paradoxically, this versatility makes the reuse of PU
formulations difficult for non-experts. This is due to
complex interactions between formulation components
further affected by processing conditions. The formula-
tion of PUs often involves reasoning about several
abstract concepts such as microstructure, interpretations
and heuristic ‘rules of thumb’ based on experience. The
four interacting types of knowledge required when
developing new PU formulations (Fig. 1) include: the
composition, structure, manufacturing or processing
conditions, and final product properties.

Several researchers have attempted to relate changes in
composition and manufacturing variables to the micro-
and macro-structure and to final properties of PUs.7–9

These structure–property relationship studies aim for the
development of mathematical models that can support
formulators when developing new formulations.

Although these studies have provided with crucial
knowledge on how formulation and processing

parameters affect PU properties for various applica-
tions, their ability to predict accurately and effectively
PU properties has not been achieved.

Statistical designs have also been used to assist the
development of new PU formulations. Most statistical
designs require both the identification of the variables
that greatly influence a PU system and the identification
of the levels at which those variables will lead to stable
polyurethane products. These decisions rely greatly on
an expert’s experience and on the type of design to be
carried out. For example, in situations where a product
is to be introduced, screening designs are best suited.10,11

Subsequent optimisation and tuning of the statistical
design is also knowledge intensive and hence expert
dependent. An advantage of experimental designs com-
pared to formulating by first principles is that they allow
the formulator to understand, by constructing predictive
models, the effect of the variables on the PU properties.
Even though the designs might not result in any
commercially viable PU formulations, statistical analysis
of unsuccessful products can still shed some light on the
understanding of the PU formulations triad effect (e.g.
composition, structure, manufacturing) on the resultant
product properties.

The degree of success of developing new formulations
or modifying existing ones to achieve desired end
product properties depends on the choice of the raw
materials, the processing conditions, and to a large
extent on existing knowledge (i.e. previous formulations,
and the skills and expertise or experiences of the
formulator). The traditional approach to reuse that
expertise often lacks a consistent and systematic
procedure. As a consequence, formulations for a variety
of applications generated in an ad hoc manner lead to a
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lack of understanding of the mechanisms that could
explain how and why the formulations work. Clearly,
novel approaches that enable effective PU formulation
by reusing past experiences and expertise while at the
same time provide a framework for collecting and
sharing this formulation knowledge for future problem
solving are required.

Case based reasoning (CBR)
In the recent years, the ideas and techniques that have
been developed by the Artificial Intelligence (AI)
community have been applied in complex domains such
as engineering, business management, medicine, and
design and wherever an organisation wants to enhance
its ability and capacity to perform, compete, and cope
with change.12 Lessons learnt in AI in knowledge
acquisition, representation, inference, search, and learn-
ing can be brought about for assisting formulators to
develop new formulations by reusing formulation
experiences.

For successful knowledge reuse and management, the
application of the CBR methodology has been studied in
various formulated product applications. Recent appli-
cations include aluminium alloys,13,14 steel manufactur-
ing,15,16 formulation of pharmaceuticals,17,18 rubbers
formulation19 and plastics manufacturing.20 Similarly to
the PU domain, the drivers for developing these
knowledge based systems were concerned mainly with:

(i) the practice of the discipline being regarded
more as an art rather than as a science and
therefore the domain was poorly understood

(ii) no comprehensive mathematical models to
support product design and manufacture exists

(iii) there is a need to formalise such experiential
knowledge for satisfactory future problem
solving

(iv) there is a need for collecting, structuring, and
representing manufacturing knowledge from
human experts using a computational system
to solve problems and support learning through
time.

In CBR, the model of human reasoning is one where
human experts solve new problems by adapting solu-
tions that were used to solve old problems (Fig. 2).21,22

An expert system’s domain knowledge built under this

model would be composed of a set of ‘experiences’ that
can be retrieved and adapted to solve new problems.
This paradigm of problem solving is referred to as CBR.

