
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



An investigation of electromigration induced void nucleation time statistics
in short copper interconnects

V. M. Dwyera�

Department of Electronic and Electrical Engineering, University of Loughborough, Loughborough LE11
3TU, United Kingdom

�Received 29 October 2009; accepted 5 January 2010; published online 25 May 2010�

The stress evolution model �SEM� of Korhonenet al., is used to calculate the void nucleation time
in a large number of short interconnects �lengths up to 50 �m�. Finite element calculations show
that the effect of the nonlinearity in the SEM model is small, and that a mesh size of the order of
the grain size is quite adequate to give accurate simulation results. Via failure is the only mode
considered in the current calculations, however the gain in simulation time over other solution
methods means that more complex situations, possibly including void dynamics, may be modeled in
future in this way. Using normal mass-lumping methods the analysis is isomorphic to the voltage
development on a random RC chain, so standard methods from very large scale integrated static
timing analysis may be used to obtain dominant time constants at each mesh point. This allows the
distribution of nucleation times to be obtained as a function of the distributions of line parameters.
Under the assumption of a lognormal grain size distribution and a normal distribution of diffusion
activation energies, the nucleation time distribution is shown to be close to lognormal. © 2010
American Institute of Physics. �doi:10.1063/1.3309744�

I. INTRODUCTION

The long time-to-failure under operational conditions
means that electromigration �EM� failures can generally be
reproduced in the laboratory only through accelerated
life-tests.1 Elevated values of the ambient temperature T and
the current density j increase both the metal diffusivity and
the EM driving force so that failures which would ordinarily
only arise after years of use occur after perhaps hundreds of
hours instead. Of course these tests are only useful, provided
there is a robust mechanism both for deceleration from test
conditions �of order 300 °C and 2 MA cm−2� back to opera-
tional conditions �of order 100 °C and 0.5 MA cm−2� and
also for extrapolation, usually over several orders-of-
magnitude, from the mean or median failure-times observed
in the laboratory to the more useful reliability indicators,
such as the time to 0.01% failures which is often required for
reliability budgeting.2 The utility of accelerated tests conse-
quently relies on a good knowledge of the EM failure-time
distribution and the dependence of that distribution on the
acceleration parameters T and j. A second problem which
arises in tests is that, even with such acceleration, it is very
difficult to obtain a sufficiently large number of experimental
results to give good statistics on any particular combination
of metallization process and test structure. Nevertheless, it is
fair to say that the majority of experimental results lie on a
reasonably straight line, or at least are reasonably piecewise
linear �possibly reflecting a number of different failure
modes3,4�, when plotted on lognormal probability paper �for
example, Refs. 5 and 6�. As a result of this empirical fit,
deceleration/extrapolation is generally performed based on
lognormal statistics.7

In order to substantiate the claims of the lognormal dis-

tribution, it would be natural, given the difficulty in obtain-
ing large quantities of experimental data, to turn to simula-
tion studies. However the complex nature of the problem
means that a full three-dimensional �3D� simulation, even of
a single interconnect, may absorb many hours of CPU time.
To illustrate the difficulty, a recently published 3D model
simulation described results for a single interconnect of
length around 2.5 �m, containing ten grains. Such simula-
tions are vital in determining what is important in EM fail-
ure, but, being much shorter than the minimum length for
failure, are unlikely to provide direct information about the
failure-time distribution.8 Likewise such models cannot be
extended to simulate lines of say 1000 �m length.

Despite such difficulties, there is much about EM which
might be regarded as known. One such “known” is Black’s
equation.9,10 Any strict lognormal distribution is, of course,
completely determined by two parameters, the median
failure-time t50 and the lognormal standard deviation �TTF

�Ref. 11� and, provided that their dependence on acceleration
parameters is known, the lognormal may be used to perform
the deceleration/extrapolation process. Black’s equation
seeks to describe the dependence of one of these, the
median-time-to-failure t50, on the acceleration parameters T
and j, and is generally written in the form9,10

t50 =
A�T�

jn exp� EA

kBT
� . �1�

Here EA is an activation energy for the EM process and A�T�
appears to be, at most, a relatively weak function of
temperature.7,12 Consequently EA may be determined from a
plot of log�t50� against T−1. Black’s original empirical work
gave a value of n=2 for the exponent of the applied current
density j, while later experimental studies on aluminum in-
terconnect structures produced values of n, for differenta�Electronic mail: v.m.dwyer@lboro.ac.uk. Tel.: �44 1509 227027.
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structures, generally lying between 1 and 3,12–14 but which
were sometimes even as high as seven.15 The first theoretical
studies,16,17 by contrast, suggested n=1, while later18–22 stud-
ies, which included back-diffusion of vacancies, suggested a
value, in agreement with Black, of n=2. Empirically ob-
served values of n�2 have generally been accounted for as
the result of Joule heating effects,13 while a spread of values
between n=1 and 2 has been explained through a split of the
failure-time tf into a void nucleation contribution tnucl �char-
acterized by n=2� and a void growth contribution tgrow �char-
acterized by n=1�, i.e.,12

t50 = tgrow + tnucl =
Agrow�T�

j
exp�EA

grow

kBT
�

+
Anucl�T�

j2 exp�EA
nucl

kBT
� . �2�

In this way the combination of a particular line structure and
metallization process which shows a slope of n=1 when
log�t50� is plotted against −log�j�, may be regarded as growth
time dominated failure, while a slope of n=2 curve is nucle-
ation dominated. These theoretical values may be derived in
a simple manner from a number of related one-dimensional
�1D� models including the stress evolution model �SEM� of
Korhonen et al.,20 which of such models, probably has the
greatest acceptance at present. That a lognormal distribution
with n close to one corresponds to a growth time dominated
failure and a lognormal distribution with n close to two cor-
responds to a nucleation time dominated failure, implies that
the distributions of both tnucl and tgrow are both roughly log-
normal also. For example, the system level EM simulator,
SYSREL,23 assumes that, for EM failure at vias between the
first metal layer M1 and the second metal layer M2, tf

= tnucl �for a via-above structures24� and tf= tnucl+ tgrow �for
via-below structures24�, and that both are lognormally dis-
tributed.

