
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288387007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Noname manuscript No.
(will be inserted by the editor)

Analyzing the Secure Simple Pairing in Bluetooth v4.0

Raphael C.-W. Phan · Patrick Mingard

Received: 27 January 2010, Revised: 3 December 2010

Abstract This paper analyzes the security of Bluetooth v4.0’s Secure Simple Pairing
(SSP) protocol, for both the Bluetooth Basic Rate / Enhanced Data Rate (BR/EDR)
and Bluetooth Low Energy (LE) operational modes. Bluetooth v4.0 is the latest version
of a wireless communication standard for low-speed and low-range data transfer among
devices in a human’s PAN. It allows increased network mobility among devices such
as headsets, PDAs, wireless keyboards and mice. A pairing process is initiated when
two devices desire to communicate, and this pairing needs to correctly authenticate
devices so that a secret link key is established for secure communication. What is
interesting is that device authentication relies on humans to communicate verification
information between devices via a human-aided out-of-band channel. Bluetooth v4.0’s
SSP protocol is designed to offer security against passive eavesdropping and man-in-
the-middle (MitM) attacks. We conduct the first known detailed analysis of SSP for all
its MitM-secure models. We highlight some issues related to exchange of public keys
and use of the passkey in its models and discuss how to treat them properly.

Keywords Bluetooth v4.0 · Low Energy (LE) · Secure Simple Pairing · association
models

1 Introduction

Wireless personal communication networks based on mobile lightweight devices like
smart cards, RFIDs, PDAs, sensors and mobile agents require innovative ways to au-

Part of this work done while the authors were with École Polytechnique Fédérale de Lausanne
(EPFL), Switzerland.

R. Phan
Electronic & Electrical Engineering, Loughborough University, UK
Tel.: +44-1509-227086
Fax: +44-1509-227014
E-mail: r.phan@lboro.ac.uk

P. Mingard
La Mobilière, Lausanne, Switzerland
E-mail: patrick.mingard@a3.epfl.ch



2 Raphael C.-W. Phan, Patrick Mingard

thenticate and secure the wireless communications among devices. One of the methods
increasingly being deployed for this is to leverage on human users to aid in authenti-
cating their devices with other peer devices.

This paper concentrates on Bluetooth v4.0, a wireless communication standard for
low-speed and low-range data transfer for personal area networks (PANs). It uses the
unlicensed radio frequency of 2.4 GHz. The main goal of Bluetooth is to replace a
wired connection with a wireless one for the ease of the users. Well known applications
are headsets for mobile cell phones, gaming consoles, phone-to-phone image and music
exchange or wireless keyboards and mice. A Bluetooth device can be either master or
slave and the set of interconnected devices is called a “piconet”. The master device can
be connected up to seven slaves while slaves can be connected to only one master.

When two devices desire to communicate, they need to first authenticate each other
and then establish a shared secret link key LK that is used to secure subsequent wire-
less communications between them; and the way it is done is via humans as middle
persons via physical so-called out-of-band channels; similar human-aided authentica-
tion protocols exist e.g. those [28] based on voice-over-IP. The authentication process
is called pairing and the latest pairing protocol for Bluetooth v4.0 is so-called the Se-
cure Simple Pairing (SSP) protocol [3]. Indeed, including the human-based processing
element into mobile networks such as Bluetooth adds an extra level of trust that can
be used for authenticating Bluetooth devices: human users who own the devices desire
to pair their devices with peers, so their behaviour can be trusted more compared to
depending solely on the devices to authenticate without human aid.

We analyze the security of SSP in detail, in the context of all its association mod-
els, for both the Bluetooth v4.0’s Basic Rate/Enhanced Data Rate (BR/EDR) and
Low Energy (LE) operation operational modes. The Bluetooth LE is new to v4.0 and
its corresponding security association modes differ slightly from those of Bluetooth
BR/EDR.

The SSP is in fact similar to authentication [23,29] and key establishment (AKE)
[24] protocols, and therefore we consider the following basic security properties required
of such protocols [20].

• Known key security (KKS) [20]: Compromising a session key does not leak out
other session keys.

• Key control (KC) [20,22]: No device should be able to influence a link key to some
biased value.

• Perfect forward secrecy (PFS) [20]: If long-term secrets or private keys of any device
are compromised, the secrecy of previously established session keys should not be
affected. This attempts to still offer some security guarantee in spite of the fact
that the long-term secret has been leaked.

• Key-compromise impersonation (KCI) resilience [14,4]: The compromise of any
device A’s long-term key or secret should not enable the attacker to impersonate
any other devices to A.

• Unknown key-share attack (UKS) resilience [6,20]: UKS is an attack where a device
A believes that it shares a key with another device B upon completion of a protocol
run (this is in fact the case), but B falsely believes that the key is instead shared
with a device E ̸= A.

• Man-in-the-Middle (MitM) attack resilience: For any protocol where devices desire
to authenticate each other, it should not be possible for an attacker to place himself
in the middle of the two devices and cause them to have false beliefs about how



Analyzing the Secure Simple Pairing in Bluetooth v4.0 3

the protocol actually executed. This is one of the main properties that the SSP was
designed to offer, and as we will demonstrate .

• Offline dictionary attack resilience: Since one of SSP’s association modes uses a
passkey, bearing similarities to a password in the context of password-based AKE
protocols, we list security against offline dictionary attacks here for completeness.
Originally, a dictionary attack is a password guessing technique in which the at-
tacker attempts to determine a user’s password by successively trying words from
a dictionary (a compiled list of likely passwords) in the hope that one of these
password guesses will be the user’s actual password. A dictionary attack that can
be performed offline i.e. without having to actively interact with any device within
a live protocol session, is devastating. All password-based protocols should be re-
silient to this type of attack.

