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Abstract:  

This paper presents a novel, universally applicable framework for modelling measured velocity in 

laser vibrometry systems. The framework is introduced generically before demonstration of its 

application to three scanning vibrometer systems, each configured to measure vibration of a tracked 

point on a rotating target. The novelty in this vectorial framework lies in the combination of its 

elements which include vector descriptions of target velocity, optical device velocity at deflection 

points, laser beam orientations, incorporating reflection and refraction, and surface normals. Initial 

alignment and a full set of inevitable misalignments are incorporated by the modification of position 

vectors and the use of rotation matrices. Inclusion of components of measured velocity associated 

with moving optical devices is an important feature of the framework. The models derived and their 

validation against published data demonstrate how this versatile framework can be applied to any 

optical configuration measuring target motions with any level of complexity.  The individual models 

are explored extensively and quantitatively through simulation. Small but inevitable misalignments 

are shown to generate measurable low order velocity components and their effects on the sensitivities 

to in-plane and out-of-plane components of target vibration are quantified. 
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1. Introduction 

The laser Doppler vibrometer (LDV) is now well established as an effective alternative to traditional 

contacting vibration transducers. LDVs are technically well suited to general application but offer 

special benefits where measurement constraints are imposed either by the context, which may demand 

high frequency operation, high spatial resolution or remote transducer operation, or by the structure 

itself, which may be hot, light or rotating.  

For contacting transducers, measurement axes are generally fixed by the surface orientation at the 

point of attachment. LDVs, however, measure velocity in the direction of the incident beam so the 

user has much greater freedom to orient the probe laser beam to select a desired vibration component 

(limited only by low collected light intensity). Both the direction of the laser beam and its incident 

point can be manipulated with an ease that cannot be matched by contacting transducers. The 

potential for automation of this relocation using optical devices (typically a pair of orthogonally 
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mounted galvanometer mirrors) to scan point-by-point across a structure was recognised at an early 

stage [1]. Particular applications emerged in the automotive [2-4] and aerospace [5] industries, and 

today’s scanning LDV (SLDV) state-of-the-art [6] offers automated, tri-axial vibration surveys on 

large, three-dimensional structures (such as a vehicle) using three SLDVs each mounted on a robot 

arm.  

It is also possible to configure a SLDV to function in a continuous scanning mode by driving the 

beam deflection mirrors with continuous time varying signals, initially enabling extraction of 

particular vibration components [7] and ultimately enabling the target velocity profile along a pre-

determined path to be determined in a single measurement. In this latter case, post-processing of the 

measured velocity results in a series of coefficients that describe the operational deflection shape or 

the mode shape [8-13]. With the scan frequency synchronised with the target motion frequency [14], a 

tracking LDV measurement is performed in which the probe laser beam remains fixed on a particular 

point on the target. Tracking measurements have been performed on a number of rotor applications 

[15-18], on belts [19] (partial track) and on targets with oscillating parts fixed to a component with a 

large whole body motion such as windscreen wipers [20]. On rotating structures, the attractions of 

tracking and scanning simultaneously have also been explored [21-23]. 

Long before the introduction of tracking techniques, measurements directly from rotating targets 

(using stationary laser beams) had been proposed as an important LDV application as a result of non-

contact operation and inherent immunity to shaft run-out (deviation from a perfectly circular cross-

section). Indeed, one of the first LDV applications was for axial vibration measurement directly from 

a rotating turbine blade [24] and interest in this application continues [25-27]. A parallel beam 

instrument for angular vibration measurements has also been used in rotor applications, for example 

for assessment of torsional damper health [28], on rotating machines [29] and on railway wheel sets 

[30]. Attempts to perform radial vibration measurements on rotors, however, encountered a cross-

sensitivity to the radial component perpendicular to the radial component it is intended to measure as 

a consequence of oscillation in the position of the rotor centre relative to the fixed line of incidence of 

the beam [31]. The finding prompted development of a model to predict measured velocity for 

arbitrary beam orientation and arbitrary target motion [32, 33] resulting in confirmation that the cross-

sensitivity could not be resolved by laser beam orientation or manipulation. A resolution procedure 

based on simultaneous measurements was subsequently formulated [34].  

More generally, however, all these experiences highlight the need to be able to model measured 

velocity in all cases where freedom is available over laser beam orientation, from basic tripod 

mounting to more advanced continuous scanning and tracking applications, and where target motions 

are complex. A first attempt to adapt the model for radial vibration measurements on rotors (using 
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stationary laser beams) to axial vibration measurements on rotors using a scanning laser beam was 

successful [35] but the new model was not readily applicable to other scanning systems [e.g. 15, 17, 

18, 36]. In addition, in recent times, greater attention has fallen on the effects of instrument 

misalignments with the aims of minimising uncertainty and optimising data interpretation. Existing 

models have incorporated a limited set of misalignments but the modelling methods are insufficiently 

flexible to incorporate conveniently a full set of misalignments for all optical devices in any system.  

The proposed framework addresses this deficiency, demonstrating its versatility and universal 

applicability through application to three different systems: the long established dual mirror SLDV, 

the recently developed Dove prism SLDV [18] and the self-tracking LDV [17]. Application to 

tracking measurements on rotating components is chosen as it represents a significant challenge in 

modelling measured velocity but the SLDV models are built up in the most general sense possible 

with adaptation to tracking shown as one possible example of implementation. Structured in this way, 

the paper takes the reader through systems with increasing complexity including reflections at plane 

and conical surfaces and refractions. The models themselves are also part of the novelty in this paper. 

The dual mirror SLDV has been modelled previously [14, 35, 37] but not in the detail or with the ease 

presented here. To the authors’ knowledge, models of the Dove prism and self-tracking systems have 

not previously been published.  

Importantly, this paper also acknowledges how measured velocity is affected by Doppler shifts 

occurring at deflections by moving optical devices. This principle has long been recognised and, in 

early LDVs, was exploited to frequency-shift the reference beam using either a rotating diffraction 

grating [38] or a Bragg cell [39]. (Today, the Bragg cell, effectively a moving diffraction grating, is 

the most common frequency shifting device in use). For moving optical devices in scanning heads, 

this previously neglected but important aspect is straightforwardly included in the framework.  

The models presented might serve many purposes including performance verification for a new 

system, optimisation of system or component geometries, analyses of artefacts observed in scan paths 

and measured velocity, quantification of sensitivity to intended and unintended vibration components 

and investigation of the effects of inevitable misalignments. In the absence of misalignments, the 

equations derived could be manipulated to produce final expressions for scan path and total measured 

velocity. With misalignments, the algebraic effort increases significantly and the models are best 

implemented in software such as MATLAB. This latter approach has been taken in this paper. Typical 

instrument output spectra in the presence of misalignments and target vibrations are shown and then 

the effects of misalignments are studied in greater detail through simulation of a very large number of 

misaligned configurations. Model validation is undertaken wherever published data is available. 
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2. Elements of the universal framework 

The principal aim of the framework is the prediction of measured velocity but beam path, including 

scan path for scanning and tracking applications, is also predicted. While the interest in measured 

velocity is quite specific to LDV systems, the prediction of beam path can immediately be applied to 

any optical system. In this section, the key elements of the framework will be presented in a generic 

manner, outlining the systematic approach that is comprehensive, without simplification and unique in 

its universal applicability. The novelty of the framework lies in the combination of these elements. 

2.1 Surface velocity and measured velocity 

The fundamental relationship between measured velocity,   , and surface velocity at a point P’,          , 

is captured in the expression [40]:  

   
 

 
                      (1) 

in which       and     are, respectively, unit vectors for the laser beam directions immediately after 

and immediately before the point P’. Equation (1) can be applied to incidence at a target surface and to 

deflections at optical devices. For scattering from the target with light collected in direct backscatter, 

           and equation (1) simplifies to: 

                  (2a) 

With light collected in direct backscatter, deflections at optical devices occur at the same point in both 

the outgoing and incoming beam path. Based on equation (1), the measured velocity associated with 

the double pass through a deflection point P’ on an optical device is therefore given by: 

   
 

 
                      

 

 
                                              (2b) 

where the unit vector subscripts refer to the outgoing beam path. The total measured velocity is given 

by the sum of the individual velocities associated with the Doppler shifts at deflections at optical 

devices and at the target.  

