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The influence of microstructure on the probability of early failure
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For electromigration in short aluminum interconnects terminated by tungsten vias, the well known
“short-line” effect applies. In a similar manner, for longer lines, early failure is determined by a
critical valueLcrit for the length of polygranular clusters. Any cluster shorter thanLcrit is “immortal”
on the time scale of early failure where the figure of merit is not the standardt50 value(the time to
50% failures), but rather the total probability of early failure,Pcf. Pcf is a complex function of
current density, linewidth, line length, and material properties(the median grain sized50 and grain
size shape factorsd). It is calculated here using a model based around the theory of runs, which has
proved itself to be a useful tool for assessing the probability of extreme events. Our analysis shows
that Pcf is strongly dependent onsd, and a change insd from 0.27 to 0.5 can cause an order of
magnitude increase inPcf under typical test conditions. This has implications for the web-based
two-dimensional grain-growth simulator MIT/EmSim, which generates grain patterns withsd

=0.27, while typical as-patterned structures are better represented by asd in the range 0.4 – 0.6. The
simulator will consequently overestimate interconnect reliability due to this particular
electromigration failure mode. ©2004 American Institute of Physics. [DOI: 10.1063/1.1771825]
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I. INTRODUCTION

Electromigration-induced early failure of metallizat
represents a significant problem for the accurate analys
modern integrated circuit(IC) reliability. However, thes
early failures(i) may occur with such small probability th
they can be missed in standard sized electromigration
(or at least regarded as outliers); (ii ) may not obey the sam
statistics as those longer time failures which are observ
tests; and(iii ) may not indeed even be caused by the s
failure mode. Clearly, a proper appreciation of the exten
early failures in accelerated tests is vital in order to en
the correct extrapolation to operational conditions. In
ticular, it is important to know the dependence of the e
failure probability on acceleration parameters.

The short line effect is a well known feature
aluminum-based interconnect. For a given applied cu
density j , critical line lengths exist for both void nucleati
LB

snd (Refs. 1–3) and void growth failureLB
sgd.4,5 Below these

critical lengths a stress-induced back-flux cuts off the m
migration either before the void has nucleated or befo
has achieved sufficient growth to cause the circuit to
function. Above both, failure will occur at a time depend
upon the diffusivity along the line(e.g., Ref. 5). In fine line
metallization most of the line will be made from spann
grains,6–8 giving its microstructure an appearance simila
bamboo, Fig 1. However, there will also be regions of
line containing grain boundaries running along the
length.6–8 Where several of these grain boundaries join
gether they define polygranular segments or clusters,
1(b). Despite the fact that grain boundary diffusion o
takes place within the narrow boundary at the intersectio

a)
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two grainsds,1 nmd while transgranular diffusion occu
across the entire linewidthw, the effective diffusion within
the clusters is significantly greater than that through s
ning (or bamboo) grains.6–8 As a result the bamboo grains
the ends of a cluster act as blocking boundaries and pe
the same role that vias do for short line failure. A versio
the short line effect consequently operates for clusters.9 The
greater diffusivity in a cluster means that, in general, a
nucleating at a cluster end will occur more rapidly tha
void nucleating at the cathode via. The result is that
presence of polygranular segments, or clusters, repres
possible cause of early failures in near bamboo inter
nects. The purpose of this paper is to analyze the con

FIG. 1. Polygranular clusters in a near-bamboo line.(a) shows a schemat
of a pure bamboo region consisting entirely of spanning or bamboo g
while (b) shows a schematic of a region containing two clusters of len

LC1 andLC2 separated by a single bamboo grain of grain sized0.
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tion that cluster failures make to the observed early fa
spectrum. In particular, we aim to calculate the probabilit
cluster failurePcf for a given line(line lengthL, linewidthw,
lognormal grain size distribution characterized by a me
value of d50, and a lognormal standard deviation or sh
factor ofsd) subject to a given set of test conditions(current
density j and temperatureT).

In the early 1980’s Vaidya and Sinha noted the effec
the lognormal standard deviationsd on failure times in
copper-doped aluminum interconnect, and proposed an

pirical relationship between the mean time to failurest f̄d and
the microstructure of 0.5% Cu films, as10

t f̄ ~
d50

sd
2 lnS I111

I200
D3

, s1d

where I s111d and I s200d are the x-ray intensities of the(111)
and (200) diffractions. Equation(1) predicts that a doublin
of sd from 0.27 to 0.54 will reducet̄ f by a factor of 4
Consequently, an additional area of interest will be the
pendence ofPcf on sd. This is particularly important a
simulated grain structures using the web-based grain gr
programme MIT/EmSim(Refs. 6–8 and 11) possess asd

value of 0.27 while empirical, as-patterned grain struct
possess asd which appears to be closer to 0.54.12,13

The calculation in the current work is based on a o
dimensional model of the microstructure14 which accuratel
predicts the simulated cluster-length distribution forsd

=0.27 but which also allowssd to be set as a free parame
While clearly there are aspects of a two-dimensional g
structure which cannot be captured with a 1D representa
it may turn out that it is more important to have a reali
lognormal standard deviationsd.