1.1 Related Work

Earlier parts of our attacks [21] on SSP concentrated on its PE model. The Bluetooth
version we analyze in this paper is the latest specification, v4.0. New to this version is
the Bluetooth LE operational mode, with slightly different security association models.
To the best of our knowledge, this paper is the first known security analysis of v4.0 and
Bluetooth LE in detail for all their models that provide security against MitM attacks.

Kuo et al. [16] briefly overviews potential general security risks of Bluetooth con-
sidering that it supports multiple setup mechanisms. A remark about a security issue
for SSP in the Passkey Entry model in terms of passkey leakage was also mentioned en
passant therein, as was later independently observed by Lindell [17,18]. Their obser-
vations relate to potential password leakage, yet the passkey in the Bluetooth context
is different from a conventional password in that a passkey is mainly used for au-
thentication rather than secrecy; and its existence is to add an extra security factor
to the pairing authentication between Bluetooth parties. Thus, even if the passkey is
guessable, SSP in the PE model remains secure unless all of its stages are vulnerable to
attack. Suomalainen et al. [26] gives a comparative overview of different pairing models
in personal networks including Bluetooth. They identify as a potential attack scenario
where the security of a more IO-capable device is compromised by having it inter-
act with another device of restricted IO-capability e.g. one without display capability.
Chang and Shmatikov [5] applied a formal methods tool to analyze the authentication
aspect of SSP in the numeric comparison model, and showed that if the same device is
used concurrently in different sessions then authentication fails. This is because even
if the user correctly checks that the numbers displayed on both devices are equal, they
may not necessarily be involved in the same intended session. Haataja et al. [10,11,8,9]
exploited the fact that prior to SSP the devices exchange their respective input/output
capabilities without any authentication, and so describe that one could modify these
exchange messages to force devices to use the Just Works (JW) association model
whose SSP is not designed to resist MitM attacks, thus leading to an MitM attack on
the devices.



4 Raphael C.-W. Phan, Patrick Mingard

2 Bluetooth’s Secure Simple Pairing (SSP) protocol

The latest Bluetooth Core specification is version 4.0, officially published 30 June 2010.
Bluetooth v4.0 includes the Secure Simple Pairing (SSP) protocol [3] that specifies
how two Bluetooth devices establish a shared secret link key LK for subsequent secure
communication. It also specifies the SSP protocol variants for the new Bluetooth Low
Energy (LE) operational mode.

Bluetooth devices can have a range of input and output (IO) resources, from screen
and keyboard in a mobile phone to near nothing in a cordless headset. Thus, the way
that the SSP is expected to interact with the human user especially for operations
involving a short authenticated string (SAS), would differ depending on IO capability
of the device. Hence, there are four variants of the SSP protocol, called association
models, each designed for a different type of device with a particular IO resource:

1. Numeric Comparison (NC)
2. Just Works (JW)
3. Passkey Entry (PE)
4. Out of Band (OoB)

Security Goals. The SSP is intended to meet two requirements: improved security and
simplification for the user. Improved security is in terms of resistance against passive
eavesdropping (related to offline dictionary attacks but not identical) and also against
man-in-the-middle (MitM) attacks, except for the JW model. We only consider in this
paper the case of models designed to be security against MitM attacks, i.e. all SSP
models except the JW model. These MitM-secure models are more interesting, since it
is one of SSP’s explicit design objectives to offer MitM security (versus older Bluetooth
pairings), and also since the JW model is not recommended [25] for Bluetooth devices
that support SSP.

The basic idea in MitM-resisting models of SSP is to employ a short authenti-
cated string (SAS) [28] that is transmitted even in the clear but via an out-of-band
authenticated channel, e.g. voice, visual or some physical channel other than the wire-
less channel used by Bluetooth. To be able to offer interesting MitM security, it is
assumed that the adversary does not have access to the out-of-band channel used to
communicate the SAS. For instance in the NC model, if an adversary could see the
SAS displayed on a device, then it is trivial to pair the adversary’s device with the
legitimate device; similarly in the PE model, it will be easy for the adversarial device
to pair with legitimate devices if an adversary could access to the SAS that is input
by the user into a legitimate device. Thus, throughout this paper, our discussion does
not consider these trivial cases. More precisely, the SAS in the NC model is a 6-digit
number Va (resp. Vb) that is a function of some partial transcript of the current proto-
col session, and this is displayed at each device for a visual inspection of the user: the
visual inspection is the out-of-band authenticated channel in this case. The SAS in the
PE model is a user-supplied 6-digit number Ra (resp. Rb), either input by the user at
both devices or input at one device and displayed at the other for visual inspection.
In the former case, the out-of-band authenticated channel is the fact that the user
physically types in the same SAS. In the latter case, the out-of-band authenticated
channel is again a visual inspection by the user. Finally, the SAS in the OoB model are
random 6-digit numbers Ra and Rb, which are communicated between the devices in
some out-of-band authenticated channel. In all models, the SAS is subsequently used



Analyzing the Secure Simple Pairing in Bluetooth v4.0 5

in computations of the current protocol session.

