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The reflection of a Rayleigh wave from the edge of a sharp elastic wedge in oblique incidence is analyzed. It is
shown that the nature of the angular dependence of the modulus of the reflection coefficient is strongly
affected by the phase shift of the symmetric field mode associated with reflection from a caustic. The results

are tested experimentally.

v

The interaction of a Rayleigh wave with the edge
of an elastic wedge plays an important part in vari-
ous branches of solid-state acoustics, includng ultra-
sonic flaw detection and acoustoelectronics. "3 An
approximate theory has been proposed® for the re-
flection and transmission of Rayleigh waves in a
sharp wedge. This theory is based on the represen-
tation of the incident Rayleigh waveon the edge of
the wedge by the sum of the two lowest (symmetric
and antisymmetric) Lamb (plate-wave) modes for a
plate of variable thickness. The propagation of
these modes to and from the edge is treated separate-
ly with the application of the known solutions of the
reflection problems for each of them at the free edge
of an infinitesimally thin plate. Then allowance is
made for the fact that the symmetric and antisym-
metric Lamb modes propagate with different veloci-
ties in the vicinity of the edge of the wedge. As a
result, a difference in the phase shifts, which de-
pends on the wedge angle 8, builds up between these
modes in propagation from the driving point to the
reception point. This phase difference is responsi-
ble for the experimentally observed?! multiple oscil-
lations of the moduli of the reflection coefficient [R|
and the transmission coefficient |T|as a function of
6 for a Rayleigh wave in normal incidence on the
edge. Simple geometrical considerations are also em-
ployed in Ref. 3 to analyze the case of oblique in-
cidence of a Rayleigh wave on the edge at small
angles a. The oblique-incidence problem is reduced
to the problem of normal wave incidence on a wedge
with an equivalent wedge angle 8' smaller than 6.
The possibility of oscillations of |R| and |T| as a
function of the angle of incidence 6 for a fixed
wedge angle o« is predicted in this work.

In the present article we investigate the reflec-
tion of a Rayleigh wave from the edge of a wedge
theoretically for the case of oblique incidence at
arbitrary angles o. We also give the results of ex-
perimental work on the investigated effect.

As in the case of normal incidence, we proceed
from the representation of the incident Rayleigh wave
by the sum of a symmetric (longitudinal) and an
antisymmetric (flexural) Lamb mode propagating in a
plate of variable thickness h. The Rayleigh-wave
refilection and transmission coefficients can also be
expressed in terms of the difference in the total
phase shift a¢(a) = ¢g(a) = ¢g(a) of the antisym-
metric and symmetric modes during their propagation
to the edge of the wedge and back again, and in
terms of the difference in the phase shifts A¢(a) =
¢5(a) — ¢g(a) associated with the reflection of each
mode separately from the edge.® We calculate the
phase shifts ¢g(a) and ¢g(a) in the geometrical-
optics (geometrical-acoustics) approximation, which
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generealizes the WKB approximation used in Ref. 3 to
the case of oblique incidence. These calculations,
of course, are more complicated than in the case of
normal incidence.

First of all, it must be borne in mind that the
symmetric and antisymmetric modes are both sub-
jected to refraction as they approach the edge, where
the nature of their refraction differs as a result of
the difference in the laws governing the variation of
their velocities near the edge. The velocity of the
antisymmetric (flexural) mode decreases from the
Rayleigh-wave velocity cr to zero (as h-+0), so that
this mode approaches the edge practicallyin the nor-
mal direction (Fig. 1). The velocity of the symmetric
(longitudinal) mode, conversely, increases in the di-
rection of decreasing h from the velocity cr to the
so-called "plate" velocity e = 2ct(1—ct¥/c g2} 2,
where c g,t denotes the velocities of longitudnal and
shear bulk waves. As a result, the symmetric mode
is incident on the edge at a more oblique angle. Sec-
ond, it must be taken into consideration that the ray
path of the symmetric mode has a turning point at a
certain angle of incidence a,, i.e., the symmetric
mode on longer reaches the edge (Fig. 1). Conse-
quently, rays with angles of incidence o« > o, from a
simple caustic, at which the symmetric mode acquires
an additional (caustic) phase shift —n/2in reflection
from it.*

Using the well-known geometrical-optics (geo-
metrical-acoustics) relation for the phase of a wave
propagating in a medium that is inhomogeneous in
one direction (see, e.g., Refs. 4 and 5), we can
write an equation for the difference in the phase
shifts of the symmetric and antisymmetric modes ex-
cited and received at a point infinitely far from the
edge:

Ap () =—2k, { f[l’}‘:ﬂ —sin*a ]%d:c - )

FIG. 1.
wedge.