The cluster failure probabilityPcf is expected to increa
with line length, linewidth/median grain size ratiosw/d50d
and with increasing variation in the grain size distributionsd.
Pcf is expected to depend very weakly upon the diffusivit
the grains, with the proviso that the effective diffusion
clusters occurs at a substantially greater rate than in ba
grains. The reason for this is that, although diffusion r
determine the times to failure, the critical lengths are d
mined by steady-state(or quasi-steady-state) stress profiles
which are roughly independent of the diffusivities.

A recent publication14 set out a simple model for d
scribing the microstructure of near bamboo lines ba
around the theory of runs.15 The model generates a mic
structure by choosing a grain sized from a lognormal distri
bution sd50,sdd and assigning it as either a bamboo(or span
ning) grain or a cluster grain according to its size relativ
the linewidthw. A model of the line’s microstructure is th
reduced to a sequence of Bernoulli trials with success p
ability p (the probability that a grain is part of a clust)
equal tow/d. If all the grains are the same sized0 then the
probability that there exists a cluster longer than the cri
length(say betweenM andM +1 grains), in a line of length
N grains, is roughlyNs1−pdpM+1. Such rare structures a
important as potential early failure sites.5

For a void to nucleate, the cluster must be long eno

for it to develop the stress required for the nucleation[per-
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haps around 600 MPa(Ref. 16)]. The critical cluster lengt
is expected to be related to the Blech lengthLB

snd for nucle-
ation in short via-via lines, although it will not be equal
LB

snd as the bamboo regions at the ends of the cluster ar
as efficient as tungsten vias in their role of blocking bou
aries. Thus an interior cluster has its own critical length
nucleationsLC

sndd, which is related toLB
snd (e.g., Ref. 11), and

is given by

LC
snd = kLB

snd = k
2scrV

Z * qr j
, s2d

wherek (of order 1.16 here) depends only upon the ratio
the effective diffusivities in the cluster and bamboo reg
1/G=dDGB/wDB [taken here as 80(Ref. 16)], and the re
duced critical stressocr=scrV /kT (around 1.2, correspon
ing to scr=500 MPa). A complete list of parameters a
their assumed values is given in Sec. II A.

After void nucleation, the cluster must also be lo
enough for the void to grow sufficiently large to cause
ure. According to Refs. 4 and 5, and ignoring for the mom
the influence of any initial thermal stress left from the p
cessing stages, a critical void volume per cross sectionsVCd
for failure, assumed to be around 0.1–0.15mm,4,5,17 defines
a critical cluster length for the void growth as4

LC
sgd =Î2BVVC

Z * qr j
. s3d

The derivation of Eq.(3) in Ref. 4 assumes perfect blocki
at the anode end of the cluster and at the cathode end
void (i.e., dDGB/wDB→`) and it is likely that a multiplica
tive constantl (.1 and probably similar in magnitude tok)
should be inserted in here, as in Eq.(2), to account for th
imperfection of the blocking by the bamboo grains at th
boundaries.

The current density dependence ofLC
sgd is different from

that of LC
n and it is clear thatLC

snd,LC
sgd for sufficiently large

current density. Consequently for highj we may expect tha
the growth of the void is the limiting factor—not all of t
clusters of sufficient length to allow void nucleation w
subsequently grow to failure size. Likewise, ifj is suffi-
ciently small,LC

snd.LC
sgd and, for those values ofj , all voids

that nucleate will eventually grow to failure. There is a cro
over current density at which void-growth limited failu
takes over from void-nucleation limited failure and this m
be obtained by settingLC

snd=LC
sgd. For a typical set of param

eters, detailed below, and withk<l, the transition occurs
a current density of aroundj trans=1.6 MA cm−2 whereLC

snd

=LC
sgd=12.5mm. This value is similar to that obtained

Parket al. for then=−2 (nucleation) to n=−1 (growth) tran-
sition in the current density exponent of the median tim
failure t50.

17 Note that, becausek /l is close to unity, thi
transition occurs for voids growing at the ends of polygra
lar clusters in long lines at roughly the same current de
as for voids growing at the cathode via in short lines, an
a consequence, perhaps, in lines of all length. This resul
is accurate, is remarkable in that, for all interconnect li
under typical operational conditionsj , j trans (i.e., the line

operates in the region where nucleation is critical, in that if a
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void nucleates in a polygranular segment the line will f)
while under typical test conditionsj . j trans (i.e., the line op
erates in the region where growth is critical and voids
nucleate in polygranular segments without the line failin).

II. FAILURE MODEL

The model we shall use is based on both the theo
runs14 and on the equation for evolution of tensile stress
line described by Korhonenet al.3 There are a number
variations to this equation;17–19 however, the overall resul
in each case are similar.