The existence of a critical �Blech and Herring25,26�
length LB, a length below which interconnect lines are im-
mortal, is another known feature of EM which may also be
explained by such 1D models, according to which the va-
cancy flux may be represented by20

J = −
D

kBT
� ��

�x
− G� , �3�

where G=Z�q�j /�. Here J is the vacancy flux, D the va-
cancy diffusivity, kB is Boltzmann’s constant, � is the
atomic volume, Z� the effective valance, q the electronic
charge, and � the copper resistivity. Assuming a constant G
at all points x for now, a zero flux condition J�0, and hence
a steady-state stress distribution �ss�x�, arises with

�ss�x� = �0 +
Z�q�j

�
x, �4�

where �0 is the tensile stress at x=0. The maximum tensile
stress in the line �ss�x� is �max=�0+GL, where L is the line
length. Clearly if there is a critical stress �cr for void nucle-
ation there will be a critical value of jL, obtained from set-
ting �max=�cr. Interconnects with jL� �jL�crit= ��cr

−�0� / �Z�q� /�� will then never nucleate a void and thus are
essentially immortal. The existence of a Blech length is thus
a natural consequence of these 1D models.

For a growing void, the free surface at the void boundary
tends to keep the stress gradient small so that the flux into
the void is dominated by the EM drift term, J�DG /kBT. If
a critical void volume � is required for failure then a growth
time of tgrow=�kBT /�DG	1 / j is required. This yields a
value of n=1 in Black’s equation above. Most of the 1D
models of EM failure approximate the flux by Eq. �3�, the
slight difference between them is in their treatment of the
continuity equation. In the model of Korhonen et al.,20

��

�t
= − B�

�J

�x
, �5�

where B is an elastic modulus. Combining Eqs. �3� and �5�
gives a parabolic equation similar to heat/diffusion type
equations, but nonlinear due to an exponential dependence of
the vacancy diffusion coefficient on the tensile stress �,

D��,x� = D0�x�exp� ��

kBT
� . �6�

If the interconnect is homogeneous �i.e., if D0 independent of
x� and if the model may be linearized, ��� /kBT	1�, solu-
tions are relatively straightforward and a value of n=2 is
found for void nucleation. Essentially, in the linearized equa-
tion, � /G obeys a diffusion-type equation with effective dif-
fusion constant 
=B�D /kBT and the tensile stress at the
cathode-most end increases with a characteristic square-root
time dependence, ��L, t� /G	

t.20 Thus if a critical stress
�cr is required for nucleation then tnucl��cr

2 /G2
, i.e., tnucl

	 j−2, corresponding to a value of n=2 in Black’s equation.
This analysis assumes a single mode failure at the cathode
via. Values of n between 1 and 2 are thought to reflect inter-
connects in which both the nucleation time and the growth
time are important contributors to the failure-time. As both
tgrow and tnucl behave as D−1 the parameter EA in Black’s
equation may be simply related to the activation energy for
diffusion.

While this seems convincing enough, there is something
of a flaw in, or at least a major concern with this argument.
The analysis we have gone through works only for homoge-
neous lines with position independent values of G and 
. It
gives only a single value of tnucl say ���cr

2 /G2
�, or at least
it gives one value for each set of values of �cr, G, and 
.
How might this lead to a lognormal distribution? One option
is to assume that the major variation comes from the diffu-
sivity values at the copper/nitride-cap interface and that each
interconnect may be modeled using an average value D
which could be used in the homogeneous-line expressions
for tnucl and tgrow. Perhaps D is lognormally distributed be-
tween the lines which then will lead to a lognormal distribu-
tion of tnucl and tgrow. However, if a grain’s out-of-plane ori-
entation determines its D value then, with each line
containing a large number of grains, the central limit theorem
�CLT� might be assumed to argue against D being lognormal.
In addition one might expect the intrasample variation in D
values to be as great as the intersample variation.27,28
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Even more important than the failure-time distribution
for a particular metallization process/test-structure is the
failure-time distribution of a whole chip. This involves, at its
simplest, connected tree structures of metal interconnect at a
single metallization level, and a number of system level
simulators have been introduced, the most recent of which
SYSREL �Ref. 23� is also based around the SEM of Korhonen
et al.20 and the lognormal failure-time distribution. SYSREL

makes the implicit assumption that the origin of the failure-
time distribution comes from a lognormal distribution of av-
erage values D, or at least a constant D=Dk is applied to
limbk in the tree structure, and the limbs are subsequently
treated as homogeneous.23 Putting such concerns aside, it is
clear that the model of Korhonen et al.20 can be invoked to
explain the origin of the Blech length, the nucleation/growth
model which underpins the range of values for n seen in
empirical fits to Black’s equation and the system reliability
modeling of programs such as SYSREL. It makes sense, as a
result, to ask what such a model may say about the distribu-
tion of EM failure-times for a particular metallization
process/test structure design, and in particular to ask to what
extent the lognormal is a good fit to the failure times pre-
dicted by Korhonen et al.’s model.

With the picture of line failure described above, the
failure-time of a test structure may then be determined by
modeling the stress build-up in the interconnect, which re-
sults from the EM driving force. Specifically, on reaching
some critical stress �cr a void nucleates. On nucleation, at
tnucl say, the stress is assumed to collapse to zero at the void’s
free surface, and the stress developed within the line, includ-
ing the collapsed stress at the void, acts as the new initial
condition for the growth stage of the process. Growth is as-
sumed to have finished, and failure to have occurred, when
the nucleated void �or the pre-existing void� grows to some
critical size �. This critical void size will generally depend
upon the geometry of the line.29–32 For example a reservoir
of copper material at the via will tend to increase the value of
� for failure, while a reduced value will be required if the
void nucleates within the via itself.30 Of course if the line has
a pre-existing void at the via, then tnucl=0 and tf� tgrow,
while in so-called via-above �the void� structures, in which
the void forms say in the M1 layer at an M1/M2 via, the void
volume for failure is relatively small and tf� tnucl.

24 Even
this is rather too simplistic as void dynamics is now recog-
nized as a vital stage in failure; voids can form at points
other than at the cathode via, they can depin from their
nucleation site, drift in the interconnect, and combine with
other existing voids. Nevertheless, first things first, there is
an immediate question. In lines in which single mode failure
is determined by the nucleation of a void at the cathode via
and its subsequent growth to a critical failure size, what is
the distribution of failure-times predicted by the Korhonen
model? As indicated above, this could mean any of tnucl,
tgrow, or tnucl+ tgrow. We have considered the case of tnucl

+ tgrow for the typical via-below case previously33 and turn to
the distribution of tnucl in the current work. Thus this work is
most relevant to the via-above case,24 or the via-below case24

in which the void nucleates within the via itself,30 i.e., cases
in which � �and hence tgrow� is small.