Association Models. SSP association models have ordered priority levels depending
on IO capability of the Bluetooth device. The OoB model is used as long as either
device has OoB capability and has received OoB authentication data. Otherwise, the
NC model is used if both devices have display and input capabilities. If at least one
device does not have input or display capability, then the PE model is used either as
option (i) or option (ii), see Section II.C for more details. See Table 1, where we are
only interested in settings where authentication, i.e. security against MitM attacks, is
provided. For compatibility with the Bluetooth v4.0 specification, we will use similar
notations in this paper, as in Table 2.

Table 1 Mapping IO Capability to Association Model

A: Display Only A: DisplayYesNo A: KeyboardOnly
B: DisplayOnly - - PE(ii)
B: DisplayYesNo - NC PE(ii)
B: KeyboardOnly PE(ii) PE(ii) PE(i)

Table 2 Terminology

SKx Private key of device X.
PKx Public key of device X, and equals SKx ·G for some public elliptic-curve point G.
IOx Description of the input/output capabilities of device X.
X The Bluetooth address of device X (BD_ADDRx).
f1() Function used to generate the 128-bit commitments Ca and Cb in stage (2).
f2() Function used to generate the link key LK in stage (4).
f3() Function used to generate the check values Ea and Eb in stage (3).
Cxi 128-bit commitment value from device X corresponding to iteration i.
Ex 128-bit check value from device X.
Nxi 128-bit nonce (random value used only once) generated by device X corresponding to iteration i.
Rx 6-digit (20-bit) passkey input by user to device X.
Rxi ith bit of Rx for i = 1, . . . , 20.
K Long-term shared key established via elliptic curve based Diffie-Hellman in stage (1).
LK Link key between device A and B computed in stage (4).
Kenc Encryption key between device A and B computed in stage (5) as a function of K and LK.
btlk A constant string.

2.1 Numeric Comparison (NC)

This model is designed for communication between devices capable of displaying a 6-
digit number and have a keyboard with at least the capability for entering “yes” or “no”;
for instance, a mobile phone connected to a computer. See Fig. 1 which illustrates the
five stages of the SSP protocol in the NC model. The user is shown a 6-digit number
(the SAS) on both devices’ screen. The user answers “yes” if the two numbers are the
same, “no” otherwise.



6 Raphael C.-W. Phan, Patrick Mingard

Initiating device A Non-initiating device B

PKa−→ K = SKb · PKa ·G (1)

K = SKa · PKb ·G
PKb←−

Select random Na. Select random Nb. (2)
Set Ra = Rb = 0. Set Ra = Rb = 0.

Compute Cb = f1(PKb, PKa, Nb, Rb).
Cb←−
Na−→
Nb←−

Check Cb = f1(PKb, PKa, Nb, Ra).
If check fails, abort.
Compute Va = g(PKa, PKb, Na, Nb). Compute Vb = g(PKa, PKb, Na, Nb).

At each device (A resp. B), Va (resp. Vb) is displayed as a 6-digit number.
If "ok" is pressed by user confirming that Va = Vb, then proceed.

Compute Ea = f3(K,Na, Nb, Ra, IOa, A,B). Compute Eb = f3(K,Nb, Na, Rb, IOb, B,A). (3)
Ea−→

Check Ea = f3(K,Na, Nb, Ra, IOa, A,B).
If check fails, abort.

Eb←−
Check Eb = f3(K,Nb, Na, Rb, IOb, B,A).
If check fails, abort.

At both devices: LK = f2(K,Na, Nb, “btlk”, A,B) (4)
At both devices: the encryption key Kenc is derived based on K and LK. Further messages are encrypted with Kenc. (5)

Fig. 1 Secure Simple Pairing Protocol in NC model

2.2 Passkey Entry (PE)

This model is designed for scenarios where one device has input but no display capa-
bility while the other has at least display capability, e.g. a cordless keyboard connected
to a computer. So, it is not possible to display a computed SAS on at least one device,
instead the user is asked to input the SAS (the passkey). There are two options on how
the passkey is used in this model, see Figs. 2 and Fig. 3.

• Option (i): user is asked to enter the same passkey of his choice into both devices,
or

• Option (ii): user is shown a 6-digit number and asked to enter into the device
without display capability.

Indeed, it is safe to say that most Bluetooth applications are expected to employ usage
option (ii), since intuitively it is hard to think of an application where the two pairing
devices have keypads but no display. In fact, it appears that it is even more common
to have pairing between devices that do not have any display nor keypads, i.e. the JW
model, e.g. between a headset and a Bluetooth-enabled car [13].

2.3 Out of Band (OoB)

The OoB mechanism is used when in addition to the wireless medium for which a
Bluetooth connection is desired, there exists an external medium (so-called out of band)
between the two Bluetooth devices, which can be used to exchange the SAS between



Analyzing the Secure Simple Pairing in Bluetooth v4.0 7

Initiating device A Non-initiating device B

PKa−→ K = SKb · PKa ·G (1)

K = SKa · PKb ·G
PKb←−

At each device (A,B), the user enters the same 6-digit passkey Ra = Rb via the device input. (2)
Let Rai be the ith bit of Ra for i = 1, . . . , 20. The rest of this stage is performed 20 times for i = 1, . . . , 20.

Select random Nai. Select random Nbi.
Compute Cai = f1(PKa, PKb, Nai, Rai). Compute Cbi = f1(PKb, PKa, Nbi, Rbi).

Cai−→
Cbi←−
Nai−→

Check Cai = f1(PKa, PKb, Nai, Rbi).
If check fails, abort.