A. Stress development

The model of Korhonenet al. determines the develo
ment of tensile stress within the interconnect according to
nonlinear continuity equation3

] s

] t
=

]

] x
FDef f expSsV

kT
DS ] s

] x
−

Z * qr

V
jDG = − BV

] J

] x
.

s4d

Equation(4) has the form of a nonlinear diffusion equati
however, the effective diffusivityDef f is both average
across the interconnect width, and so contains a factord /w
for the case of grain boundary diffusion, and also cont
the factorBV /kT s,120d which arises from the Hooke’s la
relationship between the stress and the atomic concentr
The model of Korhonenet al. is used here, rather than so
of the derivative models,17–19partly for its ability to describ
situations seen experimentally and partly because, desp
complexity, it is still relatively simple. In addition, among
those 1D models which assume equilibrium statistics,17–19

the predictions relevant to the current work are largely in
pendent of the model used.

The equation for the stress development, Eq.(4), is
solved using a standard finite-difference scheme, with
mal (symmetric) central differences for first and second s
tial derivatives, except at the line ends and at region
discontinuity in the diffusivity, where a second order, as
metric rule is used. The results are found to be indepen
of both the integration time stepDt and the step lengthDx,
and the scheme is perfectly stable against oscillations
vided, as usual, thatDef fssdDt /Dx2 is kept within range
Verification calculations for the model are discus
elsewhere.20

The complete problem is defined according to the
lowing parameter list.

(i) It is assumed that the critical tensile-stress defi
void nucleation is 500 MPa, which is within the stand
quoted range of 100 MPa–1 GPa and close to the ded
value of 600 MPa reported by Thompsonet al.16 In the
present model short-circuit failure by dielectric rupture
extrusion has been ignored throughout. The atomic vo
V is taken to be 1.66310−29m3 (e.g., Ref. 16) and the tem
perature as 500 K.16 A reduced(dimensionless) stress is de
fined as o=ssV /kT+1/Bd<sV /kT, which consequentl
has a critical value ofocr=1.2. The elastic modulusB is

assumed to be 50 GPa, andk is the Boltzmann’s constant.
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(ii ) The critical void volume(per cross section) for fail-
ure VC is taken to be 0.125mm, which is within the rang
0.1–0.15mm quoted in the literature.4,5,17 This value of the
parameterVC was deduced for 1mm31 mm lines.17 In or-
der to use the theory of runs we shall assume the lines
submicron linewidths. However, we shall take this s
critical value for the void length(volume/cross section). Ef-
fectively this assumes that the critical void volume sc
with the line cross section. Equation(3) then provides a crit
cal product for void growth AB

sgd= jsLB
sgdd2, given by

BVCAB
snd /scr, of 2.5 A. At a current density of

3106A cm−2, this implies a critical lengthLB
snd of around

1.1310−3 cm, or 11mm, for short line via-via failure.
(iii ) The effective electromigration charge numbe

taken asZ* =10,21 the resistivity for copper-doped aluminu
is assumed to be 5310−8 V m (Ref. 21) and q is the elec
tronic charge. For short line, via-via failure this leads t
threshold product ofAB

snd=2000 A cm−1, giving a critica
length of LB

snd=10 mm s,LC
sgd=11 mmd at a current densi

of 2 MA cm−2, Note that at 1 MA cm−2, LB
snd=20 mm.LB

sgd

=16 mm.
(iv) We also define the parameterb=Z* rq/kT which,

with these assumptions, and the current density again
to be 2 MA cm−2, gives the productb j =0.24mm−1. For a
characteristic length of, say,,=LB

snd=10.0mm, the produc
x=b j, is then 2.4.

(v) The ratio between the effective diffusivity for t
grain boundary diffusion and the bulk diffusiondDGB/wDB

is assumed to be fixed at around 80,16 which is typical of
quoted values.16,5–9 The dependence of the effective at
diffusivity on stress is given by the relation3

DAssd = DAs0dexpFS V

kT
+

1

B
DsG < DAs0dexpSVs

kT
D .

s5d

(vi) The lines are pad-pad[or via-via (or stud-stud) with
large metal reservoirs surrounding the studs/vias], of line-
width w=0.2–0.6mm and of length greater than 100mm.
Lines are assumed to be made from aluminum grains d
from a lognormal distribution with a median grain size
2 mm and a lognormal standard deviation ofsd in the range
0.25–0.6.7,12,13

(vii ) Thermal stresssT resulting from the manufacturin
process is ignored, although its effects may be included
straightforward manner and are discussed in Sec. II E.

If polygranular clusters exist within the line, where
effective diffusivity is sBV /kTd3dDGB/w, the failure crite
rion can be met significantly more quickly provided that
cluster is sufficiently long. Indeed, as with via-via failure
threshold product also operates in this case, although i
be different fromLB

snd. This can be seen easily by consider
an isolated polygranular cluster of lengthLC. Here the line
may be taken to be effectively infinite with the cluster pla
centrally and with simple boundary conditionss=0 at the
ends. These boundary conditions are chosen so that the
do not influence the stress buildup in the cluster. The lin

thus divided into the union x=s−` ,0d
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ø f0,LCgø sLC,`d where fast diffusion takes place only
the central regionx=f0,LCg. Introducing the following di
mensionless units:

S =
Vs

kT
, X = b jx, t = sb jd2BV

kT

dDGB

w
t,

1

Gef f
=

dDGB

wDef f

BV

kT
, s6d

the stress equation may be written as

] S

] t
= Gef f

]