The crystallographic orientation of grains on the cathode
side of voids nucleated in line has been observed to show a
distinctive trend, in that the majority have �111� out-of-plane
orientations.27,28 In addition it is well known that lines with a
strong �111� texture tend to have longer failure-times.34 An
obvious conclusion is that such grains have lower diffusivi-
ties than other orientations and act as semiblocking grains in
much the same way that bamboo grains can block grain
boundary diffusion in aluminum interconnect.35 This sug-
gests that the distribution of failure-times arises since iden-
tical test interconnects created on the same chip, and with the
same process, possess different microstructures, each grain
possessing its own diameter, orientation, diffusivity, and pos-
sibly other stochastic parameters such as adhesion strength
and certain elastic properties. For this reason the critical
stress �cr and critical void volume � may also differ for
different interconnects, and even at different points on the
same interconnect. To this extent it is a little misleading to
suggest, as has been in the past, that the microstructure does
not play a dominant role in the EM failure of Cu-based in-
terconnects, as indeed, in order to describe failure statistics,
it must play a fairly central role. What is generally meant by
such statements is that the grain boundary network does not
�yet� provide the dominant diffusion pathway, nevertheless
the size and orientation of grains �currently at the copper/
nitride-cap interface�, and the resultant variety of interface
diffusivity values, adhesion strengths, etc., that arise from the
microstructure, must largely determine the distribution of in-
terconnect lifetimes. This variety is intimately related to the
microstructure of the lines, so that, in order to understand the
influence of the microstructure on the failure-time distribu-
tion, the microstructure must be modeled in a realistic man-
ner. A simple means of doing this for near-bamboo intercon-
nects is given in Ref. 36. There, realistic microstructures may
be developed, which possess the same statistical properties
as patterned lines obtained using the two-dimensional grain
growth simulator EMSim.37 The grains created may be as-
signed parameters �size, effective diffusivity, effective val-
ance, critical stress values, etc.� drawn from any distribution
deemed appropriate. This may mean a lognormal grain size,
a normal distribution of diffusion activation energies. fast
and slow diffusivities corresponding to an activation energy
with a normal mixture to model the effect of different crys-
tallographic orientations and interface quality, and so on. The
purpose of this paper is to investigate the void nucleation-
time distribution in relatively short copper interconnects �up
to around 50 �m in length� as a function of the distributions
of the various material properties.

We seek first to solve the 1D stress evolution equation of
Korhonen et al. using a simple finite element model �FEM�.
Because the critical stress �cr for void nucleation in copper
appears to be relatively small, the size of the nonlinearity �
	exp��cr� /kBT�� is also small. As a result one might ex-
pect that linearizing the model is legitimate. However, there
is a certain amount of nonlinear feedback in the vacancy
dynamics, which means that this linearization still needs to
be justified. Next, we investigate the effects of the FEM
mesh-size on the results and consider some standard approxi-
mations used in FEM such as the lumping of the �equivalent
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of the� mass matrix to simplify the problem. As a result
nucleation time distributions are obtained under a variety of
parameter assumptions. Finally, we consider an analytical
approach.

Where this analysis differs from previous studies �e.g.,
Refs 18–23� of the SEM equation is that those studies gen-
erally assume that the lines are homogeneous, i.e., that the
dependence, on the position x along the line, of the diffusiv-
ity, the adhesion strength,38,39 the bulk modulus, etc., are
ignored. This latter simplification allows the “knowns” dis-
cussed above to be addressed but removes the possibility of
modeling the failure-time distribution, since the details of the
microstructure, in terms of a distribution of grain sizes and a
distribution of single-grain diffusivity values, etc., necessar-
ily requires the study of an inhomogeneous line. In particu-
lar, it is the distribution of nucleation times which is sought
here.

II. GENERAL NONLINEAR, 1D FEM SOLUTION

In this section a FEM solution to the 1D, SEM equation
is sought. As parameters such as the effective diffusivity 
,
adhesion strength, etc., may vary with crystallographic ori-
entation, such parameters will vary on the scale of the grain
diameter. For maximum generality the effective valence is
also allowed to be a stochastic variable so that, for a given
interconnect, a value Zk

� defines the effective valence for
grain k, k=1,2 , . . . ,Ngrains. Similarly 
k�=BkD0k� /kBT� is
the effective diffusivity of grain k which depends on the
local bulk modulus Bk �and possibly adhesion strength38,39�
and the grain orientation �here D0k is the zero-stress nitride/
copper-interface diffusivity for grain k�. Likewise, the diam-
eter of grain k is labeled dk. No particular boundary or initial
conditions are specified at this time. For now all we assume
is that there are no “boundary conditions” within the region
x� �0 L� except for those at x=0 �the anode� and at x=L
�the cathode�. Consequently to model void dynamics or an
interconnect containing several voids, whose free surfaces
pin the stress to zero at a number of interior points, it will be
necessary to solve the problem in several parts and piece
them together as necessary.

Combining Eqs. �3�, �5�, and �6�, the stress evolution
equation describes the hydrostatic tensile stress at �x, t� ac-
cording to the nonlinear, parabolic partial differential
equation20

��

�t
− B�

�

�x
�D0�x�

kT
exp���

kT
� ��

�x
− G�x��� = 0. �7�

Introducing the dimensionless variable ��x, t�
=��x, t�� /kBT, and the variables ��x�=�G�x� /kBT and

�x�=D0�x�B� /kBT, Eq. �7� may be written as

��

�t
−

�

�x
�
�x�exp��� ��

�x
− ��x��� = 0. �8�

To simplify the analysis we keep the elastic modulus B con-
stant for now, however, the inclusion of an inhomogeneous
elastic modulus B�x� is straightforward. Using standard
Galerkin ideas,40 we now approximate the normalized stress
��x, t� by a sum of basis functions k�x�. Thus

��x,t� � �̂�x,t� � �
k=0

N

ck�t�k�x� , �9�

where N is related to the size of the FE mesh. The approxi-

mation �̂�x, t� in Eq. �9� will not normally solve the problem
exactly so that the right-hand side of Eq. �8�, with �

= �̂�x, t�, will not normally be identically zero, and as a re-
sult there will necessarily be some residual error, denoted

R��̂�=R�x, t�. As common with such methods, the coeffi-
cients ck�t� are calculated to make the residual orthogonal to

�̂�x, t�. Usually this is done by making R��̂� orthogonal to
each of the k�x� in turn.40 These orthogonality conditions
are, for all k,