Nbi←−
Check Cbi = f1(PKb, PKa, Nbi, Rai).
If check fails, abort.
Set Na = Na20. Set Nb = Nb20. (3)
Compute Ea = f3(K,Na, Nb, Ra, IOa, A,B). Compute Eb = f3(K,Nb, Na, Rb, IOb, B,A).

Ea−→
Check Ea = f3(K,Na, Nb, Ra, IOa, A,B).

If check fails, abort.
Eb←−

Check Eb = f3(K,Nb, Na, Rb, IOb, B,A).
If check fails, abort.

At both devices: LK = f2(K,Na, Nb, “btlk”, A,B) (4)
At both devices: the encryption key Kenc is derived based on K and LK. Further messages are encrypted with Kenc. (5)

Fig. 2 Secure Simple Pairing Protocol in PE model usage option (i)

them. Often, the OoB mechanism between two devices is an alternative physical channel
like Near Field Communication. See Fig. 4.

2.4 Bluetooth LE Association Models

Bluetooth v4.0 specifies that the Bluetooth LE operational mode has the JustWorks,
PE and OoB association models similar to Bluetooth BR/EDR, except that JW and
PE do not have use Elliptic Curve Diffie Hellman (DH). This therefore means that no
DH key K is jointly established, and so the link key LK computed in stage (4) is not a
function of this, but rather only of the other exchanged values. Furthermore, Bluetooth
LE does not have the Numeric Comparison (NC) model.

3 Security of the Pairing Protocol

We give a detailed analysis of the security of the Secure Simple Pairing (SSP) protocol
for all its models including Bluetooth LE ones, with respect to standard types of attacks
on security protocols as defined in Section I.

Note that the KKS, KC and PFS properties are independent of the association
model being used. This is because they concern the link key which is computed inde-
pendent of the association model i.e. NC, PE or OoB.



8 Raphael C.-W. Phan, Patrick Mingard

Initiating device A Non-initiating device B

PKa−→ K = SKb · PKa ·G (1)

K = SKa · PKb ·G
PKb←−

A selects random Ra and displays as 6-digit number; the user enters the same 6-digit passkey Rb = Ra into B via its device input. (2)
Let Rai be the ith bit of Ra for i = 1, . . . , 20. The rest of this stage is performed 20 times for i = 1, . . . , 20.

Select random Nai. Select random Nbi.
Compute Cai = f1(PKa, PKb, Nai, Rai). Compute Cbi = f1(PKb, PKa, Nbi, Rbi).

Cai−→
Cbi←−
Nai−→

Check Cai = f1(PKa, PKb, Nai, Rbi).
If check fails, abort.

Nbi←−
Check Cbi = f1(PKb, PKa, Nbi, Rai).
If check fails, abort.
Set Na = Na20. Set Nb = Nb20. (3)
Compute Ea = f3(K,Na, Nb, Ra, IOa, A,B). Compute Eb = f3(K,Nb, Na, Rb, IOb, B,A).

Ea−→
Check Ea = f3(K,Na, Nb, Ra, IOa, A,B).

If check fails, abort.
Eb←−

Check Eb = f3(K,Nb, Na, Rb, IOb, B,A).
If check fails, abort.

At both devices: LK = f2(K,Na, Nb, “btlk”, A,B) (4)
At both devices: the encryption key Kenc is derived based on K and LK. Further messages are encrypted with Kenc. (5)

Fig. 3 Secure Simple Pairing Protocol in PE model usage option (ii)

3.1 Known Key Security (KKS) and Key Control (KC)

The SSP for Bluetooth v4.0 BR/EDR achieves KKS because compromise of any link
key of a session does not allow an attacker to compute link keys of other sessions. To
see this, recall that

LK = f2(K,Na, Nb, “btlk”, A,B)

where f2 is a non-invertible HMAC construction based on SHA-256. The same KKS
security is true for the Bluetooth LE’s SSP as it uses the same function f2.

SSP for both Bluetooth BR/EDR and Bluetooth LE achieve KC because the link
key is derived as the output of a cryptographic function f3 designed to be a secure
in the sense of generating random unbiased keys, and for random inputs Na and Nb

(as well as the Diffie-Hellman key K computed in stage (1) for the case of Bluetooth
BR/EDR) from equally contributed parts from A and B.

3.2 Perfect Forward Secrecy

For a DH-based key exchange protocol where ephemeral private exponents are used,
then it provides perfect forward secrecy (PFS) [20]. The basic idea for achieving PFS is
not to have long-term private keys that are never updated, but rather to be generated
afresh with some frequency. In the case of the SSP of Bluetooth BR/EDR irrespective



Analyzing the Secure Simple Pairing in Bluetooth v4.0 9

Initiating device A Non-initiating device B

PKa−→ K = SKb · PKa ·G (1)

K = SKa · PKb ·G
PKb←−

Select random Ra. Select random Rb. (2)
Compute Ca = f1(PKa, PKa, Ra, 0). Compute Cb = f1(PKb, PKb, Rb, 0).

A,Ra,Ca
=⇒

B,Rb,Cb⇐=
Check Cb = f1(PKb, PKb, Rb, 0). Check Ca = f1(PKa, PKa, Ra, 0).
If check fails, abort. If check fails, abort.
Select random Na. Select random Nb.

Na−→
Nb←−

Compute Ea = f3(K,Na, Nb, Ra, IOa, A,B). Compute Eb = f3(K,Nb, Na, Rb, IOb, B,A).
Ea−→

Check Ea = f3(K,Na, Nb, Ra, IOa, A,B).
If check fails, abort.

Eb←−
Check Eb = f3(K,Nb, Na, Rb, IOb, B,A).
If check fails, abort.