] X
FexpsSdS ] S

] X
− 1DG s7d

on the setX=s−` ,0dø f0,XC=b jLCgø sXC,`d, with failure
criteriono=ocr=Vscr /kT and end conditionso=0. The pa
rameter Gef f=1 in the cluster regions andGef f=G
=wDB/dDGBs=1/80d in the bamboo regions. Notice that
the determination of the reduced stressosX,td, the curren
density now only appears in the reduced lengthXC=b jLC,
and consequently once the productjLC is fixed, XC is fixed
and the problem becomes well defined. As a consequ
jLC determines the solution, and any critical behavior co
sponds to a critical value of this product. For a given valu
jLC we may determine a unique stress profile and a un
reduced fast failure timet f, which only depend upon th
reduced parametersG andocr.

A typical time variation for the maximum tensile stre
which develops within the line which contains a clus
Smaxstd=maxXSsX,td, is shown in Fig. 2. There is an ea
increase inSmaxstd due to atom migration in the cluster un
a quasi-steady-state is reached on a time scale of
sLB

sndd2/Def f
sGBd. This is followed by a slower increase requir

transgranular(or other slow) diffusion on a time scale o
order sLB

sndd2/Def f
sBd and finally a gradual reduction whi

arises because of the nonlinear nature of the problem a
not seen in any linearized versions, such as Refs. 3 an
but is apparent, for example, in Fig. 6 of Ref. 6. Clea

*

FIG. 2. The maximum stress in the line as a function of reduced timestd on
a log10 scale. The interconnect here consists of a line of length 100mm with
a 20mm cluster placed 10mm from the cathode. The current densityj in
this case is 2 MA cm−2.
there is a critical pointXC=XC at which the reduced cluster

Downloaded 14 Jul 2009 to 158.125.80.230. Redistribution subject to AIP
e
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length becomes too low to support failure—this will be
greatest reduced lengthXC at which the maximum value
the maximum stress profile maxX,thSsX,tdj is less thanocr.
For clusters below the critical length the detailed condit
at the line boundaries become important and it is these
will eventually determine the nucleation time. However,
the time scale of interest this is effectively at f →` (and
hencetf →`) transition. Failure cannot now be termed e
or cluster failure and thereforeXC

* determines a critical valu
for nucleation for the productjLC

snd.
Figure 3 shows the failure time as a function of clu

length using the assumed values above. Here we have
the unit of distance to be 10mm, which is the via-via Blec
length for j =2 MA cm−2. Unlike jLB

snd, which only depend
upon the critical stress, Eq.(1), the value forjLC

snd also de
pends upon the ratio of the effective grain boundary and
effective bamboo diffusion. Thus

s jLC
snddcr =

XC
* sScr,Gd

b

=
2scrV

Z * er

XC
* sScr,Gd
2Scr

=
XC

* sScr,Gd
2Scr

s jLB
snddcr. s8d

The constant of proportionalityXC
* /2ocr depends upon th

ratio of effective diffusivities in the cluster and bamboo
gions (around 80 here), and also the reduced critical str
ocr (around 1.2). Its value is around 1.16, leading to a thre
old product of jLC

snd=2 MA cm−2311.6mm=2320 A cm−1,
which compares to 2000 A cm−1 for short lines blocked b
tungsten vias.

If the critical value for void nucleation is exceeded
void will form at the cathode end of the cluster and it w
start to grow. The stress at the edge of the void collaps
zero, due to the presence of the free surface. If the i
void volume after nucleation isD0, integrating the stres

FIG. 3. Reduced failure timestd as a function of cluster length in units
10 mm which is the critical(Blech) length for via-via failure. The reduce
time becomes effectively infinite when the cluster lengthLc

snd falls below
around 1.162, or 11.62mm when the failure is slow. The current density
j =2 MA cm−2.
equation(4) along the cluster lengthLC yields
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1

BV

]

] t
E

0

LC

s dx= Js0,td − Jvoidstd < − Jvoidstd, s9d

where we have assumed that the cluster is effect
blocked at its anode-most end by bamboo grains and
Js0,td<0. Integrating Eq.(9) between the void nucleatio
time tnucl and timet gives

1

BV
E

0

LC

ssx,tddx=
1

BV
E

0

LC

ssx,tnuclddx

−E
tnucl

t

J
void

stddt. s10d

Up to the point of nucleation the cluster effectively acts
though it is blocked at both ends. Consequently, the
integral on the right-hand side is close to zero. Assuming
vacancies are also blocked at the cathode end of the voi
increase in void size at timet is Vhwetnucl

t Jvoidstddt. Thus the
void volume at timet is

Vstd = D0 − hwE
0

LC ssx,td
B

dx, s11d

whereD0 is the initial void size. Ast→` the stress profil
roughly becomesssx,t→`d=−Z* qr jsLC−xd /V, so that the
maximum void volume is