In order to understand why CBR is suited for the PU
formulation domain, a description of the PU formula-
tors’ reasoning is presented next.

Formulating PUs using CBR methodology
Polyurethane formulators reasoning

The tasks that describe the reasoning process to find a
formulation that meets given constraints is described as
follows (see Fig. 3):

(i) problem description: in particular, the problem
of formulating a PU is usually described by a set
of constraints, which in turn are generally
expressed in terms of mechanical properties of
the material e.g. ‘tensile strength must be higher
than x, and hardness must be lower than y9

(ii) selection of known/similar properties to design
target: once property constraints are specified
and the problem is fully described, formulators
draw upon different types of knowledge to
select some baseline formulation to begin their
search for a solution. They usually start with a
similar formulation to the design target

(iii) alteration of properties by changes in composi-
tion and processing: the formulation process
involves an iterative approach to change the
characteristics of the materials hopefully in the
direction of the target properties. Formulators
look for changes that can be made to the
materials or processing conditions in order to
improve the properties. However, this complex
task is only efficiently done by experts in the
area23

2 Case based reasoning expertise comprises experience;

when solving new problem, experts rely on past epi-

sodes; case based reasoning is general paradigm for

reasoning from experience

3 Polyurethane formulation process formulator’s reason-

ing cycle

1 Interrelation between PU’s layers: composition struc-

ture and manufacturing process that influence design

of new formulations
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(iv) testing and estimation of properties: after a
group of possible formulations are identified
likely to meet the specifications, tests and
analysis of the data give rules that are more
accurate and provide the basis for a finer set of
experiments in the next iteration.

Reasoning through cases

Conceptually, CBR is commonly described as a cyclic
process (see Fig. 4).24 First, a problem situation or query
is described. Then, a similarity measure is computed so
that the most similar cases to the query are retrieved.
The information in the retrieved case is then reused to
provide an initial solution to the problem. If this does
not fully satisfy the problem specifications, the retrieved
case’s solution is adapted. Once the retrieved case has
been adapted, this candidate solution is tested. If the test
is not successful, sources of failure are investigated and
the partial solution is repaired and tested again until
eventually a suitable solution is found. Comparing
Fig. 4 with Fig. 3, it can be seen that PU formulators
reason in the way CBR solves problems. Therefore,
CBR would be a suitable methodology to enable the
effective use of historical formulation knowledge while
providing a computational framework to collect and
share this experiential knowledge. In addition, due to the
fact that the formulation of PUs is an iterative process
that can be both time consuming and expensive, a

computational automated approach is expected to
generate formulations faster (reduced lead times), and
at lower development costs, with greater ease of
processing and design flexibility if ‘what–if’ simulation
scenarios are enabled.

The following sections of the present paper address
the following:

(i) the codification of available experimental formu-
lation data within the CBR framework (explained
in section ‘Polyurethane formulations’)

(ii) the retrieval of former PU cases similar to a new
problem description (shown in section ‘Case
representation’)

(iii) the strategy used to adapt retrieved cases by
using neural networks that can generate a
mapping between change in mechanical proper-
ties and formulation ingredients (covered in
section ‘Case retrieval’)

Methodology and experimental setup

Polyurethane formulations
The foam formulation used was provided by Elastogran,
BASF-UK (see Table 1). It corresponds to a typical
combustion modified high resilient foam formulation,
which finds use in various automotive foam parts.
Following a fractional factorial design25 a set of
formulations were obtained. The factors (in total eight)
were varied between their maximum and minimum
levels according to Table 2.