At both devices: LK = f2(K,Na, Nb, “btlk”, A,B) (4)
At both devices: the encryption key Kenc is derived based on K and LK. Further messages are encrypted with Kenc. (5)

Fig. 4 Secure Simple Pairing Protocol in OoB model, where =⇒ and ⇐= denote OoB com-
munication

of its model, once the long-term private key is compromised then the DH key K is easily
computed. Since other parameters used in computing the link key LK are public, this
means any link key of a previous session can be computed. It is mentioned in [3] that a
public-private key-pair needs to be only generated once, and that it is up to the device
if it wants to refresh its private key at all. Thus, PFS for SSP is more of a policy issue
that is dependent on the device’s decision on its private key update policy. If PFS is
a concern, then we recommend to update the private key regularly, or to have the DH
key be generated as a function of additional ephemeral random values.

Meanwhile for Bluetooth LE, which does not use elliptic curve Diffie-Hellman (thus
no DH key K is generated), the link key is computed using the same function f2 with
values exchanged between A and B e.g. Na, Nb. While there is no explicit mention
in the Bluetooth v4.0 core specification [3] of what shared secret between A and B is
input to f2, it is clearly not a DH key. Yet a shared secret is necessary as input in
this Bluetooth LE case otherwise the derived link key will be publicly computable in
absence of the DH key. In terms of PFS, what can be said is that Bluetooth LE is more
resistant because compromise of the long-term private key does not make it easier to
compute the shared secret, in contrast to Bluetooth BR/EDR where the shared secret
is the DH key which is immediately computable once the long-term private key is
compromised.

3.3 Key Compromise Impersonation

Key compromise impersonation (KCI) [14,4] means that even if the long-term private
key of a device e.g. A is compromised, it should not be feasible for an attacker to



10 Raphael C.-W. Phan, Patrick Mingard

impersonate any other device B to A. Now for the case of SSP for Bluetooth BR/EDR,
when the long-term private key of a device A is compromised, DH key K can be
computed. The only obstacle that remains in the way for a KCI attacker is the SAS.
Since this SAS is communicated between the pairing devices via an out-of-band channel
involving the human user, security then depends on whether the Bluetooth device being
impersonated by the KCI adversary is present.

For case I: the user is pairing two legitimate Bluetooth devices A and B that are
both owned by him, while in the background the KCI adversary with an adversarial
Bluetooth device is trying to impersonate B to A. This is typically so when the user
owns both devices, e.g. his mobile phone and his computer. In such a case, KCI resilience
can be achieved since the KCI adversary is unable to interfere with the human-aided
out-of-band channels that communicate the SAS between A and B. Take the NC model
as an example. Note that the user expects to see the same SAS (Va resp. Vb) displayed
on the screen of his two legitimate devices. An adversarial device is unable to interfere
with the visual display of the legitimate devices, nor is the adversary able to view what
is being displayed. In fact, the same result applies for all other models so for the rest
of this section, we will only discuss KCI resilience for case II.

For case II: the user desires to pair his device A with another device B not owned by
him; this includes e.g. pairing with Bluetooth-enabled vending machines, in which case
B’s human owner is clearly not present, and cannot be. In a distributed ad hoc network
setting such as Bluetooth with multiple human owners, it is possible for any device to
be malicious, hence the need for pairing in the first place. What is thus interesting is
if an adversary can use his adversarial device B to attack another legitimate device A.
We now discuss how it is possible that a KCI adversary M can violate KCI resilience
for this case II.

Consider the NC model. For case II, recall that the SAS Va (resp. Vb) is a function
of public keys as well as nonces, thus a KCI attacker impersonating B can easily choose
an arbitrary Nb and thus complete all the steps of an SSP session. In particular, it can
compute the Vb that equals the Va computed by A and thus the same SAS will be
viewed at both devices and verified by the user as correct.

For the PE model for option (i), the SAS Ra (resp. Rb) is input by the user at
each device, and thus for case II the adversarial device gets the same SAS input from
the user as the legitimate device. For the PE model for option (ii), if the adversary is
impersonating A to B, then it can simply use any SAS Ra of its choice to be displayed,
and the user will input the same into B. If it is impersonating B, it will receive the
same SAS input from the user as the SAS displayed to the user by A.

The OoB model is different in the sense that the SAS values Ra and Rb are ran-
domly generated by A and B, respectively, and then communicated to each other via an
out-of-band channel, which is assumed to be a physically source-authenticated channel,
thus case II would not be exploitable; e.g. a user pairs his device A with another device
B for which he has communicated his SAS to the human owner of B. If out-of-band
communication is only possible in one direction, then the SAS transmitted this way
needs to be kept secret [3]. Thus, if the direction of out-of-band communication is from
A to B, then the KCI attacker cannot know Ra and therefore cannot complete the
steps of Authentication Stage 2. In fact, even if Ra is non-secret for the case where
out-of-band communication is bi-directional, then the KCI attacker still cannot im-
personate B since by assumption an out-of-band is a physically source-authenticated
channel, thus the out-of-band channel from B to A cannot be impersonated by the
attacker. Summarizing, the OoB model achieves KCI resilience.



Analyzing the Secure Simple Pairing in Bluetooth v4.0 11

For Bluetooth LE, similar to our discussion of PFS for Bluetooth LE in the previous
subsection, the same can be said here in terms of its KCI resilience. The reason is that
KCI considers what security remains in the event that the long-term private key is
compromised. For Bluetooth BR/EDR, this compromise means that the shared DH
key is immediately computable. In contrast, for Bluetooth LE, this compromise does
not eliminate the security of the shared secret because the shared secret is independent
of the long-term private key, and therefore provides an extra factor of security. Thus
Bluetooth LE achieves KCI resilience.