Equations (2a&b) highlight the attraction of vector descriptions for surface velocity and beam 

orientation. This is facilitated by definition of a global     coordinate system with origin O fixed in 

space and unit vectors   ,    and    associated with its axes. For the applications in this paper, O 

coincides with a convenient reference point on the target rotation axis in the absence of any vibration. 

The z-axis is aligned with the target rotation axis, again in the absence of vibration. With vibration, 
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this target reference point moves to    as a consequence of its velocity           . Surface velocity at the 

incident point P’ is then conveniently written in terms of the sum of the velocity of the reference point 

and the velocity of P’ relative to    as a result of rotation at angular velocity      about an instantaneous 

rotation axis passing through   : 

                                                (3) 

where                     is the position vector for P’ relative to   .      includes both continuous target rotation 

and angular oscillations around the three coordinate axes. For vibrating targets, P’ can change 

continuously and can also be affected by target shape but, for an illuminated target element 

considered to be rigid, equation (2a) can be expanded in terms of any known point along the line of 

the laser beam [32], described by the position vector       : 

                                                                (4a) 

where              is the target displacement vector associated with the velocity           . For applications such as 

the tracking of a bladed disk, the relative vibration velocity associated with target flexibility must be 

added to the rigid element velocity [35]. This must be written to accommodate time-dependency in 

the illuminated point, modifying equation (4a) to become: 

              
                                                                                        (4b) 

where                               is the vector velocity at point       associated with target flexibility. For each 

individual model, analysis incorporating all motions is readily made using equation 4(b) and 

expansion of its vibration terms is given in Appendix A. To demonstrate the merits of this approach 

without over-complication, later simulations restrict target motions to an in-plane (x) whole body 

vibration,        , and an out-of plane (z) flexible vibration,      
       , combined with target 

rotation at    around   . This represents the important case of a rotating bladed disc attached to a 

whirling shaft for which the measured velocity, in terms of point    along the beam, is written: 

                                                    
         (4c) 

   is the point where the laser beam intersects the xy plane in which O is located. To all intents and 

purposes, this is the plane of the target and    is the illuminated point on the target. Strictly, target 

shape and vibration can move the illuminated point away from this plane but practically any 

difference will be small. This fine distinction over the location of    does not affect the prediction of 

measured velocity which requires only a known point along the beam as shown by equation (4a). 
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In applying the same principles to an optical device, a particular labelling convention is adopted. 

Without misalignment, a significant point such as a reference point on a rotation axis might be 

identified as P. With misalignments added, the new position of this point will be labelled P* and point 

P may no longer lie on a surface of the optical device. On the surface containing P*, the point through 

which the laser beam actually passes will be labelled P’. Vectors         ,             and             define these 

positions while, for example, the vector                defines the path from P* to P’.          and             will be 

inputs to the models while             and                will be found as part of the model. Adopting this convention 

and combining equations (2b) and (3), the measured velocity associated with deflection at an optical 

device can be written: 

                                               (5) 

If P* is a point on the device rotation axis,           will usually be zero, simplifying equation (5). 

Exceptions include modelling the effects of vibrations of the device itself and attachment of a mirror 

to the target in a self-tracking LDV system.  

2.2 Beam orientation and surface normals 

Following the conventions shown in figure 1, unit vectors for beam orientation after each deflection 

are derived using vector expressions for, respectively, reflection and refraction [41]: 

                          (6a) 

                          
  

    
      

  

    
 

 
             

 
       (6b) 

where    and      are the refractive indeces for the media associated with beam directions     and 

      respectively. For both cases, the final beam orientation,      , is related to the initial orientation, 

   , through     , the surface normal unit vector at the point P’. Surface normals are also essential to 

location of deflection points and this points to the next key element in this framework. 

2.3 Rotation matrices 

Rotation matrices enable convenient formulation of vector expressions for initial beam orientation, 

surface normal, rotation axes of optical devices and coordinate transformations. Correct orientation is 

achieved through multiplication of a convenient initial orientation vector by rotation matrices which 

can be applied singly or in series to modify that initial vector. The matrices are dependent on the axis 
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around which the rotation is performed. For rotations  ,   and   around, respectively, x-, y- and z-

axes, these matrices are [42]: 

       
   
          
         

  (7a) 

       
         

   
          

  (7b) 

       
          
         

   
  (7c) 

For example, to express surface normal of a rotating prism with a sloping face, an initial orientation in 

the z-direction might be modified by a rotation around x for surface slope   followed by a whole body 

rotation of the prism around z by    

                              (8) 

Any convenient initial orientation can be chosen with an appropriate choice of a constant component 

in   then used to position the optical device at any desired starting angular position. For optical 

devices, the reflecting and refracting surfaces are often plane and so the surface normal at the 

reference point can be used for all points on that surface: 

          (9) 

2.4 Deflection points at optical devices 

Identification of deflection points defines beam path and enables derivation of the surface velocities 

that lead to measured velocity according to equation (5). Key points of incidence are found 

sequentially beginning from the position of the laser source, which is another input to the models. In 

each case, a system of three equations is solved; the first is a vector triangle relating the unknown 

point of incidence to the previous deflection point (or laser source position) through knowledge of 

beam orientation, the second is a vector triangle relating the unknown point of incidence to a known 

point on the same optical surface and the third is a dot product between the surface normal and a 

vector in the plane of the surface.  

2.5 Incorporating misalignments 
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Finally, the framework must accommodate translational and angular misalignments throughout a 

system. Even when an instrument’s optical head is carefully aligned by the manufacturer, small 

misalignments will remain and a significant source of misalignment will always be between the 

optical head and the target. Translational misalignments are accounted for in the position vectors of 

the known points on each surface. For example: 

                                          (10) 

where              is a column matrix containing the three components of this translational 

misalignment. Rotation matrices are used to incorporate angular misalignments into expressions for 

initial beam direction, each surface normal and the rotation axis vectors for optical devices. For 

example, incorporating angular misalignments of   and   around y- and x-axes, respectively, into the 

surface normal in equation (8) gives: 

                                         (11) 

Typical translational and angular misalignment values are treated as inputs to the models. This paper 

considers only constant misalignments but time-varying misalignments, such as might be caused by 

vibrations of the optical devices, can be incorporated in exactly the same way. 

 

3. Dual mirror SLDV 

The dual mirror SLDV controls beam orientation using a pair of orthogonal mirrors. Without 

misalignments, it is possible to define the points A, B and C which correspond respectively to the 

nominal position of the laser source, a reference point on the rotation axis of the first mirror and a 

reference point on the rotation axis of the second mirror. In this analysis, the obvious points on the 

mirrors to select are those where a perfectly aligned laser beam would be incident if the first mirror is 

in a position to reflect the incident beam through 90
O
. With the geometry shown in figure 2a, these 

points can be written as: 

                            (12a) 

                           (12b) 

                         (12c) 

With translational misalignments, these points are modified as follows: 
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                                          (13a) 

                                           (13b) 

                                          (13c) 

Noting that the x-position of point A is nominal, it is reasonable to set      . These points are 

shown in Figure 2b, together with the original mirror reference points. The surface normal for the first 

mirror,     , can be written in terms of an initial alignment in the positive x-direction modified by a 

rotation matrix incorporating both mean and oscillatory components of angular position around the z-

axis, combined as   . This is further modified by angular misalignments    and    around y- and then 

x-directions. 

                                       (14) 

These misalignments also affect the rotation axis of this mirror, such that its unit vector,    , deviates 

from    as follows: 

                                (15) 

The surface normal for the second mirror,     , can be written in terms of an initial alignment in the 

negative y-direction modified by a rotation matrix incorporating both mean and oscillatory 

components of angular position around the x-axis, combined as   . This is further modified by 

angular misalignments    and    around z- and then y-directions with a similar effect on the unit 

vector for the mirror rotation axis,    . 

                                        (16) 

                                (17) 

With an initial laser beam orientation in the negative x-direction modified by angular misalignments 

   and    around z- and then y-directions, the expression for the initial beam orientation,    , is found.  