The foams were produced using conventional PU
hand mixing methods. Five response variables were
recorded. These included the bulk density not the true
polymer density,26 tensile strength, elongation percen-
tage, compression set, and hardness. After 24 h of
conditioning at room temperature, test of the PU foam
samples were performed. Hardness was measured
according to the standard test BS ISO 2439:2000.27

Tensile strength (the maximum tensile stress applied
during stretching to rupture) and elongation at break

4 Basic CBR flow

Table 1 Combustion modified high resilient foam formulation

Component OH value Mol. weight Functionality Formulation, ppw

Polyether Polyol 1 28 5400 2.7 91.25
Polyether Polyol 2 42 4000 3 2.5
Amine Cross-linker 1160 150 3 1
Amine Catalyst 1 - - - 0.7
Amine Catalyst 2 - - - 0.5
Surfactant - - - 0.5
water - 18 2 3.55
%NCO 33.1
index 85–105

Table 2 Foam expert’s selected variables levels to yield
stable foam

Factors Levels, pbw

Polyether polyol 1 Vary to keep formulation at 100%
Polyether polyol 2 1.5 2 2.5 3
Amine cross-linker 0 0.5 1 1.5 2
Amine catalyst 1 0.3 0.5 0.7 0.9
Amine catalyst 2 0.25 0.5 0.75
Surfactant 0.25 0.5 0.75
Water 3 3.25 3.5 3.75
Index 85 100

Segura Velandia et al. Formulating polyurethanes using case based reasoning
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(the percentage of elongation at rupture) were
measured according to BS EN ISO 1798:2000.28

Compression set was measured according to BS EN
ISO 1856:2001.29

Case representation
In CBR a ‘case’ represents a previous experience or
problem30 and it is composed of a ‘problem description’,
a ‘problem solution’, and an ‘outcome’, which is a
measure of success of the applied solution in real
conditions. In particular, a ‘PU case’ can be described
by a set of attributes that correspond to PU formulation
specifications (e.g. materials, ratios and processing
methods) and its associated final properties.

Therefore, for the implementation of CBR system, the
PU formulations or recipes were coded into ‘cases’. Data
regarding both the chemical formulations to produce
PU foams, and testing data showing the performance
of those of PU foams were used to represent the case
solution and the case problem respectively. Case
problem’s attributes consist of the five physical proper-
ties measured for the PUs. The case solution’s attributes
correspond to eight attributes, which are the chemical
formulation variables.

These PU cases have an attribute value representation
format (see Fig. 5), which is the preferred format
because formulations are normally presented as a list
of ingredients and processing conditions with their
corresponding values. In similar domains, other
researchers have used this format for the representation
of formulation cases.17,18,31,32

For a particular case i the feature case vector c is

c ið Þ~ ci
1,ci

2, . . . ci
k

� �
(1)

The set of all c(i)’s constitutes the case base (CB)

CB~ c ið Þ, . . . c Nð Þ
n o

(2)

Case retrieval
Using each case as a query, the nearest neighbour rule33

was implemented using the Euclidean distance

dij:
Xp

k~1

xik{xjk

� �2

 !1=2

(3)

where xik denotes the value that the kth quantitative
variable takes for the ith object (i51,…,n; k51,…,p) and
wk (k51,…p) are non-negative weights associated with
the variables.

In particular, the case vector

c0N[ c ið Þ, . . . c Nð Þ
n o

(4)

is said to be the nearest neighbour of q if

min
i

d ci,qð Þ~d c0N,q
� �

(5)

where d(ci,q) is the distance between the case ci and the
query q calculated for each case in the CB.

Feature weights were set to one, i.e. ;k {wk51}.

Case adaptation
In CBR, case adaptation is one of the most challenging
aspects in the implementation of useful CBR systems
and yet it remains the least developed.34 Although case
adaptation is essential it is a difficult task. It is essential
because solutions are never identical to past solutions
and frequently two or more previous solutions must be
combined to solve a new problem.35 Knowledge to
adapt cases is difficult to acquire because a deep
understanding of the problem domain (at expert level)
is required.31,36 It is therefore, not surprising that
existing commercial CBR tools do not include a well
developed adaptation framework.