Vmax= D0 + hw
Z * qr jLC

2

2BV
. s12d

SettingVC=sVmax−D0d /hw, one regains Eq.(3). The devel
opment of Eqs.(9)–(12) is more or less identical to th
given by Korhonenet al. in Ref. 3. It is repeated here b
cause the same argument can be extended to several
other equilibrium, 1D models used for electromigrat
modeling,17–19 and to make clear that the time integra
electromigration current densityJvoidstd into the void is sim
ply related to the stress profile integrated over the entire
ter length[Eq. (10))]. This has been leveled as a criticism17

of the model of Korhonenet al., but in fact arises as a res
of the effective blocking boundary at the anode end of
cluster and at the cathode end of the void so that
increase/decrease in the total compressive stress occu
to the current of vacancies into/out of the void. These at
can naturally be incorporated anywhere in the cluster.
argument is independent of the electromigration mo
considered,3,17–19although naturally the details are somew
model dependent.

The validity of this argument may be seen in the follo
ing manner. First, all the equilibrium-1D electromigrat
models under consideration3,17–19 assume the same expr
sion for the vacancy flux and thus the same quasi-ste
statesJ=0d solution, in which the stress in the interconnec
a linear function of displacementx from the anode end of th
cluster. Second, all may be written in the form of a contin

relation. Thus
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hssd
] s

] t
= −

] J

] x
or

] Hssd
] t

= −
] J

] x
, s13d

where hssd=H8ssd is a simple function of stress. In t
model of Korhonenet al.,3

Hssd = C0F1 − expS−
s

B
DG <

s

BV
, s14d

while in Clement’s model,18 where atomic recombination
assumed to occur only in grain boundaries,

Hssd = C0F1 − expS−
s

B
DG +

d

w
Cv0FexpSVs

kT
D − 1G

s15d

and in the model of Parket al.,17 where atomic recombin
tion occurs equally through out the cross section but vac
formation requires an energyEv,

Hssd = C0F1 − expS−
s

B
DG + Cv0FexpSVs

kT
D − 1G

3expS−
EV

kT
D . s16d

Here C0 is the atomic concentration under zero st
s=V−1d, Cv0 is the vacancy concentration under zero str
Indeed, even the original electromigration model of Shat
and Lloyd19 may be cast in this simple form by setting

Hssd = Cv0FexpSVs

kT
D − 1G . s17d

It is clear that all models represented by Eqs.(14)–(17) are
special cases of a more general expression involving
vacancy terms as in Eq.(17) and lattice terms as in Eq.(14).

As a consequence of Eq.(13), whichever of these mo
els we choose

]

] t
E

0

LC

Hssddx= Js0,td − Jvoidstd < − Jvoidstd s98d

assuming again that the anode end of the cluster is e
tively blocked, i.e.,Js0,td is zero. Integrating Eq.(98) over t
as in Eq.(10), and substitutingH=0 at t=0 (no initial ther-
mal stress term) andH=H(ssx,t→`d) at t→`, we arrive a
a maximum void volume of

Vmax= D0 + hw
V

kT
E

0

LC

− HS−
Z * qr j

V
sLC − xdDdx. s128d

The integral in Eq.(128) is straightforward for the cas
(14)–(17), each of which generate a simple relationship
tween the assumed critical void volume and the related
cal cluster length. Equation(128) shows that the current
vacancies pouring into/out of the void is represented in
case by an integral over the entire stress profile and this
not separate the models governed by Eqs.(14) and (16) as
has been suggested in Ref. 17. In each case, expandi
power series for the exponential terms appearing in Eq.(128)

yields, to lowest order inLC, relationships betweenVmax and
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LC, all of which are of the formVmax=D0+aLC
2 /2 and thus

all of which produce a version of Eq.(4).
Equations(8) and(12) or (128) define the critical length

for the cluster. However, to obtain the probability of s
structures, for the nucleation and subsequent growth to
ure of voids at interior points on an interconnect, we
need a means of modeling the microstructure. We do
here using the model developed in Ref. 14.

B. Theory of runs

In Ref. 14 we demonstrated that the microstructur
fine lines could be described in terms of a simple o
dimensional model. Within this model the grain size dis
bution was assumed to be lognormal, and near bamboo
were created by first assigning the grain sizesd and then
determining the grain status(bamboo B, or cluster grain G)
as a sequence of Bernoulli trials with a success proba
(probability of the grain having a boundary lying along
interconnect) of w/d. It was demonstrated in Ref. 14 that t
simple model is able to reproduce, more or less exactly
cluster length distribution and its variation on linewidth g
erated by the 2D simulator MIT/EmSim.6–8 Additionally, the
lognormal standard deviation of the grain size distribu
enters as a free parameter, whereas for the 2D simula
appears as a result of the growth process.