                                 (18) 

Equation (5a) then provides the beam orientations,     and      after the first and second reflections 

respectively: 

                        (19) 
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                        (20) 

As set out in section 2.4, the position of incidence point B’ is obtained from the following set of 

equations: 

                                           (21a) 

                                        (21b) 

                      (21c) 

leading to: 

                         
                                

        
     (21d) 

The position of incidence point C’ is obtained in a similar fashion: 

                                           (22a) 

                                       (22b) 

                     (22c) 

leading to: 

                         
                                

        
     (22d) 

The points B’ and C’ are also shown in Figure 2b. The point T’ in the target plane is found in slightly 

simpler fashion from: 

                                          (23a) 

                (23b) 

leading to: 
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     (23c) 

Total measured velocity is the sum of the measured velocities from points B’, C’ and T’ and, from 

equations (2a&b), is written as: 

                                                         (24) 

The measured target velocity is given by equation (4b) and, based on equation (5), the surface 

velocities for the optical devices can be written as: 

                                (25a) 

                               (25b) 

As presented to this point, the model is totally general. The particular path scanned depends on the 

functions used for mirror scan angles    and   . Constant values result in the traditional point-by-

point scanning measurements while line scans and area scans are enabled by appropriate time-varying 

functions. If the intention is to track a point on a target rotating at angular speed    around the z-axis 

then suitable functions are: 

   
 

 
            

     
              (26a) 

   
 

 
            

  
              (26b) 

where t is time and    is an initial phase determining the initial mirror orientations and thereby 

allowing any start point in the scan. The different amplitudes compensate for the separation between 

the mirrors, resulting in improved circularity in the scan path. It is a straightforward matter to add 

angular errors, for example in mean orientation or in the amplitudes of oscillation, into these 

expressions.  

 

4. Dove prism SLDV  

The Dove prism is well-known as an image derotator in optical systems. This SLDV has been 

designed specifically for tracking measurements on a rotating component to which it brings the 

particular advantage that it need rotate at only half of the target rotation frequency. Without 

misalignments, it is possible to define the points A and B which correspond respectively to the 
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nominal position of the laser source and the point on the rotation axis of the prism on the first face. 

Important points at the mid-point of the long base of the prism, C* (with misalignment), and along the 

rotation axis of the prism on the second face, D* (with misalignment), will be defined shortly in terms 

of the point B*. With the geometry shown in Figure 3a, points A and B are written as: 

                         (27a) 

                         (27b) 

With translational misalignments, the modified vectors             and              are written in the same way as 

equations (13a&b) in which it is reasonable to set      . These points are shown in Figure 3b. The 

beam path is affected by refraction at the first face of the prism, reflection at the long base of the 

prism and a second refraction at the second face of the prism. The surface normals are written in terms 

of initial alignments, based on the prism orientation in Figure 3a, modified for the slope of each face 

and then by a rotation matrix for the prism rotation    around its BD axis. The normals are then 

further modified by angular misalignments    and    around y- and then x-directions to give:  

                                    
 

 
        (28a) 

                                       (28b) 

                                   
 

 
        (28c) 

In similar fashion, the misalignments of the prism cause its rotation axis unit vector to deviate from    

as follows: 

                                (29) 

from which the positions of points C* and D*, also shown in Figure 3b, follow: 

                                                  (30a) 

                                          (30b) 

where   is the prism half-height. With an initial laser beam orientation in the negative z-direction 

modified by angular misalignments    and    around y- and then x-directions, the expression for the 

initial beam orientation,    , is found:  
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                                 (31) 

Equations (6a&b) then provide the beam orientations,     to    , after each refraction or reflection as 

follows: 

                        
  

  
      

  

  
 

 
             

 
       (32) 

                        (33) 

                        
  

  
      

  

  
 

 
             

 
       (34) 

in which    and    are the refractive indeces for air and the wedge respectively. The positions of 

incidence points B’ and C’ are obtained and written in precisely the same way as equations (21d) and 

(22d) while incidence point D’ follows in the same fashion: 

                                           (35a) 

                                        (35b) 

                      (35c) 

leading to: 

                        
                                

        
     (35d) 

The points B’, C’ and D’ are shown in Figure 3b. The point T’ in the target plane is found in the same 

fashion as in equations (23a-c) but is written in terms of vectors             and    :  

                         
               

      
     (36) 

Total measured velocity is the sum of the measured velocities from points B’, C’, D’ and T’ and is 

written as: 

                                                                              (37) 
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The measured target velocity is given by equation (4b) and the surface velocities at each deflection 

point are given by: 

                                (38a) 

                               (38b) 

                                 (38c) 

As presented to this point, the model is totally general. Use in the rotor tracking application requires: 

               (39) 

in which     is an initial phase allowing for any initial angular position of the prism. An initial 

alignment resulting in a scan of appropriate dimensions is achieved either by translational offset(s),    

and/or   , of the laser source modifying point A: 

                           (40a) 

to create a scan of radius    
    

  or by an angular offset of the laser source, in which at least one of 

the initial orientations     and     is non-zero, which can be written: 

                                                (40b) 

to produce a scan diameter dependent on the prism dimensions and   . 

For the dual mirror and Dove prism SLDV systems, there may be situations where it is preferable to 

consider alignment between an optical head and the target rather than the alignment of each individual 

component within the optical head relative to the target. This case is considered in Appendix B. 

 

5. Self tracking LDV 

The self-tracking system modelled here incorporates a vertex mirror fixed to the rotor, reflecting the 

outgoing beam through     rad onto a conical mirror which is fixed and located directly in front of 

the target. A cone angle of        rad results in a second     rad reflection at the conical mirror, 

directing the beam onto the target surface in a direction parallel with the target rotation axis, as shown 

in figure 4a. In a system without misalignments, it is possible to define the points A, B and D which 
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correspond respectively to the nominal position of the laser source, the intersection between the vertex 

mirror surface and the target rotation axis, and the peak of the cone of which the conical mirror is a 

section. Points A and B are described in the same way as in equations (27a&b) while point D is 

written in the same fashion: 

                          (41a) 

Position vector           controls the scan radius,   , as follows: 

                (41b) 

With translational misalignments and noting that the z-position of point A is nominal, the positions of 

points A, B and D are modified as follows: 

                                        (42a) 

                                                                 (42b) 

                                            (42c) 

The position of point B has been modified not only by the translational misalignment     but also by 

angular misalignments    and    in the mounting of the mirror and by the vibrations of the element of 

the target to which the mirror is fixed: translational displacement             , angular displacement    

around the x-axis, and angular displacement     around the y-axis. This influence of vibration is a 

significant difference compared to the previous two systems and is the direct result of attachment of 

the vertex mirror to the structure of interest. These misaligned reference points are shown in Figure 

4b. The surface normal for the vertex mirror,     , is written in terms of an initial alignment in the 

positive z-direction modified by successive rotation matrices for surface inclination     , rotation 

  , and the same combination of angular misalignments and angular vibrations as in equation (42b): 

                                          
 

 
        (43a) 

   is written in terms of an initial angular position,    : 

           (43b) 
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The initial laser beam orientation is written in the same way as equation (31) and orientation after the 

vertex mirror reflection is written in the same way as equation (19), while that after the conical mirror 

reflection is written: 

                        (44) 

Equation (44) highlights another significant difference between this analysis and those for the 

previous systems. Use of the conical mirror rather than a plane mirror means that surface normal is a 

function of the specific point of incidence on the cone and equation (9) does not hold. This apparently 

simple distinction has major implications. In the previous analyses, the surface normal itself would be 

used to identify the point of incidence but, for this self-tracking system, the point of incidence must be 

determined first in order to define the surface normal and so additional steps are required. To proceed, 

cone axes with associated unit vectors       ,       and        are defined. These directions are the 

result of angular misalignment of the cone axes by    and then    around y- and then x-directions. A 

coordinate transformation can be made according to: 

                                        
   
   
   

  (45) 

The orientation of the surface normal vector      is illustrated in figure 5a and can be described by an 

initial orientation in the      -direction followed by a negative rotation by the cone angle     rads 

around     , followed by a rotation around      by the currently unknown angle     : 

