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The reflection of a Rayleigh wave from the edge of a sharp elastic wedge in oblique incidence is aaalyzed. It is

shown that the nature of the angular dependence of the modulus of the reflection coeffrcient is strongly
affected by the phase shift of the symmetric field mode associated with reflection from a caustic. The results
are tested experimentally.

The interaction of a Rayleigh wave w'ith the edge
of an elastic wedge plays an i.nportant part in vari-
ous branches of solid-state acoustics, includng ultraJ
sonic flaw detection and acoustoelectronics. r-3 An
approximate theory has been proposed3 for the re-
flection and transmission of Rayleigh waves in a
sharp wedge. This theory is based on the r€presen-
tation of the ineident Rayleigh wave on the edge of
the wedge by the sum of the two lowest (symmetric
and antisymmetrie) Lamb (plate-wave) modes for a
piate of variabie thickness. The propaga.tion of
these modes to and from the edge is treated sepanate-
ly with the application of the known solutions of the
reflection problems for each of them at the free edge
of an infinitesimally thin piate. Then allowance is
made for the fact that the sSrmmetric and antisSrm-
metric Lamb modes propagate with different veloei-
ties in the vicinity of the edge of the wedge. As a
result, a difference in the phase shifts" which de-
pends on the wedge anglee, builds up between these
modes in propagation from the driving point to the
reception point. This phase di.fference ls responsi-
bie for the experimentally observedl multiple oscil-
lations of the modub of the reflection coefficient lRl
and the transmission coefficient I tl as a function of
0 for a Rayieigh wave in normal incidence on the
edge. Simple geometrical considerations are also em-
pioyed in Ref. 3 to anaiyze the case of oblique in-
cidence of a Rayteigh wave on the edge at small
angles c. The obiique-incidence problem is reduced
to the probiem of normal wave incidence on a wedge
with an equivalent wedge angle 0' smaller than 8.
The possibility of oscillations of lRl and lfl as a
function of the angle of incidenee B for a fixed
wedge angle a is predicted in t}.is work.

In the present article we investigate the reflec-
tion of a Rayleigh wave from the edge of a wedge
theoreticaliy for the case of oblique incidenee at
arbitrary angles o, We also give the results of ex-
perimental work on the investigated effect.

As in the case of normal ineidence, we proeeed
from the representation of the incident Rayieigh wave
by the sum of a s5rmmetric (iongitudinai) and an
antisymmetric (flexurai) Lamb mode propagating in a
plate of variable thickness h. The Rayleigh-wave
reflection and transmission coefficients can aiso be
expressed in terms of the difference in the total
phase shjft a4(a) = Sa(a) - $s(c) of the antisym-
metric and symmetric modes during their propagation
to the edge of the wedge and back again, and in
terms of the difference in the phase strifts ao(a) =
o.(c) - os(c) assoeiated with the reflection of each
mode separately from the edge.3 We calcuiate the
phase.shifts 4"(a) and Ss(a) in the geometrieal-
optics (geometrieal-acoustics) approximation, which

generalizes the WKB approximation used in Ref. 3 to
the case of oblique incidence. These calculations,
of eourse, are more complicated than in the case of
normal incidence.

Fi.rst o-f all, it must be borne in mind that the
sSmmetric and antisSrmmetric modes are both sub-
jected to refraetion as they approaeh the edge, where
the nature of theb refraetion differs as a result of
the difference in the iaws governing the variation of
their veiocities near the edge. The velocity of the
antisynmetric (flexural) mode decreases from the
Rayleigh-wave velocity cR to zero (as h+0), so that
ttris mode approaches the edge practicallyin the nor-
maldirection (Fig. 1). The veloeity of the symmetric
(Iongitudinal) mode, converseiy, increases in the di-
rection of decreasing h from the veiocity cp to the
so-ealled rrplateil velocity cn = 2ct(1 - c{l e L2yl 

2,

where eu,1 denotes the velocities of longitudnal and
shear bulk waves. As a result, the symmetric mode
is incident on the edge at a more oblique angie. Sec-
ond, it must be taken into consideration that the ray
path of the s1'rnmetric mode has a turning point at a
certain angle of i:rcidence c,o, i.e., the symmetrie
modeonlonger reaches the edge (Fig. 1). Conse-
quently, rays with angies of incidenee a 2 oo from a
simple caustic, at which the symmetric mode acquires
an additional (caustic) phase shift =T/2inreflectionfrom it.q

Using the well-kno$'n geometricai-optics (geo-
metrical-acoustics) relation for the phase of a wave
propagating in a medium that is inhomogeneous in
onedirection (see, e.g., Refs' 4 and 5)' we can
write an equation for the difference in the phase
shifts of the symmetric and antisymmetric modes ex-
cited and received at a point infiniteiy far from the
edge:

te@)--2k"{if53-,io,o ]"d, (1)