C. The sd =0 model

It is useful to consider first the simple, but importa
case in which the interconnect contains grains of the s
size. A line of lengthL is assumed to correspond to a se
N=L /d0 grains, each of diameterd0, which are cluster grain
sGd with probability p=w/d0 and bamboo grainssBd with
probability q=1−p. Each possible interconnect microstr
ture can then be uniquely specified by a codeword gene
by a Bernoulli trial. For example,BBGGGGBBBGGBBGG
would correspond to an interconnect of lengthL=16 d0 (or
around 32mm) containing one cluster of length 4d0 (i.e.,
Lmax=4d0) and two of length 2d0. The smaller clusters a
unimportant for the early failure probability, what is imp
tant is whether or notLmax=4d0.Lcrit =maxsLC

snd ,LC
sgdd, the

critical length for the particular operating conditions. T
presence of clusters may then be calculated using the t
of runs from standard probability theory.22,23

As an example, if the linewidth is taken as 0.4mm and,

TABLE I. Exact values and approximations toPcf, fo
failure is not reached until the line length is 10 m
z1 and z2 correspond to the left and right inequa
method illustrated in Ref. 24.

(a) 15 mm

Line lengthsmmd Exact 1−z1

40 2.713 6s−5d 3.327 9s−
100 8.857 4s−5d 11.007s−5d
200 1.909 6s−4d 2.380 5s−
2000 0.002 032 0.002 5
with a grain diameterd0=2 mm, the probability of “success”
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p=w/d0=0.2. With this model, the exact probability24 that
the longest connected cluster is greater than 3d0=6 mm and
7d0=14 mm (corresponding to critical cluster lengths of,
example, 7mm and 15mm, respectively) may be calculate
using the method of Markov embedding and is shown(under
the heading “Exact”) for a variety of stripe lengths in Table
In a 2000mm test structure the probability of finding a cl
ter of length greater than 15mm is 0.2% while in lines o
200 mm, the failure probability is 0.02%. If the current de
sity is so high that the critical length lies in the interval 6mm
,Lcrit ,8 mm (using jLcrit =2000 A/cm,25 this requires j
above 2.5 MA cm−2), the probability of such a failure
200 mm lines rises to around one in nine. Approximate
sults, which may be more easily adapted to the case osd

Þ0, can be obtained in the following manner.
We suppose that, in general, the critical length lies in

rangefMd0,sM +1dd0g so that failure will occur if the long
est cluster is greater thanMd0. DefinePsmd as the probabi
ity that a cluster ofm grains has a length greater than
critical length, and thus constitutes a failure unit. Forsd=0,
this is clearly zero ifmøM and unity if mùM +1, i.e.,
Psmd=Qsm−M −1/2d, whereQsmd is the unit step function
For finite sd,Psmd will not be a simple step function b
something more gradual, Sec. II D.

The probability that there arek clusters of lengthm in a
line of N trials (grains) is approximately22

pksmd =
sNqpmdk

k!
exps− Nqpmd. s18d

The probability that the maximum cluster length is less
Lcrit is the probability that, for allm.0, all ksmd clusters o
lengthm are less thanLcrit. This is the product of the pro
abilities, for allm, that allksmd clusters of lengthm are les
thanLcrit. That is,

PrhLmaxø Lcritj = p
m=1

`

o
k=0

`

pksmds1 − Psmddksmd

= expS− o
m=M+1

`

NqpmD = exps− NpM+1d.

s19d

Consequently, the probability of early failurePcf is equal to
M+1

ch lengths of(a) 15 mm and(b) 7 mm. At 15 mm 1%
he integer in the bracket is an exponent to base 10. Here

in Eq.(18). Exact results use the embedded Markov

(b) 7 mm

1−z2 Exact 1−z1 1-z2

2.662 4s−5d 0.0219 0.0269 0.0219
8.806 0s−5d 0.0590 0.0725 0.0588
1.904 5s−4d 0.1177 0.1439 0.1173

0.002 032 0.7230 0.7974 0.7218
r Ble
m. T
lities

5d

4d
39
=1−expsNp d.
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We can justify the approximation in Eq.(18) and the
resulting Eq.(19) in the following manner. It is possible
show rigorously that(Ref. 24 and references therein)

exps− NpM+1d < s1 − pM+1dN−M ø P„LC , sM + 1dd0…

ø s1 − qpM+1dN−M < exps− NqpM+1d.

s20d

Notice that in the present case whereM is of order of per
haps 4–12 grains, andp=0.1–0.6, the difference between
upper and lower bounds is very small so that we obta
very accurate estimate ofP(LC, sM +1dd0). This accuracy i
demonstrated in Table I wherez1 andz2, corresponding to th
left- and right-hand inequalities in Eq.(20), are compared t
the exact values obtained by the method of Mar
embedding.24

D. Lognormal grain size distribution „sdÅ0…

The grain size distribution has been found to follow
fairly tight lognormal distribution with quoted values of t
shape factor(lognormal standard deviation) sd of around
0.4–0.6.12,13 The 2D simulator MIT/EmSim generates re
istic grain structures but leads to a shape factor
sd=0.27.6–8 Consequently our range of values forsd is cho-
sen to be 0.2–0.6. The effect of a nonzero shape factor
smear the step nature ofPsmd. One might expect most of th
conclusions above to remain true, however.