Oblique incidence of & Rayleigh wave on the edge of a
1) Antisymmetric mode; 2) symmetric mode.
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Here kg a(X) denotes the wave numbers of the sym-

metric and antisymmetric modes as a function of the
coordinate x, which is directed away from the edge
of the wedge; kg is the Rayleigh wave number ina
half-space; and x¢(¢) is the coordinate of the turn-
ing point. Making use of the fact that h(x, 8) =

2x tan®/2), we can rewrite Eq. (1) in the convenient
form

xgia)

Ag(a)=—268(a)/tg(8/2),

o= {[5-sita] o
[ER e]a) o

hp(a)

The functions kg 4(h) do not have analytical expres-
sions, and so it is often necessary in calculations to
use suitable approximations for the corresponding
dispersion curves calculated by numerical methods
(see, e.g., Refs. 6 and 7). We use the approxima-
tions proposed in Ref. 3. The value of the local
wedge thickness h¢(a) characterizing the turning point
of the symmetric mode is determined from the equa-
tion -
k.2 (hy)/kgi—sin? a=0.

The value of the critical angle «,, at which this
point emerges, corresponds to the replacement of
kg(ht) in Eq. (3) by kg(0) = kp = w/cp. It follows
from this result, in particular, that o, =32° for
aluminum.

(3)

We now discuss the behavior of the phase shifts
¢g,a(a) of the symmetric and antisymmetric modes in
the reflection of each from the edge of the wedge for
the case of oblique incidence. Inasmuch as the anti-
symmetric mode is incidenton the edge practically at
a right angle due to refraction, its phase shift in
reflection does not depend on the angle of incidence
a and coincides with the phse shift in the case of
normal incidenceon a wedge with vertex angle 6,1i.e.,
¢5 = (r+6)/2 (Ref. 3). The phase shift for the
symmetric mode is readily determined from the solu-
tion of the problem of oblique incidence of the sym-
metric mode on the free edge of a thin plate This
problem is exactly analogous to the problem of oblique
incidence of a plane longitudinal wave on the bound-
ary of an elastic half-space. It follows from the
solution that the value of ¢g(a) is identically zero
at o < a, (we recall that only under this condition
does the symmetric mode reach the edge), as in the
case of normal incidence.’ The modulus of the sym- -
metric-mode reflection coefficient, howewer, differs
from unity for 0 < « < a,, because part of the ener-
gy of the symmetric mode is converted into the ener-
gy of shear SH waves, which are generated in re-
flection and are polarized in the plane of the wedge.
The difference does not exceed ~10% for the majority
of materials in the investigated range of angles, and
this is consistent with the error limits of the approxi-
mateé theory used here. We shall therefore ignore the
indicated difference from now on. When a > a,,i.e.,
when a turning point is present, SH waves are not
generated. In this case, as mentioned, the reflected
symmetric node acquires a caustic phase shift equal
to — n/2.

s
[¢a)
[o%)
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The expression for the modulus of the coefficient
of reflection of a Rayleigh wave from the edge of g
wedge in oblique incidence can be written as follows
in light of the foregoing considerations:

where Ayy is the caustic phase shift, which is equa]
to zero for « < a, and is equal to = /2 for a 2 q.
It follows from Eq. (4) that the function R®,. a) has
a complex oscillating behavior with respect to both
8 and a. When a=0, we obtain the equation for
the reflection coefficient in normal incidence3 from

Eg. (4):
Il

bm(0)=(72) | [Ru(h) =k (h) 1dR.

8(a) (4.

_x-8 +.A_¢‘l
w2(0/2) 4

|R|= !sin[ >

6 —
tg(6/2)

n—8

4

(5)

|R|= ,sin[

where

In the case of small angles o (smaller than o),
the expression for §(a) from Egs. (2) can be simpli-
fied by replacing the sines with their arguments and
expanding- the square roots in a power series, which
are then restricted to the first two terms. Here

5(0‘)”—12- { Jtka(my k()18 +_°_§

)

According to the theorem of the mean, which is well
known in analysis, the second integral in Eq. (8)

(6)
kg?

x| [k (1)l ()] s d

can be represented in the form f(k,) j[ka(h)—k.(h)]dh,

where f(h,) = kgr?/kg® (hy)kg(h,) is the value of the
function f(h) at some point h, belonging to the do-
main of integration. A numerical calculation using
approximative functions kg, a(h) shows that f(h) =