FIG, 1. Oblique inci.dence of a Rayleigh wave on the edge of a
wedge. 1) Antisymetric nodei ?) slmelric mode.
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Here k","(x).denotes the wave numbers of the sym-
metric and antisymmetric modes as a function of the
coordinate x, whieh is directed away from the edge
of the wedge; kg is the Rayleigh wave number in a
half-space; and xt(c) is the coordinate of the turn-
ing point. Making use of tbe fact that h(x, 8) =
2xtan€/2), we can rewrite Eq. (1) in the convenient
form

Aq (a) :-26 (a) lts(912) ,

6("):+{jt{p-,id,ol* ar

- [ [ r'"(r'l -.io.o ]naa ]. e)
n"L,L k^'

The functions k"."(h) do not have analytical expres-
sions, and so it is often necessary in calculations to
use suitable approxi.mations for the conespondi.ng
dispersion curves calcuiated by numericai methods
(see, e.g., Refs. 6 and ?). We use the approxima-
tions proposed in Ref. 3. The'value of the iocal
wedge ttrickness h1( a) characterizing the turning point
of the symmetric mode is determined from the equa-
tion

k,2(h")1k"2-sin'a:0. . (3)

The value of the critieal angle ao,' at which this
point emerges, corresponds to the repl,aeement of
ks(ht) in Eq. (3) by ks(0) = kn = urlep. It foilows
from this result, in particular, that go = 32o for
aiuminum.

We now discuss the behavior of the phase shifts
Q",a(o) of the symmetric and antisymmetric riodes in
the reflection of each from t.Le edge of the wedge for
the case of oblique incidence. Inasmuch as the anti-
symmetric mode is incident on the edge practically at
a right angle due to refraction, its phase shift in
reflection does not depend on the angle of incidence
o and coincides with the phse shift in the case of
normal incidenceona wedge with vertex angle 0,i.e.,
Qu = (n+8)lz (Ref' 3)' The phase shift for the
symmetric mode is readiiy determined from the solu-
tion of the problem of oblique incidenee of the sym-
metric mode on the free edge of a thin plate This
probiem is exactly anaiogous to the problem of oblique
incidence of a plane Iongitudinal wave on the bound-
ary of an elastic half-spaee. It follows from the
solution that the vaiue of 6=(a,) is identically zero
at o < co (we recall thAt onl.y under tlris condition
does the symmetric mode reach the edge), as in the
case of normal incidence. T The modulus of the sym-
metric-mode reflection coefficient, however, differs
from unity for 0 < o < oo, because part of the ener-
gy of the symmetric mode is converted into the ener-
gy of shear SH waves, which ar€ generated in re:
flection and are poiari.zed in the plane of the wedge.
The difference does not exeeed -10% for the majority
of materiais in the investigated range of angles, and
this is consistent with the error limits of the approxi-
matd theory used here. We shall therefore ignore the
indicated difference from now on. When c 3 co,i.e.,
when a turning point is present, SH waves are not
generated. In this case, as mentioned, the reflected
symmetric node acquires a caustic phase shift equal
lo - nl2.

The expression for the modulus of the coefficienl
of reflection of a Rayleigh wave from the edge of a
wedge in oblique incidence can be written as follows
in light of the foregoing considerations:

1n1: lsinti#-+.+ll. (4).

where Agk is the caustie phase sbift; which is equal
!o ^zglo 

for a < oo and is equal to - t-l2 for cr ; c,o.
It foilows from Eq. (4) that the function R@, a) Gs
a eomplex osciliating behavior with respect to both
0 and c. When a= 0, we obtain the equation for
the reflection coefficient in normnt incidence3 from
Eq. (4):

r"r: i''[#,a -+]1. (5)

where -,

6-6 (Q) - ('|/:) J t[. tll -lr. tl,l ]an.

In the case of small angles a (smaller than ao),
the expression for 6(a) from Eqs. (Z) can be 

"i*pU-fied by replacing the sines with their arguments and
expanding-the square roots in a power series, whieh
are then restricted to the first two terms. Here

ao)= 1{ i,o",o,-0., h)tdh++

(6)
' k^' ,, Ix J Itr.(D) -/c, (h)l --------::- a61 .

; h.(h)k.(h) )

Aecording to the theorem of the mean, which is well
known in anaiysis, the second integral in Eq. (6)

can be represented in the form l(h,) IW"O>-f,tolloo,

where f(ho; = kRz/kso (h)ks(iro) t afr" value of the
function f(h) at some point ho beionging to the do-
main of integration. A numerical calculation using
approximative functions k",r(h) shows that f(h):

;0.75. Makinguse of the fact Urat (1/2) J lk"(h)-k,(h)ldh:

6(0), we can now write Eq. (6) in tfr'. torrn

5(") i 6rc)U + o.rs*'f 2) " (T)
We note that the function (7) differs somewhat

from the result obtained3 for small cr, by reduction
of the problem of obiique incidence of a Rayleigh
v/ave on a wedge at small angies o to the probiem of
normal incidence on an equivaient lvedge with angle
8t = Ztan-t ltan(g/Z)cos o]. But the coefficient in
front of 6(0)a,/2in Ref. 3 is equal to unity. This
implies that the influence of refraction is eonsider-
ably smaller in the first approximation with respect
to c2.