�
0

L

k�x�R��̂�dx � �
0

L

k�x� ��̂

�t
−

�

�x
�
�x�exp��̂�

� ��̂

�x
− ��x����dx = 0, �10�

Rearranging and integrating, Eq. �10� yields the �weak� inte-
gral formulation40

d

dt
�

0

L

k�x��̂�x,t�dx

= �k�x�
�x�exp��̂�� ��̂

�x
− ��x���

0

L

− �
0

L


�x�exp��̂�� ��̂

�x
− ��x�� �k�x�

�x
dx, �11�

and it is this equation which we shall solve on the FE mesh.
We define the mesh N as N+1 points xk in the interval

�0,L�, ordered such that xj�xk if j�k. It is natural to choose
x0=0 and xN=L, however the other points in N may be
chosen arbitrarily. This arbitrariness is one of the strengths of
the finite element method as it allows more mesh points to be
chosen where a solution function is changing rapidly. Here
we choose them to define a uniform mesh M on �0,L� of
step size �, plus the set of grain boundary points G, so that
N=M�G. Any resulting points in the ordered union N
which are too close �perhaps closer than � /2� may be con-
sider unnecessary and may be removed. This is assumed to
be done in a manner which always retains the grain boundary
points in G over the regular mesh points in M, and in any
case never removes points in G. In this way no grain bound-
ary lies between any two adjacent points in the final mesh N,
so that the vacancy diffusivity 
�x� will be constant 
k over
any interval of the form �xk−1 ,xk�, for any xk−1, xk�N.
Similarly G�x� is a constant Gk on the same interval. In ad-
dition �k=xk−xk−1 will, roughly speaking, be in the range
�� /2,2��, although it is possible that the randomly generated
grain structure will produce points in G which are closer than
� /2. After construction of the mesh N, we suppose there are
N+1 points where roughly N	L /min�� ,d50�.

The test functions k�x� are chosen to be the well known
hat �or chapeau� functions40
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k�x� =�
x − xk−1

xk − xk−1
if xk−1 � x � xk

xk+1 − x

xk+1 − xk
if xk � x � xk+1

0 otherwise
� , �12�

except at the ends �x close to x0=0 and x close to xN=L�
where

0�x� = �x1 − x

x1
if x � �0,x1�

0 otherwise
� N�x�

= � x − xN−1

L − xN−1
if x � �xN−1,L�

0 otherwise
� . �13�

Note that k�xm�=�km �the Kronecker delta�, and that, in
terms of the basis functions given in Eqs. �12� and �13�, Eq.

�9� implies that in the interval xk−1�x�xk, �̂�x, t� is given
by

�̂�x,t� = ck−1�t�k−1�x� + ck�t�k�x� , �14�

with �̂�xk , t�=ck�t�. From Eq. �14�, Eq. �11� may then be
reduced to a series of equations for the time derivatives of
ck�t�, k=0, 1 , . . . ,N, the coefficients of the basis functions
k�t�. These equations can be combined, as usual, into a
single matrix equation, thus

M
d

dt
c�t� = − K exp c�t� +  0

KAF
� − KAF

0
�

+ �
J�0,t�

0

]

0

− J�L,t�
� , �15�

where the “mass” and “stiffness” matrices M and K are just

M =
1

6�
2�1 �1 0 ¯ 0 0

�1 2��1 + �2� �2 0 ¯ 0

0 �2 2��2 + �3� �3 0 ]

] 0 �3 � �N−1 0

] ] ] �N−1 2��N−1 + �N� �N

0 ¯ 0 0 �N �N

� �16�

and

K = �

1/�1 − 
1/�1 0 ¯ 0 0

− 
1/�1 
1/�1 + 
2/�2 − 
2/�2 0 ¯ 0

0 − 
2/�2 
2/�2 + 
3/�3 − 
3/�3 0 ]

] 0 − 
3/�3 � � 0

] ] ] − 
N−1/�N−1 
N−1/�N−1 + 
N/�N − 
N/�N

0 ¯ 0 0 − 
N/�N 
N/�N

� . �17�

The values here are obtained by generating grain boundary
diameters dk, k=1,2 , . . . ,Ngrains, from �say� a lognormal size
distribution, and then introducing regular mesh points of
spacing � within the resulting grains. Thus for example if a
grain of diameter d1=0.515 �m is constructed between x
=0 and 0.515 �m, with a normalized diffusivity of 1.4 a.u.
�arbitrary units�, on a mesh of size �=0.1 �m, we will have
�1=�2=�3=�4=0.1 �m, and �5=0.115 �m �as the mesh
point at 0.5 �m will have been removed� and 
1=
2=
3

=
4=
5=1.4 a.u. The remaining vectors in Eq. �15�: c,
exp�c�, and KAF are

c�t� = �c0�t�,c1�t�, ¯ ,cN�t��T,

exp c�t� = �exp�c0�t��,exp�c1�t��, ¯ ,exp�cN�t���T,

KAF = �
1�1F1,0,
2�2F2,1, ¯ ,
N�NFN,N−1�T, �18�

where

Fk,k−1�t� =
exp�ck�t�� − exp�ck−1�t��

ck�t� − ck−1�t�
, �19�

For the relatively small systems �L less than around 50 �m�
under consideration here, the nonlinear SEM equation, Eq.
�15�, may solved within MATLAB using the ODE solver
ODE45 which uses an explicit fifth-order Runge–Kutta
method, with fourth-order error control41 �alternatively,
ode15s if the Eq. �15� shows signs of stiffness�.

As an example, let us consider a pad-stud line, so that
��x=0, t�=0 and J�x=L, t�=0. Since Eq. �15� requires J�x
=0, t� to be known rather than ��x=0, t�, in such cases as the

103718-5 V. M. Dwyer J. Appl. Phys. 107, 103718 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



present one, the equation for ��x=0, t� �or c0�t�� is removed
from the equation set and ��x=0, t� is set equal to zero in the
remaining equations. This simply corresponds to removing
the first row and column of M and K, removing the first
elements of each of the vectors in Eq. �15�; and setting
c0�t�=0 in what remains. It is easy, although a little long-
winded, to show that, in this case, Eq. �15� possesses the
correct steady state solution of

ck�t → �� � �c��k = �
j=1

k

�j�j . �20�

For our example we choose L=50 �m and the value of d50,
the median grain size, to be 0.5 �m. The mesh size param-
eter � is taken to be 0.1 �m, so that a typical line has around
100 grains and 500 mesh points, and a typical grain contains
around 5 mesh points. Grain diameters are chosen from a
lognormal grain size distribution with lognormal standard
deviation of 0.36.38 In this example the activation energy
which determines the effective diffusivity is drawn from a
normal mixture. Grains are slow with probability p=0.2 and
fast otherwise. In this way the values of 
eff�fast grains� and

eff�slow grains� are lognormal. For now we arbitrarily
choose a value of 
50fast /
50slow=8 with lognormal standard
deviations of 0.9 for both fast and slow grains. Microstruc-
tures are created using the technique in Ref. 36, and the grain
sizes dk and effective diffusivities 
k are indicated in Fig. 1.
Figure 1�a� indicates the position of the slow grains as blocks
with a bar through the middle �the large regions correspond
to several adjacent fast grains�. The diffusivity values of each
grain are shown in arbitrary units in Fig. 1�b�, the intercon-
nect is made of 89 grains in this case. Once the mesh was
created there were a total of 543 mesh points so that an
average d �rather than d50� sized grain contains around six
mesh points.