3.4 MitM Attacks

A man-in-the-middle (MitM) attack is an attack where an adversary M places himself
between two (or more) legitimate devices A and B and causes at least one of them
to believe falsely about the actual execution of the protocol, e.g. a device A believes
it is communicating with a device E ̸= B (this is also known as unknown key-share
attack), or that A receives a message that differs from what B had sent.

Considering MitM attacks on SSP is interesting not only because SSP is designed
explicitly to resist this kind of attack but also because an MitM attack allows to exploit
the bit-by-bit evaluation of the passkey by devices to leak out the passkey a bit at a
time.

The NC Model. Here, if both legitimate devices A and B are owned by the same
human, then the SSP is secure against MitM attack even if an attacker M mounts a
key substitution attack [20,19,2,1] by replacing the public key PKa (resp. PKb) of
device A (resp. B) with its own public key PKm. This is because B definitely uses
PKb instead of PKm yet since the SAS Va (resp. Vb) is a function of the public keys of
both devices so a user checking the displayed Va and Vb on both his devices respectively
would find that they are different. Now consider the setting as per case II in section
3.3 where the human owner of device A wants to pair with another device B that is
not owned by him. This can be a common case since a Bluetooth device is capable
of communicating with several other devices within a wireless piconet, and any device
is potentially malicious. In fact, this warrants the need for pairing in the first place.
Then the following MitM attack applies (see Fig. 5), where an adversarial device M

impersonates B to A, and vice versa can also impersonate A to B:

1. During stage 1, A initiates the pairing protocol with device B by sending its public
key PKa to device B, and expects to receive the public key of B. Nevertheless, M
sends to A its own public key PKm instead.

2. The exchanged DH key is therefore computed by A as

K = SKa · PKm ·G,

while M computes it as
K = SKm · PKa ·G.

3. During stage 2, M arbitrarily selects a 128-bit nonce Nm and sets Rm = 0. Then
M computes and sends to A, this value:

Cm = f1(PKm, PKa, Nm, Rm),



12 Raphael C.-W. Phan, Patrick Mingard

4. A randomly selects a 128-bit nonce Na and sends this to B which is received by
M .

5. M sends Nm to A.
6. A recomputes f1(PKm, PKa, Nm, Rm) and checks if it equals the received Cm. It

aborts the protocol if this check does not pass.
7. A computes Va = g(PKa, PKm, Na, Nm) while M computes Vm = g(PKa, PKm, Na, Nm)

. Both Va and Vm will match and thus the attacker can proceed to stage 3 and
easily complete the steps since it knows the DH key K shared with A. In the end,
M shares a link key

LK = f2(K,Na, Nm, “btlk”, A,B)

with A, when A thinks it is paired with B. This additionally achieves the objective
of an unknown key-share (UKS) attack [6]. In the same way, an attacker can mount
a UKS attack on B.

Initiating device A Attacker M impersonating responding device B

PKa−→ K = SKm · PKa ·G (1)

K = SKa · PKm ·G
PKm←−

Select random Na. Select random Nm. (2)
Set Ra = Rm = 0. Set Rm = Ra = 0.

Cm = f1(PKm, PKa, Nm, Rm)
Cm←−
Na−→

Check Cm = f1(PKm, PKa, Nm, Rm)
Nm←−

If check fails, abort.
Compute Va = g(PKa, PKm, Na, Nm). Compute Vm = g(PKa, PKm, Na, Nm).

At each device (A,M), Va (resp. Vm) is displayed as a 6-digit number.
Compute Ea = f3(K,Na, Nm, Ra, IOa, A,B). Compute Em = f3(K,Nm, Na, Rm, IOb, B,A). (3)

Ea−→
Em←−

Check Em = f3(K,Nm, Na, Rm, IOb, B,A).
If check fails, abort.

At both devices: LK = f2(K,Na, Nm, “btlk”, A,B) (4)
At both devices: the encryption key Kenc is derived based on K and LK. Further messages are encrypted with Kenc. (5)

Fig. 5 MitM attack against SSP in the NC model for case II

The PE(i) Model. We first describe dictionary-style attacks on the PE model for
its usage option (i) that apply even if the impersonated device is present. This attack
carries through all five stages of Bluetooth’s SSP. To motivate, we start with a naive
attack. See Fig. 6 for an illustration. Note that a double arrow like PKm←− PKb←− means that
the message containing PKb is intercepted by the attacker and replaced by one con-
taining PKm. The attack is as follows, where the malicious MitM attacker is denoted
as M .



Analyzing the Secure Simple Pairing in Bluetooth v4.0 13

Initiating device A M Non-initiating device B
PKa−→PKm−→ K2 = SKb · PKm ·G (1)

K1 = SKa · PKm ·G
PKm←− PKb←−

K1 = SKm · PKa ·G
K2 = SKm · PKb ·G

At each device (A,B), the user enters the same 6-digit passkey Ra = Rb via the device input. (2)
Let Rai be the ith bit of Ra for i = 1, . . . , 20. The rest of this stage is performed up to 20 times for i = 1, . . . , 20.
If the protocol aborts prematurely, the user tries once more by inputting the same passkey into devices A and B.

