
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288387136?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Stephen Walsh 
1 

 
 
 
 
 

INVESTIGATION INTO THE PHASE CHARACTERISTICS OF 
WAVE FIELDS 

 
S. J. Walsh and L. Wang 

 
Department of Aeronautical and Automotive Engineering, 

Loughbrough University, LE11 3TU, UK 
Email: S.J.Walsh@Lboro.ac.uk 

 
Abstract 
 
The aim of the work reported in this paper is to establish a method of determining the diffusivity 
of an SEA subsystem using the phase of transfer functions. Specifically, this paper reports an 
investigation into the phase characteristics of transfer functions obtained using two flat plate 
structures. In the first experiment the phase characteristics of bending waves in a directional field 
are obtained using a perspex plate with additive damping. In the second experiment the phase 
characteristics of bending waves in a diffuse field are obtained from a freely suspended steel 
plate. The experimental data are normalised and compared to theoretical formula and limits for 
the diffuse field and direct field proposed. 
 

INTRODUCTION 
 
Statistical Energy Analysis (SEA) is a probabilistic, energy based approach for modelling the 
high frequency vibrations of a structure. To construct an SEA model, the structure is 
conceptually divided into a number of subsystems. By measuring the energy level in each 
subsystem an energy balance around the structure can be established. The energy level in a given 
subsystem is obtained by forming an average from a number of vibration measurements at 
different locations on the subsystem. For the averaging procedure to be valid, a uniform energy 
density is assumed within the subsystem. However, in many practical structures the energy 
density in a subsystem may not be uniform. Hence, there is a need to establish a method of 
determining whether the energy density of a given subsystem is uniform. From the viewpoint of 
wave fields, the concept of uniform energy density is linked to that at a diffuse field. A diffuse 
field consists of both outgoing and reflected waves. In a totally diffuse field, waves propagate in 
all directions. In contrast, in a directional field the vibrational waves travel directly away from 
the source location.  

The aim of the work reported in this paper is to establish a method to determine the 
diffusivity of a SEA subsystem using the phase of transfer functions. Previous research into the 
phase characteristics of transfer functions has included a study of the various factors affecting 
the phase in multi-degree of freedom systems [1] and the study of phase in beam framework 
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structures [2]. In this paper the phase of bending waves in two different structures, one 
containing a diffuse field and the other containing a direct field are investigated. The 
experimental data are compared to theoretical formula and limits for the direct field and the 
diffuse field proposed. 
 

THEORY 
 
A directional field consists of outgoing, propagating waves only. There are no reflected waves as 
the acoustically large dimensions or high damping in the structure cause the waves to die out 
before they are reflected back to the source. In a directional field, the energy within the system 
will not necessarily be the same at any two locations. 

A diffuse field consists of both outgoing and reflected waves. It assumes that at any point 
in the system, there are an infinite number of propagating waves in all directions, all contributing 
to the energy within that system. Reflected waves are due to the boundaries of the system or 
changes of impedance within the system. An idealised diffuse field has equal wave intensity in 
all directions at any point, with a resultant intensity of zero. 

When a system is excited, waves will travel across the system and when the waves reach a 
boundary, or changed impedance in the system, they will be reflected. Therefore, the vibrational 
energy of every point includes two parts: incident waves and reflected waves. Near the 
excitation, the incident wave or directional field will dominate, and near the boundary, the 
reflected waves will become more important, as illustrated in Figure (1).  

 
 
 

 
 
 
 
 
 
 
 
 

Figure (1). Relationship between mobility and distance. 
 

The direct field is equal to the reverberant field when the critical distance, rc, is [3] 
 

rc =
ηωA
2πcg

       (1) 

 

where η is the loss factor, A the area of the structure and cg the group velocity. 
 
Directional field 
 
In situations where all the waves are outgoing and there are no reflected waves, then a plate can 
be considered to be of "infinite" extent, that is, only the directional field exists. The point 
mobility of an "infinite" plate is given by [3,4] 
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where the Bending Stiffness,
)1(12 2

3

ν−
=

EhB , and the mass per unit area hρμ = . Thus, the point 

mobility is a real constant and the phase between the velocity and the force is zero. The point 
mobility will be the same at any excitation location on the plate.  

The transfer mobility is given by [4] 
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where r is the distance between the excitation and response positions, and 0M is the 
corresponding point mobility of the plate. Thus, the transfer mobility consists of both amplitude 
and phase terms. The modulus of the transfer mobility decreases with increasing distance, r, and 
increasing wavenumber k. The phase at any point, r, is dependant upon the propagation phase, 
kr, less a constant phase shift of 4/π . The transfer mobility will be the same for any two points 
separated by the same distance, r. 
 
Diffuse field 
 
For a finite plate, both the directional field and the reverberant field exist. The point mobility of a 
finite plate varies according to the excitation location and with frequency. However, the average 
point mobility, whether a frequency average or spatial average, is the same as the point mobility 
of infinite plate [5], and is given by equation (2). The modulus of the transfer mobility is given 
by 
 

MQR =
Re{M0}
ωηm0

      (4) 

 
where Re{M0} is the real part of the point mobility and m0 is the total mass of the plate. For an 
idealised diffuse field the phase is given by [1] 
 

pQR N
2
πφ −=       (5) 

 

where for a flat plate the number of resonances below frequency ω 