Equation �15� is solved for this case and Fig. 2 �solid
curve� shows the time dependence of the stress ��x, t� at a
variety of points �note the solution is obtained at all 543

mesh points for this interconnect but only a few are shown
here�. Calculations using a smaller mesh parameter are pos-
sible but do become quickly intractable unless one also re-
duces L from 50 �m. It is perfectly possible to simulate as
20 �m line with 20 mesh points per typical grain and 800
mesh points overall. However as we shall see a linearization
of the problem produces an almost identical answer, and
much greater progress may be made if such an approxima-
tion can be legitimized.

There are several linearization schemes possible for this
system. The first is to approximate exp�ck�t�� by �1+ck�t��
and to set

Fk,k−1�t� =
exp�ck�t�� − exp�ck−1�t��

ck�t� − ck−1�t�
� 1, �21�

in Eq. �15�. If this is done, the solution to the same problem
�Fig. 1.� is shown as the dashed curve in Fig. 2. The differ-
ence between linear and nonlinear solutions is never greater
than 1% of the final voiding stress. In many ways this is to
be expected as exp���cr /kT� is close to unity, nevertheless it
is important to demonstrate the fact. A second possible lin-
earization is to approximate

Fk,k−1�t� =
exp�ck�t�� − exp�ck−1�t��

ck�t� − ck−1�t�
� 1 +

ck�t� + ck−1�t�
2

,

�22�

as this is of similar order to the approximation of exp�ck�t��
by 1+ck�t�. Numerically there is no observable difference
between the two. From an analytical perspective the differ-
ence is that with Eq. �22�, the K matrix, although still tridi-
agonal, loses its symmetry as factors �1��k�k /2� are intro-
duced above and below the main diagonal. As the �k�k

values are small the solutions are almost identical again. The
linear and nonlinear solutions have been compared on a
mesh of �=0.1 �m for a large number of 50 �m micro-
structures and the results all show similar agreement. Equa-
tion �21� is adopted here, for use later in analytical develop-
ment.
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FIG. 1. �a� Fast and slow grains generated randomly. Fast grains are indi-
cated with a line through the middle. �b� Diffusivities values generated from
a normal mixture �fast and slow� of diffusion activation energies.
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FIG. 2. Finite Element solution to the nonlinear and linear SEM equations.
The nonlinear solution �solid curve, Eq. �15�� using the MATLAB routine
ODE45 and the linear solution �dashed curve, Eq. �15� with Eq. �21��.
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III. LINEARIZED SOLUTIONS AND THE CUMULATIVE
DISTRIBUTION FUNCTION „CDF…

As demonstrated above, solutions to the linearized equa-
tion are just as accurate as solutions to the original nonlinear
one. Certainly the error made through assuming that the
stress evolution equation of Korhonen et al., �or any other
analytical equation� is appropriate to EM will probably more
than mask any error which occurs in neglecting the nonlin-
earity. As usual, though, linear problems submit to easier
analysis and often display greater numerical stability. In par-
ticular we may now obtain solutions using matrix methods.
Equation �15� becomes

M
d

dt
c�t� = − K�c�t� − c�� , �23�

so that

c�t� = �I − exp�− M−1Kt��c� �24�

Using standard MATLAB matrix methods in Eq. �24�, gives
identical solutions to the ODE solver ODE45 but is naturally
much quicker. This simplification is important as it also al-
lows us to investigate, in a much easier manner, the number
of mesh points �i.e., the value of �� which is required to give
an accurate solution to the problem. The same problem,
shown in Fig. 1, is solved using Eq. �24� for values of �
=0.1 �m, 0.2 �m, 0.4 �m, and � large �which corresponds
to N=G.�. The results are shown in Fig. 3, an arbitrary sec-
tion of which is shown in Fig. 4. Clearly there is again no
difference between the plots. This arises as the stress distri-
butions are virtually linear across each grain. Repeated trials
on different microstructures show the same behavior and as a
result the mesh need only be defined at grain boundaries,
thus it is sufficient to take N=G. The advantage of this rather
remarkable result is that the problem may be solved for sig-
nificantly longer interconnects. Here we restrict out attention
to L=50 �m and so are able to continue with �=0.1 �m
and around 500 mesh points per interconnect, however tak-
ing �=0.5 �m and around 1000 mesh points one could con-
sider 500 �m lines.

Equation �24� has been solved for the void nucleation
time on 105 lines constructed with grain diameters distrib-
uted lognormally �d50=0.5 �m and �d=0.36 �Ref. 38��, and
an effective diffusivity with an activation energy drawn from
a normal mixture �20% slow grains, 80% fast�. This gives a
lognormal mixture for 
eff of two distributions with a fast/
slow ratio of 8 and lognormal standard deviation of 0.9 for
both diffusion speeds. Z� and hence G and � are taken to be
independent of position. The choices for the parameters de-
fining the distribution of effective diffusivities are fairly ran-
dom as insufficient data on such parameter is available. The
split between slow and fast diffusing grains is in line with
Ref. 34 the other parameters above must be regarded as un-
known, so that several simulations have been run for a vari-
ety of values. However, for the case described, the CDF
looks reassuringly relatively straight on a lognormal plot,
Fig. 5. The remaining parameters for this simulation are L
=50 �m, �=1.16�10−29 m3, T=300 °C, �cr=50 MPa,
Z�=0.7, j=20 mA /�m, �=2.1�10−8 �m, B	28 GPa,
and �=Z�q�j /kT 	0.0059 �m−1.42–45

0 10 20 30 40 50
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

distance from anode

no
rm

al
is

ed
st

re
ss

Σ(
x,

t)