Select random Nai. For iteration i, M guesses a bit Rmi and selects a random Nmi. Select random Nbi.
Cai = f1(PKa, PKm, Nai, Rai) Cmai = f1(PKm, PKb, Nmi, Rmi) Cbi = f1(PKb, PKm, Nbi, Rbi)

Cmbi = f1(PKm, PKa, Nmi, Rmi)
Cai−→Cmai−→
Cmbi←− Cbi←−
Nai−→Nmi−→ Check Cmai = f1(PKm, PKb, Nmi, Rbi)

Check Cmbi = f1(PKm, PKa, Nmi, Rai)
Nmi←−Nbi←− If check fails, abort.

If check fails, abort.
Na = Na20 Nm = Nm20 Nb = Nb20 (3)
Ea = f3(K1, Na, Nm, Ra, IOa, A,B) Ema = f3(K2, Nm, Nb, Ra, IOa, A,B) Eb = f3(K2, Nb, Nm, Rb, IOb, B,A)

Emb = f3(K1, Nm, Na, Rb, IOb, B,A)
Ea−→Ema−→ Check Eb = f3(K1, Nm, Na, Rb, IOb, B,A)

Check Eb = f3(K1, Nm, Na, Rb, IOb, B,A)
Emb←− Eb←− If check fails, abort.

If check fails, abort.
At both devices: LKam = f2(K1, Na, Nb, “btlk”, A,B) (4)

LKbm = f2(K2, Na, Nb, “btlk”, A,B)
At both devices: the encryption keys are derived based on K1, K2, LKam and LKbm, respectively. (5)

Further messages are encrypted with the encryption keys.

Fig. 6 Naive MitM attack against PE(i) model

1. During stage 1, A initiates the pairing protocol with device B by sending its public
key PKa to device B. However, M performs a basic public key substitution attack
[20,19,2,1] by replacing PKa with its own public key PKm.

2. B receives PKm thinking it is A’s public key. It responds with its own public
key PKb to A. But similarly, M replaces PKb with its public key PKm. Thus A

receives PKm thinking it is the public key of B.
3. The exchanged DH key is therefore computed by A as

K1 = SKa · PKm ·G,

while the DH key computed by B is

K2 = SKb · PKm ·G.

M can compute both keys as

K1 = SKm · PKa ·G,

K2 = SKm · PKb ·G.

4. During stage 2, for i = 1, . . . , 20, then A will randomly select a 128-bit nonce Nai,
and note that Rai is a bit from the Ra input by the user. A computes

Cai = f1(PKa, PKm, Nai, Rai).



14 Raphael C.-W. Phan, Patrick Mingard

Cai is sent to B, but this is replaced by M with Cmai computed as:

Cmai = f1(PKm, PKb, Nmi, Rmi), (1)

where Nmi and Rmi are values randomly chosen by M . Note that Rmi is in fact
M ’s guess of the bit Rai = Rbi.

5. Thus B receives Cmai and randomly selects a 128-bit nonce Nbi, and similarly Rbi

is the corresponding bit of Rb = Ra input by the user. B computes

Cbi = f1(PKb, PKm, Nbi, Rbi),

and sends Cbi is sent to A. This is replaced by M with Cmbi computed as:

Cmbi = f1(PKm, PKa, Nmi, Rmi). (2)

6. Upon receiving Cmbi, A sends Nai to B, but this is replaced by M with Nmi.
7. B recomputes f1(PKm, PKb, Nmi, Rbi) and checks if it equals the received Cmai.

It aborts the protocol if this check does not pass. Note that the Cmai sent by M to
B computed as in equation (1) will equal the value computed by B if Rmi equals
Rbi. This will occur with probability 1

2 . In the case that the check does not pass
and the session is aborted, and a new session is restarted, it is highly likely that the
human user will input the same passkey Ra = Rb. Furthermore, from the previous
abort, the attacker clearly knows that his guess of Rbi was wrong, thus it must be
that Rbi = Rmi. This allows him to now bypass Rbi easily and proceed to guessing
the next bit of Rb.

8. If the check passes, B sends Nbi to A but this is replaced by M with Nmi.
9. Upon receiving Nmi, A recomputes f1(PKm, PKa, Nmi, Rai) and checks if it

equals the received Cmbi. It aborts the protocol if this check does not pass. Note
that the Cmbi sent by M to A computed as in equation (2) will equal the value com-
puted by A if Rmi equals Rai. Since Rai = Rbi, this check will pass if it previously
passed at B for Cmai.

10. Eventually M obtains the bits of Rai = Rbi (for i = 1, . . . , 20). Now he can proceed
to stage 3 and easily complete the steps as illustrated in Fig. 6 since it knows the
keys K1 and K2 shared with A and B, and also the 20-bit passkey Ra = Rb. In
the end, M shares a link key with A, when A thinks it is paired with B; and M

also shares a link key with B when B thinks it is paired with A. This violates the
resistance of SSP against MitM attacks, and additionally achieves the objective of
an unknown key-share (UKS) attack [6].