                                        
 

 
         (46a) 

Incorporating the coordinate transformation of equation (45) gives: 

                                             
 

 
         (46b) 

While the position of incidence point B’ is obtained and written in the same way as in equation (21d), 

the position of incidence point C’ cannot be obtained from the usual three vector expressions: 

                                           (47a) 

                                        (47b) 

                      (47c) 
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because in equation (47c) both vectors are unknown. A first equation for                can be written by 

combination of equations (47a&b): 

                                                           (48) 

A second is provided by considering                within its cone. The orientation of                is illustrated in 

figure 5b and can be described by an initial orientation in the       -direction followed by a rotation 

by the cone angle,     rads , around      , followed by a rotation around       by     : 

               

                 
                                     

 

 
         (49a) 

On expansion, this provides: 

               
                 

  
                                      (49b) 

Substituting equation (45) into equation (49b), expanding and making small angle approximations for 

misalignment angles (including neglecting terms with products of misalignment angles) results in: 

               
                 

  
                                                            (49c) 

On combining equations (48) and (49c), the resulting expression has 3 unknowns,                 ,      and 

                which can be found by equating the three components of the vector equation. Finding      

enables expression of the surface normal at C’ according to equation (46b). Finding                 identifies 

the final deflection point C’ from equation (47a). Algebraic manipulation to find      and                 is 

presented in Appendix C.  

Attention must now be paid to the way that the laser beam scans repeatedly around the conical mirror. 

Equation (46b) effectively assumes that the conical mirror has perfectly circular cross-sections. It is, 

however, likely that there will be some variation from the circular profile that will introduce a pseudo-

random noise into the expression for surface normal. This can be written in terms of continuously 

varying angular misalignments,     and    , around the     and     axes respectively. As shown in 

figure 5c, these axes rotate with the beam around the conical mirror such that the     axis is always 

aligned with the surface normal (without these misalignments) but opposite to it. These axes can then 

be transformed into the cone axes using the rotation matrices             and        
 

 
  and the 

result then transformed into the global axes using equation (45) as follows: 
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                                             (50a) 

                                           
 

 
                           (50b) 

As the beam takes the same path around the mirror with each rotation, these surface profile variations 

are periodic and have the form: 

                    

 

   

 

 (51a) 

                    

 

   

 

 (51b) 

in which     is capped at the Nyquist frequency in any frequency analysis undertaken. With      

now expressed fully, the final beam orientation is found from equation (44). The solution is completed 

by using             and     to find the intersection of the beam in the xy plane as in equation (23c). 

As the conical mirror is stationary, the total measured velocity is the sum of the measured velocities 

from points B’ and T’ and, from equations (2a&b), is written as: 

                                     (52) 

The measured target velocity is given by equation (4b). For the vertex mirror, target vibrations must 

also be included in its surface velocity which, for the set of motions under consideration and based on 

equation (5), can be written as: 

                                      (53) 

 

6. Implementation of the Models 

In assessing these systems, the main areas of interest are deviations between the desired and actual 

scan paths and three distinct features of the total measured velocity. These features are the effects of 

misalignments of the optical system in the presence of target rotation, the sensitivity to target out-of-

plane vibration (the intended measurement), and the sensitivity to target in-plane vibration (an 
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undesired additional measured velocity). The models are perfectly suited to such an in-depth 

evaluation. With each system configured to scan a circle with radius 50 mm centred on the fixed 

origin O, this is exemplified by the following close scrutiny of the quality of the scanned circles. The 

dual mirror SLDV with corrected scan amplitudes is well centred with only very small deviation from 

the circular path - a standard deviation on radial position of a mere 0.002% of scan radius. The Dove 

prism SLDV, with an initial angular alignment of the laser beam, delivers a scan with a small offset 

from the optical axis (0.6% of scan radius) with a standard deviation on radial position of 0.06% of 

scan radius. The self-tracking system scans a perfectly centred, perfect circle. 

In the simulations, vibration frequencies are specifically chosen to allow the effects of misalignment, 

out-of-plane vibration and in-plane vibration to be distinguished from one another. Of course, there is 

no such luxury in an actual measurement and the challenge in data interpretation will be compounded. 

Particular attention is paid to whether the Doppler shifts (shown as velocities) contributing to the total 

measured velocity originate at optical devices or at the target and to their combination which can be 

constructive or destructive. This emphasises the comprehensive detail available through these models. 

Figures 6-8 show indicative spectral content (presented against target rotation order) of the individual 

contributions to the total measured velocity (normalised by target rotation speed) for single 

misaligned configurations. Velocity spectra in the absence of misalignment are not shown but they are 

discussed and data are included in Tables 1-3. These tables summarise simulations of a very large 

number of misaligned configurations for each system. Realistic misalignment values are used at all 

times (as listed in Appendix D) but the resulting scans are also checked to ensure that scan radius 

(defined as the mean radial position from the scan centre location) is within 5% of the intended 50 

mm and that the scan centre location itself is less than 5% of the scan radius from its intended 

location. Only scans passing these tests are used for the analysis summarised in Tables 1-3. The 

second column in each of these tables indicates how many scans were used from the total number of 

scans considered. These thresholds could be debated but they are indicative of what might reasonably 

be expected in an actual measurement and, most importantly, they ensure fairness in the comparison. 

Table 1 presents spectral content associated with system configuration (i.e. in the absence of 

misalignments) and with misalignments. These velocities depend on target rotation but not target 

vibration. Tables 2 and 3 show, respectively, the sensitivities to flexible out-of-plane vibration and 

whole body in-plane vibration. Sensitivities are seen not only at the vibration frequencies but also at 

sidebands related to rotation speed. In the case of out-of-plane vibration, sidebands are symmetrical 

but this is not the case for in-plane vibration where sideband amplitudes are in the ratio of their 

frequencies. The origin of this effect is in the combination of scanning and target rotation and is 

readily demonstrated by evaluation of equation (4c) for any of the models, as set out in Appendix E. 

The order and frequency ranges used in the Tables are chosen to cover all measurable spectral peaks.  
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The simulations do not include typical measurement noise but, as important context, noise , especially 

that due to laser speckle, would make identification of an individual spectral peak difficult if its 

amplitude were less than 0.2 m/s / rad/s [16]. Vibration amplitudes of 1mm/s / rad/s are used in the 

simulations; on the same basis sensitivities greater than 0.02% should be visible in measured spectra 

but this value is obviously dependent on vibration amplitude. This noise level has influenced the 

scales chosen for figures 6-8 but all peak amplitudes, of any level, are given in Tables 1-3 where 

emboldened figures indicate spectral peaks that ought to be observable in real measurement data. 

6.1. Dual Mirror SLDV simulation 

Without misalignments, no Doppler shifts occur at the mirror surfaces but there is a prominent 

Doppler shift from the target at second order (and much smaller fourth and sixth order components). 

There is 99.9% measurement sensitivity to out-of-plane vibrations, with very small sidebands 

apparent at       , while the sensitivity to in-plane vibration is principally characterised by peaks 

of unequal amplitude at frequencies      . By average amplitude, these peaks correspond to 2% 

in-plane sensitivity. 

For the specific misalignments listed, Figure 6a shows velocities associated with the deflections at 

each mirror surface while Figure 6b shows the combination of velocities from mirrors and target to 

produce the total measured velocity. The small deviations from the intended circular scan path would 

not be visible in a figure but, with these misalignments, the scan path has a mean radial position of 

99.9% (standard deviation 0.2%) and a centre position error of 1.5%, relative to the intended 50mm 

radius. Figure 6a shows how misalignments cause Doppler shifts at both mirrors, principally at first 

order with much smaller DC, 2x and 3x components generated at the second mirror across whose 

surface the beam scans. Additional Doppler shifts also occur at the target, principally at DC and first 

order with a much smaller 3x component. Figure 6b also shows the influence of misalignments on the 

measured velocity components associated with target vibration. Additional sidebands appear at     

around the z-vibration frequency,       , while an additional spectral peak occurs at the in-plane 

vibration frequency,        .  