FIG. 3. Comparison of FEM solutions to the linearized equation with a
variety of mesh sizes ranging from around d50 /5 to d50.
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FIG. 4. Close up of one region of Fig. 3.
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FIG. 5. The nucleation time distribution �solid curve� for linear model �not
lumped� compared to that obtained by a two-exponential lumped, MoM
approximation �dashed-curve�. L=50 �m and copper parameters as indi-
cated in text. 105 separate interconnects are simulated.
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A void will nucleate at the cathode via when the stress
reaches the critical value �cr, consequently the nucleation
time is obtained from the solution to cN+1�tnucl�=��cr /kBT.
Constructing the matrix exponential in Eq. �24� involves the
diagonalization of the matrix M−1K and serves to introduce
another approximation, known as mass matrix lumping,
which is standard in finite element methods. Although not
altogether necessary here, such lumping will be useful in
attempting some analytical solutions later, and extending the
analysis to longer interconnects. Lumping the mass matrix

�M here� means approximating M by M̂, a diagonal matrix,
whose diagonal element in row k is the kth row sum of M. In

the present case this means: M̂�1,1�=�1 /2, M̂�2,2�=�1 /2

+�2 /2, M̂�k,k�=�k−1 /2+�k /2 �k=2, . . . ,N�, and M̂�N
+1,N+1�=�N /2. The utility of this approximation is that it

allows M̂ to be inverted trivially in Eq. �24�. However even
with such mass lumping; the resulting tridiagonal nature of
M−1K and the simplicity in diagonalizing such matrices,46

evaluating exp�M−1Kt� at sufficient times to estimate a fail-
ure time is a difficult task, involving the diagonalization �di-
agonal matrix D and matrix of eigenvectors S� the product
S−1 exp�Dt�S at each time t. Progress can be made as inter-
estingly the mass lumping makes the stress development on
the mesh isomorphic to the development of a pseudovoltage
on a lumped-element CR transmission line, in which the ca-
pacitance per unit length is constant and the local line resis-
tivity is proportional to the grain diffusivity. The interest in
this is that calculating time constants for CR trees or net-
works is already commonplace in static timing analysis
�STA� �Refs. 47–49� for very large scale integrated �VLSI�
circuits and, as system reliability on interconnect nets is of
fundamental interest in EM, VLSI timing techniques may be
helpful. The equivalent CR model, with a lumped mass ma-
trix, may be obtained directly from Eq. �23� or in the follow-
ing manner.

To simplify the analysis we once again keep the Gk, and
hence �k, values constant �largely equivalent to keeping the
Zk

� values constant�. Linearizing the system, and making the
substitution V�x, t�=��x, t�−�x=��x, t�−��x, t→��, Eq.
�3� can be integrated over the region between two neighbor-
ing mesh points �xj ,xj+1� �within which 
=
j+1 is constant�
to obtain

V�xj+1,t� − V�xj,t� = −
1


j+1
�

xj

xj+1

J�x,t�dx

� −
�xj+1 − xj�


j+1
J�xj+1 + xj

2
,t� . �25�

If the mesh is taken sufficiently small then J varies roughly
linearly with x over the mesh element then the approxima-
tion in Eq. �25� is exact. Likewise integration of Eq. �5�
gives

J�xj+1 + xj

2
,t� − J�xj + xj−1

2
,t� =

�

�t
�

�xj+xj−1�/2

�xj+1+xj�/2

V�x,t�dx

� −
�xj+1 − xj−1�

2

�

�t
V�xj,t� , �26�

where the approximation is again valid if the mesh is suffi-
ciently small. In the limit of an infinitesimal mesh there is of
course no approximation. This allows for the accuracy of
these approximations to be estimated by solving the problem
on several different sized meshes, if the solution has con-
verged, as is the case here �Figs. 3 and 4�, then one can be
reasonably confident in the approximation.

If we treat J as a pseudocurrent and V as a pseudovoltage
then it is clear that Eq. �25� describes the behavior of a
resistor in an equivalent circuit and Eq. �26� describes that of
a capacitor, Fig. 6. To illustrate the point we consider an
interconnect with parameters appropriate to copper, with a
pad at x=0 and a blocking via at x=L. In this case the end
conditions are ��x=0, t�=V�x=0, t�=0 and J�x=L, t�=0. If
the initial stress ��x, t=0�=0 then the initial pseudovoltage
is V�x, t=0�=−�x. Each mesh interval �j+1=xj+1−xj is effec-
tively represented by a C–R–C, �-element according to Eqs.
�25� and �26�, Fig. 6. If we eliminate the currents between
Eqs. �25� and �26� we obtain

�j+1 + �j

2

d

dt
V�xj,t� = −

V�xj+1,t� − V�xj,t�
�j/
j

+
V�xj,t� − V�xj−1,t�

�j−1/
j−1
�27�

or in matrix notation

M̂
d

dt
V�t� = − KV�t� ,

M̂
d

dt
c�t� = − Kc�t� + Kc�, �28�

i.e., Eq. �23� again, after mass lumping. Thus, within the 1D
model of Korhonen et al., the stress development at the grain
boundary end points on the copper/nitride-cap interface
mimics that of a pseudovoltage on a simple passive CR net-
work. The reason for stressing this isomorphism is that there
is a very large body of work on such circuits as an approxi-
mation of the transistor networks in STA for VLSI designs.
Whereas here we are interested in the time that the stress at
xk reaches the critical value of �cr for nucleation, there the
interest is in the time that the pseudovoltage takes to reaches
the transistor threshold voltage, VTh. If we pursue things a

!"
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&" &$ &%

&'('
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FIG. 6. A lumped element model of the interconnect. Each mesh interval is
approximated by a C–R–C �-element. For most calculations here an ele-
ment is of length of around d50 /5.
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little further, Eq. �28� may be solved using normal methods,
giving a solution represented by a sum of exponential terms
whose exponents are determined by the eigenvalues of the
matrix �−1=M−1K. Likewise ck�t� may be expressed as a
sum of N+1 exponentials, i.e.,

ck�t� = �c��k + �
k=1

N+1

Ak,n exp�− �nt� . �29�

Clearly, at large times, which also corresponds to the case of
short lines, the series in Eq. �29� may be truncated after the
dominant exponential term. That is

��xk,t� = ck�t� � �c��k + Ak exp�− �mint� , �30�

and the nucleation time tnucl is given approximately by

tnucl � −
1

�min
log��cr − �L

AL
� . �31�

The time-constant 1 /�min is known in STA as the �first�
Elmore delay.47 Here we note that if AL and �min can be
calculated analytically, it may be possible to obtain some
�analytical� idea of the void nucleation time distribution.
Consequently we continue a little with this analogy.