Recent studies have proposed the use of inductive
techniques to ease the adaptation knowledge bottleneck
by learning from cases (i.e. historical formulation
knowledge).36,37 Like inductive learning programs,
artificial neural networks (ANN) can be used to learn
domain knowledge from examples. The present paper
explores the ANN approach as it has received little
attention as a tool for CBR adaptation. Specifically, the
present work studies how ANNs can induce knowledge
from a CB to reduce the adaptation knowledge
acquisition task and how an ANN can support the case
adaptation task.

Case adaptation, within the CBR framework, stands
for the modification of a retrieved case that partially
matches a user query to solve a proposed problem. In
particular, for a PU formulation application, case
adaptation is expressed in terms of how to modify a
retrieved formulation. This encompasses the identifica-
tion of both the formulation ingredients and their
quantities that meet a set of performance constraints.

For the adaptation of retrieved PU cases, the authors
studied the feasibility of an ANN learning a desired
mapping from experimental PU formulations in order to
prove that the CB has useful implicit knowledge that can
be exploited by a neural network and that the knowledge
can be used to adapt retrieved cases. A two hidden layer
feed forward neural network was trained to map case
feature differences to PU formulation properties using
the back propagation algorithm (Fig. 6).

Neural network data set

Differences between problem descriptions (i.e. mechan-
ical properties of a pair of foams) were obtained and
used as input patterns and the differences between
solution descriptions (i.e. formulation ingredients) as the
output patterns. Other researchers37,38 have similarly
suggested the use of these differences between the case
problem features to build adaptation cases.

In order to obtain a large set of input patterns for the
training the network, delta property values were
calculated using all but the probe cases of the case base,
i.e. 29 cases 28 times resulting in 812 differences. Each

5 Feature vector representation of cases: PU case is

composed of p attributes where each k attribute corre-

sponds to either problem or solution attribute; N is

total number of cases in case base

Segura Velandia et al. Formulating polyurethanes using case based reasoning
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input pattern dp is obtained by taking the differences
between the case problem attributes for the cases stored
in the CB.

Input patterns

d p~c ið Þ{c jð Þ~ case iproblem
attribute k

�case jproblem
attribute k

� �
,

for case i=j:

where c(i) is the ith feature vector, which contains only
the problem attributes of a case, i.e. the mechanical
properties.

In a similar fashion, the outputs of the network are
obtained by calculating the differences between the
solution attributes of a case; this is between the
formulation ingredients.

Targets network

d f ~c ið Þ{c jð Þ~ case isolution
attribute k

�case jsolution
attribute k

� �
,

for case i=j:

It is well known that the network’s ability to learn any
nonlinear function depends heavily on the quality of the
data presented to it.39 For this reason, once the
differences between attribute values were calculated,
the input patterns for the network were normalised
using the min-max normalisation in the interval [21,
1].39 In addition two types of output data were used, real
valued and binary valued i.e. normalised to the interval
[0,1].

Network training

Without enough formulations to justify splitting the
data into training and test sets, the cross-validation
approach was adopted.39 By following this approach the
training set was partitioned into five distinct segments.

Each sample in the training set completely specifies all
the inputs as well as the outputs that are desired when
those inputs are presented. Five networks therefore were
trained, each time using random chosen training sets
with 792 exemplars and training test sets with 20
exemplars. The network with the lowest error with
respect to the training test set was selected. The
performance of the selected network was confirmed by
measuring its performance on a third independent set of
data called a test set. If the error in the test set is not
acceptable, a common practice is to joint the training
and training test set and retrain.39

Network architecture

The network architecture is the description of the
number of the layers in an ANN, each layer’s transfer
function, the number of neurons per layer, and the
connections between layers. Finding the correct network
architecture is a not an easy task. Aside from the
number of neurons in a network’s output layer, the
number of neurons in each layer can be found by trial
and error. A large body of research exists which suggest
several rules of thumb that can be applied to the
problem at hand.39–42 For the problem studied in the
present work a systematic change in the number of
number of neurons in each layer was implemented to
find an optimum network’s architecture (Fig. 7).