Based on 50621 misaligned configurations, Table 1 shows that peaks at first and second order are the 

most significant amongst the components unrelated to vibrations. Standard deviations indicate that the 

first order component varies considerably with misalignment unlike the second order component 

which is largely unaffected. The principal sensitivity to out-of-plane vibration at    and the sidebands 

at       associated with in-plane vibrations are unaffected by misalignment, as shown in Tables 2 

and 3 respectively. Misalignments do, however, generate a peak at the in-plane vibration frequency 
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with a measurable mean level and a standard deviation that indicates substantial dependence on those 

misalignments. 

The effect of changing scan radius has also been explored using the same set of misaligned 

configurations. Doubling scan radius by doubling scan angles leaves the DC level unchanged but 

doubles the 1x velocity and quadruples the 2x velocity. Vibration sensitivities at sidebands double but 

out-of-plane vibration sensitivity at    reduces only negligibly and in-plane vibration sensitivity at 

   is unchanged. Doubling scan radius by doubling the axial distance    leaves the DC level and the 

sensitivities at    and    unchanged. Levels increase at first order, second order,       and 

      only modestly, representing negligible differences in sensitivity and indicating the 

desirability of managing scan radius by maximising    and minimising scan angles.  

6.2. Dove prism SLDV simulation 

Scanning in a circular path can be arranged by initial translational or angular alignment of the laser 

beam. For translational alignment (no misalignments), the 1x velocity components associated with 

each of the three deflections at the prism cancel completely on addition and no measured velocity 

originates at the target at low orders. There is 100% sensitivity to out-of-plane vibrations and no 

sensitivity at all to in-plane vibrations. However, the finite dimension of the prism means that only a 

small scan radius can be achieved in this way and an initial angular alignment of the laser beam is the 

more practical option. With angular alignment (no misalignments), spectral peaks at integer multiples 

of half order up to order 3.5 appear for each deflection at the Dove prism and from the target. Half-

order multiples appear because the Dove prism rotates at half of the target rotation speed. From the 

prism deflections, peaks at 0.5x and 1x components have the largest amplitudes but there is significant 

cancellation, especially at half order, on addition. The largest combined peak is at first order but it is 

small at around 4 m/s / rad/s. There is 99.9% measurement sensitivity to out-of-plane vibrations, 

with no sidebands, while the sensitivity to in-plane vibration is again characterised by peaks of 

unequal amplitude at frequencies      . By average amplitude, these peaks correspond to slightly 

less than 2% in-plane sensitivity.  

For the specific misalignments listed, Figure 7a shows velocities associated with the deflections at 

each prism deflection point while Figure 7b shows the combination of velocities on the prism, 

velocity at the target and the total measured velocity. With these misalignments, the scan path has a 

mean radial position of 96.4% (standard deviation 0.06%) and a centre position error of 2.3%, relative 

to the intended 50mm radius. The circular scans from consecutive prism half-rotations follow paths 

that are separated by around 0.1% of radius. This is driven by the initial angular alignment and is 

largely unaffected by misalignments. Its practical implications are negligible. Figure 7a shows the 
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addition of DC peaks and considerably larger 1x components for each of the prism deflection points 

but, again, there is significant cancellation on addition. Figure 7b shows how the dominant DC peak 

from the prism overall cancels significantly with that from the target, leaving the 1x component 

generated at the target as the dominant low order component in the total measured velocity. The 

sensitivities to out-of-plane and in-plane vibrations shown in Figure 7b follow a very similar pattern 

to those found in the dual mirror SLDV system with the addition of sidebands at       and a peak 

at     

Simulation of 15155 misaligned configurations, as summarised in Tables 1-3, reveals that the main 

low order components are at DC and 1x with mean values and standard deviations similar to those 

found in the dual mirror system. The peak at half order is small but measureable. The vibration 

sensitivities also follow similar patterns to those seen for the dual mirror system. The principal 

sensitivities at    and       are unaffected by misalignment, while the peak appearing at    has 

measurable magnitude at 0.6%, approximately twice that seen in the dual mirror system, with 

substantial dependence on those misalignments.  

Doubling scan radius by doubling the initial alignment angle increases the mean DC level by just a 

few percent but increases the level at half order by a factor of 5 and almost doubles the mean level at 

first order. Negligible reductions are seen in the mean sensitivities at    and    while the sensitivities 

at       and       almost double. The more desirable way to double scan radius is by doubling 

the axial distance    which leaves all mean levels and sensitivities unchanged. 

6.3. Self-tracking LDV 

In a perfectly aligned system, there are no velocities at low orders and 100% sensitivity to out-of-

plane flexible vibration. Sensitivity to whole body in-plane vibrations is again associated with peaks 

at      . The amplitudes of these peaks are again in the ratio of their frequencies (see Appendix 

E), this time with a mean amplitude of 50%.  This high sensitivity occurs as a result of the whole body 

in-plane vibration causing Doppler shifts at the vertex mirror which is attached directly to the target. 

For the same reason, the sensitivity to out-of-plane whole body vibrations,       , would be 200%. 

This clearly emphasises the importance of considering Doppler shifts at optical devices. The 

sensitivity to in-plane vibrations is affected by the type of in-plane motion encountered and there 

would be zero sensitivity to in-plane vibration associated with target flexibility (i.e.     and/or    ). 

Together with 100% sensitivity to out-of-plane flexible vibrations, this is a major attraction of this 

conical mirror arrangement. For the previous two systems, sensitivities to whole body in-plane 

vibration and to in-plane vibration associated with target flexibility are the same because all 

associated Doppler shifts occur at the target. Two misalignment simulations have been performed for 
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the self-tracking LDV. Simulation 1 considers misalignment of the optical components as for the 

previous two systems while simulation 2 additionally includes the effect of the conical mirror surface 

profile.  

6.3.1. Simulation 1 

Figure 8a shows the velocities associated with the deflection at the vertex mirror and the target, 

together with their combination to produce the total measured velocity with the misalignments listed. 

For this case, the scan path has a mean radial position of 102.30% (standard deviation of 1.80%) and a 

centre position error of 2.74%, each relative to the intended 50mm scan radius. Compared to the 

previous two systems, misalignments appear to cause larger and more numerous spectral components 

including spectral peaks from DC to second order from the vertex mirror and from DC to fifth order 

from the target. Figure 8a illustrates a simulation with vibration frequencies of         and 

        and an expanded order range to allow individual effects to be distinguished within the 

larger number of spectral peaks present. (The data summarised in Tables 1-3 are still based on 

       and        ). The effect of misalignments on out-of-plane vibration sensitivity is the 

addition of small sidebands at up to       . With in-plane vibration, misalignments cause 

additional sidebands as well as the peak at the in-plane vibration frequency, itself, as seen previously.  

From 180675 misaligned configurations, Table 1 shows that levels at DC and the integer orders up to 

4x are high relative to the previous two systems with relatively large standard deviations indicating 

significant variation with misalignment. The components at 1x and 2x would be readily observable in 

measured data. The main vibration sensitivities at    and       are largely unaffected by 

misalignments with very small standard deviations, as shown in Tables 2 and 3 respectively. Table 3 

shows that the largest additional vibration sensitivities appear at    and       , both the result of 

Doppler shifts at the target. At 2%, the mean sensitivity at    is the highest of the three systems 

considered while the sidebands at        have mean sensitivities similar to those seen at       

in the previous two systems. The ratio of amplitudes for each sideband pair is comparable with the 

ratio of their frequencies.  

Doubling the scan radius by increasing    results in useful reductions in the undesired low order 

components with the exception of the 1x component which increases by 7%. The DC level reduces by 

almost one-quarter, the 2x component is almost halved, and 3x and 4x components reduce by around 

a factor of 4. Out-of-plane sensitivity at    increases very slightly while its sidebands reduce by a 

factor of around 4. The undesired sensitivity to in-plane vibration at    almost halves, as do the levels 

of the        sidebands, but the high sidebands at       are largely unaffected. 