IV. AN ANALYTICAL CONSIDERATION OF THE VOID
NUCLEATION TIME DISTRIBUTION

The linearized version of Eqs. �3� and �5� may be solved
exactly for the homogeneous line using standard Fourier–
Laplace methods,33,50 when the stress is naturally represented
by an infinite sum of exponential terms. With the initial and
boundary conditions considered above one easily obtains

��x,t� = �x −
8�L

�2 �
n=0

� sin �2n + 1��x

2L
�

�2n + 1�2

�exp− �2�2n + 1

2
�2 
t

L2� . �32�

In short lines �L�50 �m in copper� the first exponential
term dominates at all but very small times. At the cathode
x=L we may thus approximate

��x = L,t� − �L � −
8�L

�2 exp�−
�2

4


t

L2� , �33�

corresponding to an exponential pseudovoltage of V�x
=L, t�	−8�L exp�−�2
t /4L2� /�2. This result can now be
used as a useful check of the result for inhomogeneous lines
in that from the solutions in Eqs. �29� and �30� we should
regain Eqs. �32� and �33�, in the limit of �→0 and with all

k=
 �constant�.

In the case of an inhomogeneous line we can proceed in
the following manner, summing Eq. �26� over all mesh
points from k to N gives

0 − J�xk + xk−1

2
,t� = − �

j=k

N
�xj+1 + xj−1�

2

�

�t
V�xj,t� , �34�

and, summing Eq. �25� over all k gives, and substituting
from Eq. �34� leads to

V�x = xN+1 = L,t�

= − �
k=0

N
�xk+1 − xk�


k
�
j=k

N
�xj+1 + xj−1�

2

�

�t
V�xj,t� . �35�

If we assume that for short lines �L�50 �m� the inhomo-
geneous line solution will also be dominated by a single
exponential from the series solution in Eq. �35�, we expect
that V�xk , t�	−Ak exp�−t /�k� for some Ak and for some �k.
Using Eq. �35� and some method of moments �MoM� it is
possible to estimate the values of AN+1 and �N+1 and then
compare the results to the equivalent values appearing in Eq.
�33�. To do this integrate Eq. �35� over all t to get the first
two moments of V�L,t� in terms of known parameters as

m0
�N+1� � �

0

�

V�L,t�dt

= − ��
k=0

N
�xk+1 − xk�


k
�
j=k

N
�xj+1 + xj−1�

2
xj,

m1
�N+1� � �

0

�

tV�L,t�dt

= − ��
k=0

N
�xk+1 − xk�


k
�
j=k

N
�xj+1 + xj−1�

2

��
0

�

V�xk,t�dt, �36�

Now AN+1 and �N+1 may be estimated by inserting
V�xN+1 , t�	−AN+1 exp�−t /�N+1� into Eq. �36�. Solving gives
�N+1=m1

�N+1� /m0
�N+1� and AN+1=−m0

�N+1� /�N+1=
−�m0

�N+1��2 /m1
�N+1�. Taking 
 to be constant in Eq. �36�

should lead to the solution for the homogeneous line, and
proceeding to the limit �mesh size �→0� we obtain AN+1

=5�L /6 and �N+1=L2 /2.5
. These are very close ��2.81%
and +1.30%� to the exact results of A=8�L /�2 and �
=4L2 /�2
 in Eq. �33�. The error between the two comes
from the mass lumping and indicates a rough size of that
effect. Defining the vector X of mesh positions �xk� note that,
in general, the vector of first moments at the mesh points xk,
is m0=�K−1MX=��X and m1=K−1Mm0=��2X. Thus
within a one exponential approximation we have, for the
nucleation time,

tnucl = �N+1 log� AN+1

�L − �cr
� =

m1
�N+1�

m0
�N+1� �2 log�m0

�N+1��

− log�m1
�N+1�� − log��L − �cr�� , �37�

and an analysis of the statistical properties of m0 and m1

should lead to those of tnucl. The value of the time constant of
the pseudovoltage at x=L, �N+1, is known as the �first�
Elmore delay in STA.47

In point of fact for 50 �m lines, the nucleation times
predicted by Eq. �37� agree with those predicted by Eq. �24�
only for relatively long failure times �above the t50 for the
system�. More accurate estimates of tnucl can be obtained by
using more exponentials in the approximation of V�L,t�. This
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corresponds to a higher order MoM approximation48,49 which
is the standard procedure in STA. In addition rigorous
bounds on the delay in an RC network may also be obtained
which should then place rigorous bounds48 on the nucleation
time predicted by the SEM model. To do thus define the
moments mn of the pseudovoltage vector �Vk�t�=V�xk , t�� in
the following manner. Let us denote K−1M=� when the
linear stress evolution equation Eq. �28� may be written as

V�t� = − K−1M
d

dt
V�t� = − �

d

dt
V�t� . �38�

Then the vector mn of mth moments of V�xk , t� is defined as

mn � �
0

� tn

n!
V�t�dt = �mn−1, �39�

and, by recursion, mn=�nm0. Higher order matching tech-
niques, which include more exponentials in the series solu-
tion equivalent to Eq. �32�, may now be used. A qth-order
model, using the 2q moments m0 to m2q−1, will match the
first q exponentials in the series �matching to an exponent
and a pre-exponential multiplier�.49 However to make analy-
sis tractable we wish to keep this order as low as possible
and it appears that two exponentials are generally enough.

A two exponential model �q=2� represents the
pseudovoltage at x=xk as

Vk�t� = Ak exp�− t/�1k� + Bk exp�− t/�2k� , �40�

The first four moments of this �n=0,1 ,2 ,3� are then given
by

mn
�k� = �

0

� tn

n!
Vk�t�dt = Ak�1k

n+1 + Bk�2k
n+1. �41�

Eliminating Ak and Bk from Eq. �41�, and rearranging, the
time exponents �1k and �2k are found to be given by the roots
of the quadratic

�m1
�k�2 − m2

�k�m0
�k���k

2 + �m3
�k�m0

�k� − m2
�k�m1

�k���k + �m2
�k�2

− m3
�k�m1

�k�� = 0, �42�

and the pre-exponential multipliers are obtained from Eq.
�41� as

�Ak

Bk
� = �1k �2k

�1k
2 �2k

2 �−1�m0
�k�

m1
�k� � . �43�

Finally obtaining these moments first from m0=�K−1MX
=��X, and then recursively from mn=�nm0, the
pseudovoltage and hence the normalized stress ��L, t� is eas-
ily obtained. Figure 5 shows a comparison of the CDF for
105 interconnect via nucleation times obtained by solving
Eq. �28� �solid line� and from solving the two-exponential
approximation, Eqs. �40�–�43� �dotted line�. The grain size
distribution is taken as lognormal and diffusion activation
energy distribution is formed from the normal mixture of fast
and slow values. It is clear that the distribution of failure-
times from Eqs. �40� and �28� are reasonably straight when
plotted on lognormal probability paper and that the two ex-
ponential model is a good approximation to the “true” nucle-
ation time, Fig. 7. Such an approximation replaces the need

to both diagonalize the matrix M−1K in Eq. �24� and to find
S−1 exp�Dt�S at a large number of time values, and poten-
tially high-order MoM approximations may be used for
longer lines.