It is possible14 to separate the trials from the choice
grain sizes by changing the grain size distribution to a
normal distribution with a median value ofd508 =d50 expssd

2d
rather than the original distribution, and by settingp
=sw/d50dexpssd

2/2d. Essentially, local variations in the va
ues ofp=w/d, due to variations in grain size, can instead
included in the cluster length distribution by altering the s
cess probabilityp and the median grain size. For analysi
is also convenient to approximate the lognormal grain
distribution by aG distribution with locationassdd, shape
factor b=3, and scale factorcssdd.14 The probability
PrhSm,Lcritj that a cluster ofm grains is less than the critic
cluster length is then related to the incomplete Gam
function14 G(3m,x=sLcrit −ad /c) /Gs3md. Note, for
Lcrit ,ma,PsSm,Lcritd=0 and forLcrit .ma,

Psmd = PrhSm . Lcritj = 1 −E
ma

Lcrit sx − mad3m−1

c3mGs3md

3expS−
x − ma

c
Ddx

= e3m−1sfLcrit − mag/cdexps− fLcrit − mag/cd, s21d

whereensxd represents the sum of the terms, up to the ter
xn, in the power series expansion of expsxd.14 The first equal
ity in Eq. (19) still describes the probability that the ma
mum cluster is less thanLcrit, provided that the appropria
value ofPsmd is used. Thus we obtain the final result forPcf
as

Downloaded 14 Jul 2009 to 158.125.80.230. Redistribution subject to AIP
o

1 − Pcf = PrhLmaxø Lcritj = p
m=1

`

o
k=0

`

pksmd„1 − Psmd…ksmd

= expS− o
m=1

`

NqpmPsmdD ,

s22d

wherePsmd given in Eq.(21). Note that in the limit ofsd

→0, wherePsmd=Qsm−M −1/2d, and Eq.(19) is regained

E. Effects of initial thermal stress

The initial stresssTsxd from the manufacturing proce
has been neglected to this point; however, it is a simple
ter to include such stress and its consequences can be s
cant. From the point of view of void nucleation,sTsxd re-
duces the stress required from the metal migration pro
leading to an effective critical stress atx of scr−sTsxd. The
critical length for void nucleation close tox, LC

snd, will be
reduced from Eq.(2) by a factor of 1−sTsxd /scr as it is
proportional to the required stress from metal migrat
When the value ofLC

snd dominates the failures process,
initial thermal stress ofscr /2 will typically reduce the criti
cal length fromM grains toM /2 grains.

The critical cluster length condition for void growth w
initial stress(LC

8sgd, say), has been already obtained by K
honen et al.5 (it also may be obtained from Eq.(10) by
evaluating the first integral on the right-hand side to
sTLC

8sgd rather than zero) as

Z * qr jsLC8
sgdd2

2kT
+

VsT

kT
LC8

sgd −
BV

kT

sVcr − D0d
hw

= 0. s23d

This may be written for the fractional change inLC
8sgd com-

pared to case of the zero initial stress(i.e., z=LC
8sgd /LC

sgd) as

z2 + 2dz− 1 = 0, s24d

where d=sTLC
snd /2scrLC

sgd. At current densities for whic
LC

sgd,LC
snd, and with an initial stresssT,scr /2 ,d is rela-

tively small and we may approximate LC
8sgd

<s1−sT/2scrdLC
sgd. Thus the effect of initial stress here

about half as great as onLC
snd but can still be significant. A

low current densities,0.1 MA cm−2, whereLC
snd<200 mm

and LC
sgd<50 mm, the ratio LC

snd /LC
sgd<4. If sT=375 MPa

(i.e., 0.75scr), d,1.5 andLC
8sgd=0.3LC

sgd<15 mm. While a
cluster of 50mm represents a highly unlikely event
100 mm lines with p=0.2, a cluster of 15mm cluster will
occur with a probability of 8.9310−5 in lines of length
100 mm, Table I, when the shape factorsd=0. As always
this value will increase withsd.

It is clear that the early failure problem becomes m
severe in the presence of high initial stress. For the pa
eters listed in Sec. II A, and with a current density oj
=2 MA cm−2, the critical cluster lengths areLC

sgd=12.8mm
and LC

snd=11.6mm. If sT=scr /2=250 MPa,LC
8snd=5.6 mm

andLC
8sgd=10.2mm and the critical cluster length is thus

duced from 12.8mm to 10.2mm (both growth dominated).

This reduction is around one grain size, so that for a line-
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width of 0.5mm, with p=0.25, the probability of a failin
cluster is increased by around a factor of 1/p=4.

Solving Eqs.(2) and(23) together for the transition cu
rent density between growth-dominated and nuclea
dominated failure, with a nonzerosT (andk=l=1), yields a
value of LC=LC

snd=LC
snd which is independent ofsT

s12.5mmd. Thus the transition current densityj trans is also
reduced by a factor 1−sTsxd /scr.