6.3.2. Simulation 2 
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This conical mirror surface profile variation is not quantified by a single value like the misalignments 

in each individual configuration in simulation 1 but by a continuously varying pair of small rotations 

as shown in equation (51a&b). The variation has spectral content at all orders but it is reasonable to 

expect higher levels at lower orders so an overall Gaussian profile has been imposed on the 

component amplitudes (4th order set to be     of the Gaussian). Those amplitudes also have a 

random component equivalent to approximately +/-10% of their mean value and they are scaled so 

that the mean deviation of      from its unmodified orientation takes a chosen value, in this case 0.1
O
. 

This value would result in a deviation of the point of incidence on the target of less than 0.1 mm over 

5 cm. For otherwise perfect alignment and in the absence of vibration, the measured velocity would 

result entirely from the effect of the conical mirror surface profile on the detected component of target 

rotation velocity and would take the form shown in Figure 8b in which the dominance of lower orders 

is clear.  

In the additional presence of misalignments, Figure 8c shows the components of the total measured 

velocity. In addition to the effects discussed in the previous sub-section, the velocity associated with 

the target shows a pattern of additional spectral peaks that might have been expected from Figure 8b. 

At the low orders, Table 1 shows that the DC and first order levels are unaffected but, thereafter, the 

low orders are significantly increased. Tables 2 and 3 show that the vibration sensitivities are not 

fundamentally affected unless the levels associated with the surface profile are significant at the same 

frequencies at which vibration sensitivity is also apparent. In these data, this is the case at the 

sidebands associated with out-of-plane vibration because it has the lower frequency in the simulation. 

Those predicted values where an effect is apparent should be regarded only in order of magnitude 

terms. The assumptions made are all reasonable, especially the resulting mean angular deviation, but 

the precise values used for each order are too speculative for a more quantitative interpretation. Only 

one surface profile variation has been simulated; it is perfectly possible to simulate more but it is not 

meaningful to do this without some firmer basis to guide the selection of amplitudes for each 

harmonic component. For this reason, affected mean levels and sensitivities and their standard 

deviations are shown with only a single significant figure. Standard deviations are shown for 

completeness but, at low orders, they result from the combination of many individual misalignments 

with a dominant but single conical mirror surface profile and so they are similar to values in 

simulation 1 and say nothing about the effect of the conical mirror. 

6.4 Validation of the models 

An experimentally validated theoretical prediction of measured velocities at DC and the first and 

second orders in the presence of misalignments has been published for the dual mirror SLDV [16]. 

This paper presented theoretical expressions, a procedure in which initial (unknown) misalignments 
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can be calculated for subsequent correction and data from real measurements. A much less 

comprehensive set of misalignments than have been modelled here were considered, based on angular 

and translational misalignment between the optical and rotor axes. The configuration is modelled by 

setting all misalignment variables in section 3 to zero and then incorporating misalignments in the 

manner set out in Appendix B. Checking against data such as those presented here in Figure 6 and the 

calculation of initial (unknown) misalignments in [16], there is perfect agreement between the original 

theory (before its use of small angle approximations) and the model, which is itself without 

approximation. 1x and 2x levels seen in real measurements with care taken over alignment show 

excellent agreement with the range indicated in Table 1, after adjustment for scan angle and axial 

distance. The patterns of peaks at in-plane and out-of-plane vibration frequencies and sidebands have 

also been seen in previous work, including the distinctive combination of a smaller peak at vibration 

frequency and larger sidebands of unequal amplitude at       associated with in-plane vibrations 

in the presence of misalignments [14]. 

The validation of the dual mirror SLDV model goes some way towards validating the models for the 

Dove prism and self-tracking systems because of the generic root of the individual models. 

Systematic, experimental studies of the effects of misalignment in the Dove prism and self-tracking 

systems have not, to the authors’ knowledge, been published but a comparison can still be made with 

available data. 

For the Dove prism system, a case study on a rotating compact disc [43] shows levels in the region of 

1 m/s / rad/s at 0.5x and 260 m/s / rad/ at 1x. Geometrical details are not given but scan radius can 

be assumed to be in the region of 50mm given the application and these measured levels sit very 

comfortably with the predictions in Table 1, noting the volatility observed in the level at 0.5x as 

discussed in section 6.2. 

For the self-tracking system, after alignment, values have been reported in the region of 700 m/s / 

rad/s at first order and 220 m/s / rad/s at second order for a scan radius of around 200mm [44]. Table 

4 shows three simulations for this scan radius in which a threshold has been set corresponding to 

maximum 1 mm error in scan centre location and scan radius. To acknowledge the alignment effort 

made in preparation for the experiments [44], larger individual misalignments have been eliminated 

from the simulation (as listed in Appendix D). The DC and 1x components are largely unaffected by 

the effect of the conical mirror surface profile. The measured level at first order sits at a level close to 

(just below) the mean minus one standard deviation in each of the simulations, consistent with the 

effort made in alignment. The measured level also confirms the general conclusion from the 

simulations that much higher first order velocities occur with this system than they do with the 

previous two systems. Without inclusion of the effect of conical mirror surface profile, the predicted 
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second order level is an order of magnitude smaller than the measured level. Inclusion of the surface 

profile used in section 6.3.2 results in a second order level comparable with measured data. In the 

measured data, it was observed that the 3x component was small but the 4x component much higher 

at around 140 m/s / rad/s. A surface profile with a stronger second order variation is one possible 

cause of this higher level. The third simulation is based on the second simulation, with the same 

overall angular deviation in surface normal vector but components at 2nd
 
order and its integer 

multiples are increased by a factor of 3. The levels predicted are now consistent with the trend in 

measured data, suggesting that the conical mirror surface profile may well be the cause of the effects 

observed in measured velocity at integer orders beyond 1x.  

 

8. Conclusions 

A novel vectorial framework for modelling measured velocity in laser vibrometry has been introduced 

and successfully applied. The framework is comprehensive and includes the largely neglected velocity 

contributions associated with deflections at the optical devices in scanning heads. Universal 

applicability, ease of use and the ability to incorporate misalignments of every device are its key 

attributes and this has been demonstrated by modelling three significantly different scanning systems. 

The models developed have been interrogated in considerable depth, principally as a means to 

emphasise the framework’s value but also to enable a quantitative performance comparison between 

systems for the rotor tracking application. Low order velocity components are the principal effect of 

misalignment. For the dual mirror system, measurable velocities are expected at DC, first and second 

order while the Dove prism system shows similar levels at DC and first order. The second order 

component is much smaller but there are also small peaks at half orders including a measurable 

component at 0.5x. For the self-tracking system, a greater effect of misalignment is encountered at 

DC and integer orders, especially at 1x and 2x. In particular, the surface profile of its conical mirror 

has the potential to increase components at integer orders above 1x. While the models can incorporate 

target motion of any complexity, out-of-plane flexible vibrations and in-plane whole body vibrations 

have been the focus of simulations. Sensitivity to out-of-plane flexible vibrations is close to 100% for 

all systems and largely unaffected by misalignments with the exception of the appearance of 

sidebands with negligible amplitude. In-plane vibration sensitivity is characterised principally by 

sideband peaks at     around the vibration frequency with amplitudes in the ratio of their 

frequencies. Again, these are largely unaffected by misalignment but misalignment does cause a 

smaller peak to appear at the vibration frequency itself. For the dual mirror and the Dove prism 

systems, the main in-plane vibration sensitivities are small at around 2%. For the self tracking system, 

the sensitivity to in-plane flexible vibration is low but the sensitivity to in-plane whole body vibration 
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is very large as a consequence of attachment of a vertex mirror to the structure of interest. The models 

originating from the framework offer vibrometer designers and users unprecedented opportunities to 

optimise configurations, compare systems and enhance data interpretation. 
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Appendix A: Expansion of vibration vectors in equation (4b) 

Vector expressions for the target’s whole body translational vibration velocity,            , and the 

associated displacement,             , can be written in terms of x-, y- and z-components of translational 

velocity at O
*
,     ,      and      respectively: 

                                   (A.1a) 

                             
 

        
 

        
 

 
 
 

 (A.1b) 

The vibration velocity due to target flexibility is written in a similar manner to equation (A.1a): 

                                                                
        (A.2) 

Angular velocity      includes both angular vibration velocities around the three coordinate axes,   
  , 

  
  and   

  ,and any continuous rotation. Continuous rotation at angular frequency    occurs around 

an axis modified by pitch and yaw vibration displacements and the full expression for angular velocity 

is written as: 

                
   

   
  

 
                               (A.3) 

 

Appendix B: Misalignment between the optical head and the target 

For this case, the equations presented in sections 3 and 4 can be considered as written in an optical 

frame of reference with an origin      located in the same xy plane as origin O and unit vectors       , 

      and       defining its axes. This arrangement is shown in figure B1. Transformation of any 

vectors can be made using the relationship: 

                                            
   
   
   

  (B.1) 

where      and      are the misalignment angles, around x- and y-axes respectively, between the 

optical and global coordinate systems. The velocities associated with each deflection point can still be 

calculated within the optical frame of reference with misalignments incorporated in the same manner. 