The network parameters used are presented in the
Table 3.

Results and discussion
Results using the CBR system using four probe data
points are presented as follows. A user query was first
presented to the CBR system, and this retrieved the
closest formulations to it according to some measure of

7 Methodology followed to find optimum network archi-

tecture and to train network

6 Artificial neural network as knowledge base to assist

CBR adaptation

Table 3 Network training parameters

Function Name

Inputs 5 real valued variables [21,1]
Outputs 24 binary valued variables [1,0]
Training function Levenberg–Marquardt backpropagation algorithm
Performance function Mean squared error
Transfer function Sigmoid transfer function
Learning function Gradient descent with momentum weight and bias learning function
Maximum number of epochs to train 100
Performance goal 1e-5
Minimum performance gradient 1e-10

Segura Velandia et al. Formulating polyurethanes using case based reasoning
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similarity, e.g. Euclidean distance (3). Then, the normal-
ised differences between the probe and the case problems
were calculated and presented to the trained neural
network to obtain the adapted formulation (see results
in Table 4).

A two hidden layer feed forward back propagation
ANN with binary valued outputs met the goal of the
present work, i.e. ‘to adjust a retrieved formulation to
find the ingredients and their quantities that result in a
PU formulation that approximate the user query or
requirements’. As the results shown in Table 4, the
trained network was able to recognise relationships
between case problem feature differences and case
solution feature differences using real PU formulation
data and it was used successfully to diagnose formula-
tion changes required for adaptation of retrieved cases
using a sample of four probe cases. Results for the four
probe cases showed that the prediction error (i.e. square
error) is low for most of the formulation variables and
hence is an indication of good prediction capabilities for
the CBR-NN system.

Although the obtained network is unable to generalise
well when presented with more data independent from
the original data set, this network proved that real
formulation data in the CB can be used as a ‘knowledge
repository’ that can guide CBR adaptation without
human expert intervention. The ANN, having mem-
orised a set of data presented to it, outperforms human
PU expert capabilities to retrieve a formulation given a
set of mechanical properties (i.e. a user query) in the
sense that a human expert cannot produce at such detail
a PU formulation.

The lack of generalisation could be due to the fact that
the network was trained with a very small data set and
hence it is not able to discover the relationships between
the large numbers of variables involved, which make the
problem complex. In addition, the chemistry of PUs is
very sensitive to changes in any PU reactive chemical
group (e.g. isocyanate, hydroxyl, amine) produced either
by changes in processing conditions (e.g. temperature)
or by introduction of chemicals intentionally (i.e.
increase in formulation ingredients) or unintentionally
(i.e. contamination, environmental humidity changes). A

small change (proportional to the PU batch size) in any
ingredient for a given formulation is likely to have
strong effects on the properties of the foams. Therefore,
it is difficult to find a suitable data set to train an
ANN. A network likely to learn any mapping between
formulation ingredients and mechanical properties
would require a vast collection of data covering small
variations in the ingredient’s quantities. The size of the
training data set is also likely to increase as more
ingredients are used.

From the PU chemical point of view, certain
ingredients have a major impact on the final PU
properties. For instance, the catalyst used, and the
amount of hydroxyl groups (i.e. coming from water,
humidity, polyols, or contaminants) have the highest
impact on the stoichiometry of the reaction and hence
on the final properties of a foam.