III. RESULTS AND DISCUSSION

The current model[Eqs.(21) and (22)] allows us to as
sess the importance of the lognormal standard deviatio(or
shape factorsd) of the grain size distribution on the pro
ability of early failurePcf in near-bamboo as-patterned a
minum lines. It is clear from Fig. 4, that the value ofPcf is
strongly dependent on the shape factor. This raises an im
tant issue as currently quoted values ofsd for real aluminum
films are in the range 0.4–0.6(Refs. 12, 13, and 26) while
the simulator MIT/EmSim generates lognormal distributi
with a shape factor of 0.27. Clearly, for values of the crit
length around 6d50 or above(i.e., 12mm and above in a lin
of width w=pd50=0.5 mm) the failure probability forsd

=0.27 is orders of magnitude better than forsd=0.5. The
reason for this is that, although the simulator produces
with realistic microstructures, the variance of the lognor
curve (for a fixed d50) increases fairly rapidly withsd. For
sd=0.27 the standard deviation is 0.285d50, while at sd

=0.5 the standard deviation is 0.604d50 and, consequentl
for a largersd, the high probability clusters, those with
small number of grains, have a greater chance of ca
failure.

It must also be remembered that in an IC with sev
million interconnects it is those clusters several standard
viations away from the cluster mean that will determine
failure probability. As a consequence, it is important to h
an accurate value for the lognormal standard deviation.

Notice the convergence of thesd=0.05 curve to thesd

FIG. 4. Failure probabilityPcf as a function of reduced cluster length(units
of d50) for sd values of 0(leftmost), 0.05, 0.27(the simulator value), 0.40
and 0.50(rightmost). Here the line lengthL=1550d50 and p=0.25 where
p=sw/d50dexpssd

2/2d.
=0 curve. Convergence is fastest if the critical cluster length
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is, as here,sM + 1
2

dd50. In Fig. 5, which shows the failu
probability as a function ofsd for a critical length of 15mm
(i.e., M =7) L=1550d0 andp values of 0.1–0.5, this is se
as a flattening in the curves assd=0 is approached. Were t
critical length elsewhere in the intervalfMd50,sM +1dd50g
the flattening in the curves in Fig. 5 would still occur, bu
a much smaller value ofsd. Note in Fig. 4 that ifLcrit

=13 mm, i.e.,M =6 the probability of failure forsd=0.27 is
around 0.25 while forsd=0.5 it is around 0.97. In the im
portant case wherePcf is small the result of the simulat
may be an order of magnitude or more too optimistic.

Figure 6 shows the failure probabilityPcf as a function
of the linewidthw for a variety of values ofsd and j . Figures
7 and 8 demonstrate the current density dependencePcf

for, respectively, fixedsd (0 and 0.4) and a variety ofp
values(0.1–0.5) and fixedp=0.25 and a variety ifsd values

In conclusion, microstructural details are vital to l

FIG. 5. Failure probabilityPcf as a function of the lognormal stand
deviation. The exact results forsd=0 are shown as circles. Plots forL
=7.5 d50, around 15mm and line length=1550d50. Plots are, from top t
bottom, p=0.5 to 0.1 in steps of 0.1. Atp=0.5 for this length failure i
almost certain. As usual,p=sw/d50dexpssd

2/2d.

FIG. 6. Plots of the failure probabilityPcf against the linewidth parame
p=sw/d50dexpssd

2/2d for a range of parameters(dashed curves correspond
sd=0, dotted curves tosd=0.27, dash-dot curves tosd=0.4, and solid
curves tosd=0.5). Here the current values in MA cm−2 are, respectively,(a)

1.5, (b) 2.25, and(c) 3. Line length=1550d50.
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failure and, in particular, an accurate model of it is requ
to assess the failure probabilityPcf for early failure. It is
probably true that this is the case for any failure mode
not merely fast failure. This means that it is crucial to get
grain size distribution right and as scaling means thad50

may be accurately set, and as the distribution follows a

FIG. 7. Failure probability as a function of current densityj in MA cm−2.
(a) corresponds tosd=0 and(b) corresponds tosd=0.4, p values of 0.1 t
0.5 inclusive, starting from bottom. The failure probability in(b) for p
=0.5 is effectively unity. Line length=1550d50. As usual, p
=sw/d50dexpssd

2/2d.

FIG. 8. Failure probability as a function of current density forsd values o
0 (rightmost), 0.05 and 0.27(the simulator value), 0.40 and 0.50(leftmost).

2
Here the line length=1550d50 andp=sw/d50dexpssd/2d=0.25.

Downloaded 14 Jul 2009 to 158.125.80.230. Redistribution subject to AIP
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normal plot fairly tightly, this means that it is important
getsd correct. We propose a 1D model of the microstruc
which accurately predicts the cluster distribution produ
by the grain growth simulator MIT/EmSim Refs. 6–8 atsd

=0.27, but which also allowssd to be set arbitrarily. Th
results show that, although undoubtedly something wi
lost in reducing from a 2D model to a 1D model, for ap
cations such as this, it is probably more important to us
accurate value forsd.

Specifically, our analysis shows thatPcf is strongly de
pendent onsd, and a change insd from 0.27 to 0.5 can cau
an order of magnitude(or more) increase inPcf for typical
test conditions. The implications for the web-based 2D g
growth simulator MIT/EmSim, which generates grain p
terns with asd value of 0.27 rather than the observed va
in as-patterned structures of 0.4–0.6, are that the simula
likely to significantly overestimate interconnect reliabi
due to this particular electromigration failure mode.
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