The final beam orientation and the point T’ in the target plane, however, must be expressed in the 
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global system to apply equation (4b). For example, for the Dove prism SLDV, the final beam 

orientation can be written: 

                                    
                                         

 (B.2) 

where               
  is a column vector of the components of     in the optical axes. 

Identification of T’ follows from re-expressing             in the global axes using: 

                 
                   

                 (B.3) 

in which      
                 is found by transforming             from equation (35d) into the global system using 

equation (B.1). Equation (B.3) is illustrated in figure B1 including how      
              connects the origins of 

the global and optical systems and expresses translational misalignment: 

     
                                      (B.4) 

In equation (B.4),       and       would be inputs to the model. With     and             now expressed in 

the global coordinate system, equation (36) is applied to find            . 

 

Appendix C: Calculation of                 and      for equations (47a) and (50b). 

Combining equations (48) and (49c) and equating components (identified by subscripts x, y and z) 

leads to the following three equations: 

                          
 

                      
                 

  
            (C.1a) 

                          
 

                     
                 

  
            (C.1b) 

                          
 

                     
                 

  
                      (C.1c) 

The benefit of small angle approximations in equation (49c) is the formulation of a quadratic equation 

for                 . This is derived in three steps. The first is the substitution of equations (C.1a) and (C.1b) 

into (C.1c) to give: 
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                     (C.2) 

The second step is the combination of equations (C.1a&b) based on the relationship 

                     to give: 

    D C            
 
          

    D C                                         
 

                                                   
 

                        

                            
 

                      
 

                            
 

                      
 

   (C.3) 

Eliminating  D C             between equations (C.2) and (C.3) is the third step, leading to the quadratic 

equation in                 : 

                  
 
                                 

      
   

                                                            
 

                            
 
                

                               
 

                               
 
  

                                           
 

                            
 
                             

 

 
                           

 

 
 

 (C.4) 

The negative root gives a positive value for                  and is selected. The point of incidence on the 

conical mirror can now be found from equation (47a). Finally, having found                 , formulation of 

        is possible by rearrangement of equations (C.1a&b) and substitution of equation (C.2): 

        
                             

 
                                                

                            
 
                                                

 (C.5) 

This enables identification of the surface normal at the point of incidence on the conical mirror 

according to equation (50b). 

 

Appendix D: Parameters for multiple simulations contributing to Tables 1-4 

D1: Dual mirrors SLDV  
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Misalignments: 

    from -0.4
O
 to 0.4

O
 in steps of 0.2

O
 and    from -0.1

O
 to 0.1

O
 in steps of 0.1

O
. 

    from -2mm to 2mm in steps of 2mm and     from -10mm to 10mm in steps of 5mm. 

   and    from -0.1
O
 to 0.1

O
 in steps of 0.1

O
. 

   and     from -0.25
O
 to 0.25

O
 in steps of 0.25

O
. 

   ,         and     from -3mm to 3mm in steps of 3mm,          . 

Geometry for all simulations:     0.2m,     50mm,     1.2m. 

D2: Dove prism SLDV  

Misalignments: 

   from -0.1
O
 to 0.1

O
 in steps of 0.1

O
 and    from -0.6

O
 to 0.6

O
 in steps of 0.2

O
. 

    from -12mm to 12mm in steps of 4mm and     from -6mm to 6mm in steps of 3mm. 

   from -0.1
O
 to 0.1

O
 in steps of 0.1

O
 and    from -0.6

O
 to 0.6

O
 in steps of 0.2

O
. 

    from -12mm to 12mm in steps of 4mm and     from -4mm to 4mm in steps of 2mm,      . 

Geometry for all simulations:  

    1.4m,     1.2m,              6.6cm,    1cm,      2.0875
O
,      O

. 

Refractive indexes: 1 for air (  ) and 1.5 for the Dove prism (  ). 

D3: Self-tracking LDV  

Misalignments for Table 3: 

   from -0.1
O
 to 0.1

O
 in steps of 0.1

O
 and    from -0.4

O
 to 0.4

O
 in steps of 0.2

O
. 

    from -1mm to 1mm in steps of 1mm and     from -0.5mm to 0.5mm in steps of 0.5mm. 

   from -0.2
O
 to 0.2

O
 in steps of 0.2

O
 and    from -0.2

O
 to 0.2

O
 in steps of 0.2

O
. 

    from -1mm to 1mm in steps of 1mm. 

   from -0.2
O
 to 0.2

O
 in steps of 0.2

O
 and    from -0.4

O
 to 0.4

O
 in steps of 0.2

O
. 

   ,     and     from -3mm to 3mm in steps of 3mm. 

Misalignments for Table 4: 

   reduced to -0.2
O
 to 0.2

O
 in steps of 0.2

O
. 

   reduced to -0.1
O
 to 0.1

O
 in steps of 0.1

O
 and    from -0.1

O
 to 0.1

O
 in steps of 0.1

O
. 

   reduced to -0.2
O
 to 0.2

O
 in steps of 0.2

O
. 

   ,     and     reduced to -2mm to 2mm in steps of 2mm. 

Geometry for all simulations:  

    0.05m; cone angle = 45
O
, vertex mirror angle = -45

O
,          m. 
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Appendix E: Unequal amplitude sidebands due to in-plane vibration 

Peaks of unequal amplitude at frequencies       appear as a consequence of in-plane vibration 

     . An approximate expression for beam orientation can be used in conjunction with equation (4c) 

for the case of in-plane vibration (only) of a rotating target: 

                                                                                      (D.1) 

where    is typically small (dependent on scan radius),    is close to one and    is the scan 

frequency. The in-plane velocity and its associated in-plane displacement can be written: 

                      (D.2a) 

               
    

  
          (D.2b) 

while the circular scan path can reasonably be approximated as: 

                                      (D.3) 

Substitution of equations (D.2a&b) and (D.3) into the expression for           in equation (D.1) results in: 

                                                 
    

  
          (D.4) 

from which the dot product can be formulated: 

                                   
  

  
              (D.5) 

This expression shows a product of sines that is dependent on scanning and in-plane vibration but not 

target rotation followed by a product of cosines that is additionally dependent on target rotation. On 

expansion, each product is seen to contribute equal amplitude components at sum and difference 

frequencies: 

               
      

 
                           

  

  
                           (D.6) 

It is the relative phasing of the sum and difference frequency components and the equivalence 

between    and    for tracking that results in the peaks at frequencies       with a ratio of 

amplitudes equal to the ratio of the frequencies themselves: 
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              (D.7) 

While the amplitude of each peak is clearly dependent on vibration frequency, the mean amplitude of 

these peaks is not. The same effect occurs in the self-tracking system where the vertex mirror 

produces a sensitivity to whole body in-plane vibration according to: 

                                                                                                      (D.8) 

where the simplification results from     and             having such dominant z-components (without 

misalignment they have only z -components). Equation (D.8) has the same pattern of one term, 

           , that is dependent on scanning and in-plane vibration but not target rotation followed by a 

second term,                        , that is additionally dependent on target rotation. Here much larger 

amplitudes result because     has sinusoidal components in x- and y-directions of amplitude close to 1. 
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Figure captions 

Figure 1 – Reflection and refraction of a laser beam at P’ 

Figure 2: Dual mirror SLDV: a) full geometry without misalignment b) with misalignments of the 

laser source and mirrors. 