V. A LOGNORMAL DISTRIBUTION

The question that we set out to answer in this work is,
what sort of void nucleation time distribution is predicted by
assuming the SEM of Korhonen et al.? To answer this we
consider the one exponential approximation of Eq. �30�.
Even though this is not a good approximation for lines of
length 50 �m it is perfectly adequate for lines of 30 �m
and Eq. �30� presents far easier analysis than Eq. �40�. For
line lengths around 30 �m, the nucleation time tnucl is given
by Eq. �37� to a reasonable accuracy so its statistical proper-
ties depend upon those of m0

�N+1� and m1
�N+1�, which in turn

given by Eqs. �36�. Rewriting Eq. �36� with all grains of
equal size d, say, we obtain

m0
�N+1� = −

�d2

6 �
k=0

N
N�2N + 1��N + 1� − k�2k + 1��k + 1�


k

= −
�d2

3 �
k=0

N
N3 − k3


k
. �44�

If the effective diffusivities 
k are drawn from a lognormal
mixture, this corresponds to a �weighted� sum of lognormal
terms. The sum will be dominated by the relatively small
number of slow grains as these have the largest 1 /
k values,
meaning that m0

�N+1� is the sum of a relatively small number
of lognormal terms. However the permanence property51–54

of the lognormal means that sums �and weighted sums� of
lognormals are also roughly lognormal. Because of their
skew the CLT does not apply until there are a very large
number of lognormal terms. Allowing the grain sizes to vary
does not alter this argument significantly. In a similar manner
it may be shown that m1

�N+1� will also be roughly lognormal
and hence also m1

�N+1� /m0
�N+1�. This would also mean that

log�m0
�N+1�� and log�m1

�N+1�� are normally distributed. The
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FIG. 7. Same as Fig. 5. The “true” nucleation time, solving the linear �not
lumped� equation, Eq. �24�, plotted against the two-exponential approxima-
tion Eq. �40�.
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nucleation time given in Eq. �37� is, consequently, roughly
the product of a lognormal variable m1

�N+1� /m0
�N+1� and a nor-

mal variable 2 log�m0
�N+1��−log�m1

�N+1��−log��L−�cr�. Such
a product of independent variables, to an extent that depends
on the variance of the elements, can have shape which is
between the symmetric normal and the skewed lognormal.
However because the normal and lognormal variates come
from the same source, i.e., m1

�N+1� and m0
�N+1�, the elements

are not independent and one would expect the lognormal’s
skewness to dominate. We can conclude that the nucleation
time is roughly a weighted sum of lognormal terms provided
that the activation energy for diffusion is normally distrib-
uted; that that sum is dominated by a small number of slow
grains and that the permanence property of lognormals pre-
vents the CLT from destroying the lognormality. As a result
this approximation to tnucl should be distributed roughly log-
normally.

In point of fact, although the single-exponential distribu-
tion shows up quite well as a lognormal even for 50 �m
lines, and fits the high end of the distribution very well, the
important early-failure tail of the distribution is poorly rep-
resented; the two-exponential solution of Eq. �40� provides a
much more faithful fit, Figs. 5 and 7. Figure 7 shows the two
solutions on a lognormal plot showing both distributions to
be close to lognormal. The sort of theoretical analysis pre-
sented above is not straightforward for the two-exponential
approximation, but one can probably expect the same sort of
behavior, i.e., if the Diffusivities are lognormal the nucle-
ation time will be close also.

More important than a possible explanation of lognor-
mality though, is a framework for investigating the distribu-
tion of tnucl in other cases, and between processes.

VI. SUMMARY AND CONCLUSIONS

In this paper we have attempted to model the distribution
for void nucleation times under EM in copper IC intercon-
nects. Assuming that the stress distribution evolves accord-
ing to the 1D model of Korhonen et al., and that the lines
have a bamboo microstructure with transverse grains, we are
able to calculate the build-up of hydrostatic stress in a
straightforward manner. Using finite element methods, we
have demonstrated two important results. First, it is valid to
ignore the dependence of diffusivity on the tensile stress, and
second, that a finite element mesh which only contains the
grain boundary points �N=G� gives accurate results.

Modeling the lines as a 1D string of bamboo grains with
a lognormal size distribution �d� and assigning effective dif-
fusivities with a normal mixture of effective activation ener-
gies �EA�, the nucleation time for voiding at the cathode via
may be rapidly calculated exactly using standard MATLAB

matrix methods. For a variety of sensible parameter values
the resulting distribution looks reassuringly straight on a log-
normal plot.

In addition we have attempted to obtain information
about the nucleation time distribution by analytical methods.
For short lines �up to around 50 �m�, mass-lumping re-
places the finite element model by an equivalent RC circuit,
from which the dominant time constant may be easily ex-

tracted. Its dominance occurs as a short line length maps on
to long time behavior and vice versa. MoM type fitting �q
exponentials in the series requires the moments m0 to m2q-1�
can provide a good approximation to the nucleation time
which allows some further analytical investigation of its dis-
tribution. A simple analysis shows that there may be good
reasons for the use of a lognormal distribution when the dif-
fusion activation energy is distributed according to a normal
mixture.

The simplicity of this analysis will allow a number of
other problems to be considered will relative ease. For ex-
ample, the nucleation time in simple tree networks, in a
single layer of metallization, may be analyzed in a manner
which allows the grain diffusivities in different limbs to be
drawn from the same or from different distributions. Alter-
natively one may investigate the sorts of distribution of D, d,
or �cr values that would give rise to the observed occurrence
of in line void nucleation. Patching together two solutions
up-stream and down-stream some void dynamics may also
be modeled.
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