The data sets used for training the ANNs in the
present paper, came from a fractional statistical experi-
mental design. In this design of experiments, eight
formulation variables were changed simultaneously
between the levels suggested by the PU expert to cover
the whole gamut of property values. However, it has
become apparent that the choice in the change of levels
was not refined enough to allow mapping the property
formulation spaces continuously evidenced by the wide
scatter in properties that resulted. This suggests that for
such a large number of formulation variables, more
formulations need to be reformulated using smaller
changes of the expert’s suggested levels to be able to map
the space continuously. In addition, changes in the
quantity of reactants depend heavily on the type of
reactant used, i.e. a change of 5 g in the amount of
catalyst used has a greater effect on the foam final
properties than the same change in the amount of the
main polyol (for example in a 1 kg flexible PU foam
formulation batch size). Additionally, some ingredients
react and produce reactive byproducts, which can, at the
same time, lead to unexpected changes in the foam’s
final properties. As it is, for example, the case of the
addition of water and the production of reactive amine
that leads to a subsequent production of urea.

Conclusions
The present paper has studied the use the CBR
methodology and ANN approach to support the
problems arising in the formulation of PUs.
Specifically the hybrid CBR-ANN system allows over-
coming the lack of understanding of quantitative models
to predict PU formulations given a desired set of
mechanical properties in PUs. This has been achieved
by structuring and representating expert’s PU formula-
tion experiences (i.e. successful and unsuccessful for-
mulation recipes) under a CBR framework for problem
solving. Given a problem description or user query, the
system was able to retrieve similar experiences with the
ultimate objective of predicting what formulation
conditions (ingredients and their quantities) allowed
the resulting product to meet the desired performance
criteria. The CBR-ANN system has shown to have the
potential of reducing the time and hence the cost of the
product development process while at the same time
enabling simulation studies. It also serves as an
‘institutional memory’ that supports problem solving.

Table 4 Predicted formulation using CBR-NN system

Name

Ingredients*

1 2 3 4 5 6 7 8

Known formulation
probe11 90.95 3 1.5 0.3 0.25 0.3 3.75 110
probe12 90.85 1.5 1.5 0.9 0.75 0.8 3.75 85
probe22 94.2 1.5 0 0.3 0.75 0.3 3 85
probe25 90.7 3 1.5 0.3 0.75 0.8 3 85
Adapted retrieved formulation
adapt11 92.17 2.2 1.5 0.3 0.25 0.3 3.75 97
adapt12 93.01 1.5 0 0.557 0.75 0.8 3.75 85
adapt22 92.94 1.5 1.5 0.554 0.3 0.3 0.75 85
adapt25 92.31 3 0.634 0.9 0.25 0.3 3 85
Square error (known-adapted)^2
adapt11 1.5 0.6 0.0 0.0 0.0 0.0 0.0 169
adapt12 4.7 0.0 2.3 0.1 0.0 0.0 0.0 0.0
adapt22 1.6 0.0 2.3 0.1 0.2 0.0 5.1 0.0
adapt25 2.6 0.0 0.7 0.4 0.3 0.3 0.0 0.0

*The ingredients correspond to: 1–polyether polyol 1; 2–
polyether polyol 2; 3–amine cross-linker; 4–amine catalyst 1;
5–amine catalyst 2; 6–silicone; 7–water; 8–index.
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At its present state of development the described
CBR-NN system relies on a relatively limited number of
formulation cases. However, it can be readily extended
to include new cases as they become available and it is
expected that such extension will enhance the usefulness
of the presented CBR system. Additionally, the amount
of information used to describe a PU formulation case
can be increased. For example, the formulation data and
hence the description of cases could be complemented
with processing information (e.g. mould temperature,
mixing time) and chemical data (e.g. %NCO in the
formulation, molecular weight of ingredients) to
enhance the usefulness of the system. By enriching the
cases with this information, retrieval of cases tailored
from different views could be performed and evaluated.
In addition, it is expected that if the number of
formulations is larger, which can be expected in a
research and development department in an industrial
setting, improvements in the ANN approach can be
made. For example, the results from the ANN training
suggested that the main drawback in developing a
predictive tool (i.e. able to generalise) that could map
mechanical properties to formulation ingredients was
the scarcity of data. The cross-validation approach
failed to found any network that could learn from the
training data presented to the network. Therefore, not
only a large data set but careful selection of the training
sets is required.
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