Figure 3: Dove prism SLDV: a) full geometry with beam angular alignment for scanning (zero 

misalignment) and b) with misalignments of the laser source and prism. 

Figure 4: Self-tracking LDV: a) full geometry without misalignment and b) with misalignments of the 

laser source, vertex mirror and conical mirror. 

Figure 5a: Orientation of     , the surface normal unit vector on the conical mirror: (1) an initial 

orientation in the      -direction, (2) a negative rotation by the cone angle (    rad) around     , 

(3) rotation around      by the angle     . Relocating the vectors at (2) to (2a) and (3) to (3a) shows 

how the tip of the surface normal unit vector follows a circular path as the laser beam scans around 

the mirror. 

Figure 5b: Orientation of a unit vector aligned with               . (1) initial orientation in the       -direction, 

(2) rotation by the cone angle (    rad) around      , (3) rotation around       by the angle     . (     

rotation appears clockwise as viewed from the right of the figure). 

Figure 5c: Orientation of conical mirror axes relative to cone axes: (1)       , ycm and zcm lie in 

yconzcon plane, (2)          rads, ycm and zcm lie in xconzcon plane. 

Figure 6: Typical velocities in the dual mirror SLDV in the presence of misalignments (        , 

        ,        ,          ,        ,         ,        ,         , 

        ,        ,        ,         ) and sinusoidal target vibrations (   
       of 

amplitude 1mm/s / rad/s at     and     
          of amplitude 1mm/s / rad/s at     ):  

a) the individual and combined effects of the deflection points on the mirrors, and  

b) the combined effects of the mirrors, the effect of the target and total measured velocity. 

Figure 7: Typical velocities in the Dove prism SLDV in the presence of misalignments (       , 

        ,         ,          ,        ,        ,        ,         , 

       ) and sinusoidal target vibrations (   
       of amplitude 1mm/s / rad/s at     and     

          of 

amplitude 1mm/s / rad/s at     ):  

a) the individual and combined effects of the deflection points on the Dove prism, and  

b) the combined effects of the prism, the effect of the target and total measured velocity. 

Figure 8: Typical velocities in the self-tracking LDV system: 

a) in the presence of misalignments (         ,        ,        ,           , 

          ,        ,         ,        ,        ,         ,         , 

       ,        ) and sinusoidal target vibrations (   
       of amplitude 1mm/s / rad/s at      

and     
          of amplitude 1mm/s / rad/s at     ) 
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b) a surface profile on the conical mirror causing a mean angular deviation in the surface normal of 

0.1
O
 (no other misalignments, no vibration). 

c) a surface profile as in Fig. 8b in the presence of misalignments and vibrations as in Fig. 8a. 

Figure B1: Misalignments between global and optical axes. 

 

Table Captions 

Table 1: Mean (standard deviation) of rms measured velocities (m/s / rad/s) associated with system 

configuration and typical misalignments.  

Table 2: Mean sensitivities (and standard deviations), expressed as the percentage of out-of-plane 

flexible vibration (at      T). 

Table 3: Mean sensitivities (and standard deviations), expressed as percentage of in-plane whole body 

vibration (at       T). 

Table 4: Effect of conical mirror surface profile on the mean (standard deviation) of rms measured 

velocities (m/s / rad/s) for the self-tracking system. 35443 misaligned configurations from 885735 

considered. 

  



39 

 

Table 1: Mean (standard deviation) of rms measured velocities (m/s / rad/s) associated with system 

configuration and typical misalignments.  

SLDV 
System 

Misaligned 
configurations 
used / considered 

Order 

DC 0.5x 1x 1.5x 2x 3x 4x 

Dual 
mirror 

No misalignments 
No 

peak 
No peak 

No 

peak 
No peak 29.4 No peak 2.63e-4 

50621 / 1476225 
5.19 

(4.56) 
No peak 

284 

(130) 
No peak 

29.4 

(2.02) 

8.33e-2 

(5.19e-2) 

2.63e-4 

(1.50e-5) 

Dove 
prism 

No misalignments 
No 

peak 
0.170 3.85 3.01e-2 7.84e-5 1.67e-8 No peak 

15155 / 540225 
8.72 

(7.89) 

0.219 

(4.17e-2) 

221 

(113) 

6.77e-2 

(2.87e-2) 

4.55e-4 

(2.65e-4) 

3.08e-8 

(1.34e-8) 
No peak 

Self-
tracking  

No misalignments 
No 

peak 
No peak 

No 

peak 
No peak No peak No peak No peak 

Simulation 1: 

180675 / 1476225 

13.7 

(14.7) 
No peak 

1230 

(853) 
No peak 

55.1 

(57.7) 

3.57 

(4.66) 

0.210 

(0.344) 

Simulation 2: 

180675 / 1476225 

13.8 

(14.7) 

No peak 1231 

(849) 

No peak 80 

(40) 

40 

(4) 

30 

(0.1) 
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Table 2: Mean sensitivities (and standard deviations), expressed as the percentage of out-of-plane 

flexible vibration (at      T). 

SLDV System 
Misaligned 
configurations 
used / considered 

Frequency 

                

Dual mirror 
No misalignments 99.9 No peak 1.70e-3 

50621 / 1476225 99.9 (1.51e-3) 1.03e-2 (5.26e-3) 1.71e-3 (1.31e-5) 

Dove prism 
No misalignments 99.9 No peak No peak 

15155 / 540225 99.9 (9.88e-3) 1.19e-2 (6.52e-2) No peak 

Self-tracking  

No misalignments 100 No peak No peak 

Simulation 1:  

180675 / 1476225 
99.9 (0.106) 3.09e-3 (4.07e-3) 5.29e-2 (5.22e-2) 

Simulation 2:  

180675 / 1476225 
99.9 (0.107) 

-ve: 9e-2 (9e-3) 

+ve: 2e-2 (4e-3) 

-ve: 0.2 (4e-2) 

+ve: 5.50e-2 (4.44e-2) 
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Table 3: Mean sensitivities (and standard deviations), expressed as percentage of in-plane whole body 

vibration (at       T). 

SLDV 
System 

Misaligned  
configurations  
used / considered 

Frequency 

                             

Dual 
mirror 

No misalignments No peak 1.87 No peak 2.13 No peak 

50621 / 1476225 
3.02e-5 

(2.10e-5) 

1.87 

(4.15e-5) 

0.240 

(0.171) 

2.13 

(4.32e-5) 

3.77e-5 

(2.74e-5) 

Dove 
prism 

No misalignments No peak 1.71 No peak 1.94 No peak 

15155 / 540225 No peak 
1.76 

(0.113) 

0.598 

(0.358) 

2.00 

(0.129) 
No peak 

Self-
tracking 

No misalignments No peak 46.9 No peak 53.1 No peak 

Simulation 1:  

180675 / 1476225 

1.59 

(0.891) 

46.8 

(9.51e-2) 

2.06 

(1.45) 

53.0 

(0.111) 

1.80 

(1.01) 

Simulation 2:  

180675 / 1476225 

1.59  

(0.889) 

46.9  

(9.54e-2) 

2.05 

(1.45) 

53.1 

(0.112) 

1.80  

(1.00) 
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Table 4: Effect of conical mirror surface profile on the mean (standard deviation) of rms measured 

velocities (m/s / rad/s) for the self-tracking system. 19065 misaligned configurations used from 

531441 considered. 

Conical mirror surface profile 
Order 

DC 1x 2x 3x 4x 

Smooth  4.34  

(3.81) 

1513  

(731) 

15.5  

(10.1) 

0.202  

(0.205) 

2.39e-3  

(3.03e-3) 

Components at all integer orders  

with overall Gaussian profile 

4.83 

(4.14) 

1530 

(733) 

200  

(10) 

200  

(1) 

100  

(0.8) 

As above but components  

at 2x and integer multiples dominate.  

4.46 

(3.87) 

1517 

(729) 

300 

(10) 

80 

(1) 

200  

(0.8) 
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a)  

  

b) c) 

Figure 5 
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a)  

b)  

Figure 6 
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a)  

b)  

Figure 7 
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a)  

b)  

c)  

Figure 8  
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Figure B1 
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