The approximation (?) beeomes invalid for angles
o i co, and it is necessary to carry out a complete
numerical calculation of the function 6(a,) and the'
quantity lR l. We have performed such a calcuia-
tion on a computer for an aluminum wedge for two
vertex angles I = 30 and 600. The calculated func-
tion 6(a) was multiplied by a cotection factor of
0.915, which was determined fmm the condition of
exact agr€ement of the theor.eticai value of lnl in
normal incidence on a wedge with angle 0 = 30o and
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FIc. Z. Iheoretical and experi-@ntal graphs of the oodulus of the
reflection coefficient I Rl vs angle of ircidence c . a) I =

?O"i b) 600; c) 90o.

the experimental value for" this case. I Ttris corre-
sponded to replacement of the value 6(0)= 2.75 *t-
culated in Ref. 3 aeeording to the approximate func-
tions by the quantity 6(0) = 2.52. Such a correla-
tion was necessitated by the establishment of the
initial correspondence in a comparison of the calcula-
tions with the above-described experiments on Ray-
leigh-wave reflection from the edge of a wedge in
oblique incidence. The comparison would be mean-
ingless if the theoretical values were alr€ady in dis-
agTeement with the experimentai at a = 0.

An aiuminum prism with a height of 15 cm and a
base in the shape of a right triangie with 30, 60,
and 90o angles was used for the experjmental deter-
mination of the moduius of the reflection coefficient
lRl as a function of the angie of incidence a. This
oUject enabled us to measurL the functions ln<"ll
for three values of the angie 0 on a single sample.
The measurement were carried out in the pulsed re-
gime at a frequency of 1 MHz; the puise duration
was -10 us. Rayleigh waves were generated and re-
ceived by means of two Plexiglas wedge transdueers,
which were moved along the surface of the sample
and were bonded to it acoustically through an epoxy
nesin layer. The diameters of the longitudinally
vibrating piezoceramic wafers on the wedge trans-
ducers were equal to 1 cm. Ali the measurements'
were repeated several times and were processed sta-
tisticaiiy.

The experimental curves of lR(s)l for g= 30 and
600 are shown in Fig. 2 together with the corre-
sponding theoretical curves cslculated according to
Eqs. (2)-(a). We see that the curves undergo oscil-
lations as a is varied, and the ampiitude of the oscil-
lations is smaller for 0 = 600 than for I = 30o.

Figure 2 also shows the experimental curve of lR(")lfor I = 90o, which is practically nonoscillating. CaI-
culations were not carried out for this case, because
it exceeds the limits of validity of the given theory.

A comparison of the experimental data with the
resultg of the caiculations for I = 30o indicates that
they arein satisfactory qualitative ag?eement, as
witnessed by the good correspondenee between the
positions of the naxima and rninima of the compared
eurves. The theoreticFl curve for the case 0=600
only very remoteiy resembles the experimental curve.
This is whst we should expect insofar as the given
value of e corresponds to the limit of validity of the
given theory, which holds in the interval 0 5 0 5600,
i.e., for sufficienily shar? wedges.

We call attention tb the fact that the occurence
of the causdc phase shift for the symmetric mode
(at c 2 32o) has a strong influence on the behavior
of the theoretical curves of lR(a) l; in particulair,
it induces an abrupt variation of I R( a) | at c - 32o. It
is readily discerned from Fig. 2 th,at a similar anomaly
is clearly observed in the experiment for the case
0 = 30o. In contrast with the theory, however, the
experiment yields a smoother decay of the reflection
coefficient at 30< a < 35o. This result can be ex-
plained in part by the fact that the theory involves
plane surface waves, whereas all the investigated
processes in the experimental work took place for
eylindrical waves, from wtrich the receiving trans-
ducer extraeted a na*ow bundie of rays wj.th an
angular width of -3o. This tended to average the
experimental curves over the indicated intervals. It
is important to note that the eaustic phase shift does
not occur in experiments in the usual praetical
situations, e.g., in problems of ocean acoustics, and
so it does not have any practical significanee. The
above-considered case of Rayleigh-wave reflection
from the edge of an elastic wedge, where ttr-is strift
affects the modulus of the reflection coeffiiient, is
unique in this respect by virtue of the presence of
a reference wave (the antislrmmetric mode) that is not
reflected from the caustic.
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