0.75. Makinguse of the fact that (1/2) j [ka(R) =k, (k) 1dh=

§(0), we can now write Eq. (6) in the form
5(x) % §(0)(1+ 0.754%/2) . (M

We note that the function (7) differs somewhat
from the result obtained® for small « by reduction
of the problem of oblique incidence of a Rayleigh
wave on a wedge at small angles a to the problem of
normal incidence on an equivalent wedge with angle
8' = 2tan™® [tan(8/2)cos a]. But the coefficient in
front of §(0)a?/2in Ref. 3 is equal to unity. This
implies that the influence of refraction is consider-
ablyzsmauer in the first approximation with respect
to a“. . :

The approximation (7) becomes invalid for angles
a > oy, and it is necessary to carry out a complete
numerical calculation of the function 6(a) and the~
quantity |R [. We have performed such a calcula-
tion on a computer for an aluminum wedge for two
vertex angles 6 = 30 and 60°. The calculated func-
tion §(a) was multiplied by a correction factor of
0.915, which was determined from the condition of

exact agreement of the theoretical value of |R| in
normal incidence on a wedge with angle 8 = 30° and
5. V. Koroiev and V. V. Krylov 498
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FIG. 2. Theoretical and experimental graphs of the modulus of the
reflection coefficient ,Rl vs angle of incidence @ . a) 8 =
30°; b) 60°; c) 90°. .
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the experimental value for this case.! This corre-
sponded to replacement of the value §(0)= 2.75 cal-
culated in Ref. 3 according to the approximate func-
tions by the quantity &(0) = 2.52. Such a correla-
tion was necessitated by the establishment of the
initial correspondence in a comparison of the calcula-
tions with the above-described experiments on Ray-
leigh-wave reflection from the edge of a wedge in
oblique incidence. The comparison would be mean-
ingless if the theoretical values were already in dis-
agreement with the experimental at « = 0.

An aluminum prism with a height of 16 cm and a
base in the shape of a right triangle with 30, 60,
and 90° angles was used for the experimental deter-
mination of the modulus of the reflection coefficient
|R| as a function of the angle of incidence «. This
object enabled us to measure the functions [R(a')l
for three values of the angle 8 on a single sample.
The measurement were carried out in the pulsed re-
gime at a frequency of 1 MHz; the pulse duration
was ~10 us. Rayleigh waves were generated and re-
ceived by means of two Plexiglas wedge transducers,
which were moved along the surface of the sample
and were bonded to it acoustically through an epoxy
resin layer. The diameters of the longitudinally
vibrating piezoceramic wafers on the wedge trans-
ducers were equal to 1 ecm. All the measurements
were repeated several times and were processed sta-
tistically.

The experimental curves of |[R()| for 6= 30 and
60° are shown in Fig. 2 together with the corre-
sponding theoretical curves calculated according to
Egs. (2)-(4). We see that the curves undergo oscil-
lations as ¢ is varied, and the amplitude of the oscil-
lations is smaller for 6 = 60° than for 6 = 30°.
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- coefficient at 30< o < 35°.

Figure 2 also shows the experimental curve of !R(a)[
for 8 = 90°, which is practically nonoscillating. Cal-
culations were not carried out for this case, because
it exceeds the limits of validity of the given theory.

A comparison of the experimental data with the
results of the calculations for 6 = 30° indicates that
they arein satisfactory qualitative agreement, as
witnessed by the good correspondence between the
positions of the maxima and minima of the compared
curves. The theoretical curve for the case 6=60°
only very remotely resembles the experimental curve.
This is what we should expect insofar as the given
value of 6 corresponds to the limit of validity of the
given theory, which holds in the interval 0 < 8 <60°,
i.e., for sufficiently sharp wedges.

We call attention to the fact that the occurence
of the caustic phase shift for the symmetric mode
(at o > 32°) has a strong influence on the behavior
of the theoretical curves of |R(e)|; in particular,
it induces an abrupt variation of [R(a)|ata ~ 32°. It
is readily discerned from Fig. 2 that a similar anomaly
is clearly observed in the experiment for the case
6 = 30°. In contrast with the theory, however, the
experiment yields a smoother decay of the reflection
This result can be ex-
plained in part by the fact that the theory involves
plane surface waves, whereas all the investigated
processes in the experimental work took place for
cylindrical waves, from which the receiving trans-
ducer extracted a narrow bundle of rays with an
angular width of ~3°. This tended to average the
experimental curves over the indicated intervals. It
is important to note that the caustic phase shift does
not occur in experiments in the usual practical
situations, e.g., in problems of ocean acoustics, and
so it does not have any practical significance. The
above-considered case of Rayleigh-wave reflection
from the edge of an elastic wedge, where this shift
affects the modulus of the reflection coefficient, is
unique in this respect by virtue of the presence of
a reference wave (the antisymmetric mode) that is not
reflected from the caustic.
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