The number of bits the attacker can gain in one session (before a premature abort) is
computed as follows. The attacker will always be able to verify at least the first guessed
bit Ra1. So he can gain in one protocol run at least one bit and at most all 20 bits.
The probability for him to get exactly one bit is the same as the probability of a wrong
guess at first try, which is 1

2 . Then, the probability for him to get exactly two bits is
the same as a success for the first try and a wrong guess for the second try, which is 1

4 .
Enumerating this, we obtain more generally the probability for the attacker to retrieve
exactly n bits in one run is given by 1

2n . Thus, the average number of bits an attacker
can expect to get in one run is:

20∑
n=1

n · 1

2n



Analyzing the Secure Simple Pairing in Bluetooth v4.0 15

which tends toward 2. So with just 10 tries, s/he can obtain the entire 20-bit passkey. In
contrast, any 20-bit passkey should have a probability of 2−20 of being guessed correct,
which requires on average 219 guesses before the correct match is obtained. Yet, this
naive attack is more to make a theoretical point: that the passkey is not meant to be
really secure against offline dictionary attacks, but rather that a passkey in the context
of SSP is more a SAS than a long-term human-memorable secret. So protection against
offline dictionary attacks is not vital since a user would generally not reuse the same
passkey indefinitely, but only for the particular short period of time when he is trying
to cause a successful pairing.

Our attack above was aided by the fact that the session may abort prematurely
before all 20 bits of the passkey are used, as soon as a passkey bit is guessed incorrectly,
and this allowed the attacker to precisely verify any particular bit of the passkey. Thus
the attack will be made more complicated if there is no premature abort but instead
the SSP continues its session till all 20 bits are used even if some bits in between are
guessed incorrectly.

In fact, we can do better than the naive attack. We start with the intuition. The
underlying idea is that although Nai for Cai is initially withheld, it is eventually re-
vealed within the same stage 2 of the SSP in the Passkey Entry model. Thus, the only
unknown parameter used in the computation of Cai is in fact Rai which is just one
bit. Hence, an attacker can easily mount an offline dictionary attack by making a guess
R′
ai of Rai and recomputing f1(PKa, PKb, Nai, R

′
ai) to check if it equals Cai. This

requires only one guess R′
ai of Rai. In the same way, repeating this for all i = 1 . . . 20,

he needs only 20 ≈ 24.5 guesses to recover the entire 20 bits of Ra by offline dictionary
attack. In contrast, a 20-bit passkey should require 219 guesses on average. We note
that this observation was independently made en passant in [16]. However, this obser-
vation is not complete in itself because the SSP by design does not allow the attacker
any advantage even if he obtains the passkey. This is because without knowledge of the
DH key K shared between devices A and B, an attacker cannot pass the next stage
3 and thus cannot compute any link key. Nevertheless, we now show how to mount a
full attack through all stages of the SSP, so that the attacker can in the end share a
link key with both devices.

The idea in the Passkey Entry model of SSP is to complicate offline dictionary
attacks by treating in sequence each bit independently rather than all 20 bits in one
instance. To quote [3]: “The gradual disclosure prevents leakage of more than 1 bit of
un-guessed Passkey information in the case of a man-in-the-middle attack.” Yet less
disclosure means dependence on less secret bits, thus less bits to guess for the attacker,
and so a higher probability that the guess is correct. This is a double-edged sword. Our
attack shows that this “gradual disclosure” in fact causes it to be much more insecure
than a naive design that treats the 20 bits in one instance.

1. M eavesdrops on an SSP protocol session between A and B, and obtains the values
Cai and Rai (for i = 1 . . . 20), or the values Cbi and Rbi (for i = 1 . . . 20), and then
flips any bit of any message in stage 3 causing the session to abort.

2. M then mounts an offline dictionary attack as described in the paragraphs above,
to recover Ra = Rb.

3. A re-initiates a new SSP protocol session with device B by sending its public key
PKa to device B. However, M performs a public key substitution attack [20,19,2]
by replacing PKa with its own public key PKm.



16 Raphael C.-W. Phan, Patrick Mingard

4. B receives PKm thinking it is A’s public key. It responds with its own public
key PKb to A. But similarly, M replaces PKb with its public key PKm. Thus A

receives PKm thinking it is the public key of B.
5. Thus the DH key computed by A is

K1 = SKa · PKm ·G,

while the DH key computed by B is

K2 = SKb · PKm ·G.

M can compute both keys as

K1 = SKm · PKa ·G,

K2 = SKm · PKb ·G.

6. During stage 2, the user re-inputs the same passkey, Ra = Rb as during the previous
aborted session.

7. Since M has obtained the bits of Rai = Rbi (for i = 1 . . . 20) by mounting an offline
dictionary attack, he can now proceed to stage 3 and easily complete the steps as
illustrated in Fig. 6 since it knows the keys K1 and K2 shared with A and B, and
also the 20-bit passkey Ra = Rb. In the end, M shares a link key with A with A

thinking it is paired with B; and M also shares a link key with B with B thinking
it is paired with A.

This dictionary-style attacks exploit the fact that a human user typically re-enters
the same passkey after a few error messages. This is so since humans can potentially
be influenced by their common interaction with PINs for automatic teller machines or
for their mobile phones, which are long-term PINs in contrast to the one-off ephemeral
SAS passkey. The first few times the machine outputs error messages usually leads the
human to believe it is due to mechanical limitations of the input keypad e.g. he had
mistyped a digit, or his press on a digit had either been too soft that the digit press
was not detected by the device, or too hard that the digit press was detected by the
devices as more than one press of the same digit.

The second attack shows that the SAS (passkey) should never be reused, even for
once, and even if a session aborted pre-maturely. Instead, the user should not even
assume any mechanical errors had occurred for premature abortions but rather start
afresh with a totally different passkey.

Note that dictionary-style attacks only apply for PE model usage option (i) since
the SAS passkey is then a short string entered by the human user, while for PE model
usage option (ii) the SAS passkey is actually randomly generated by the initiating de-
vice.

The PE (ii) Model. We now show an MitM attack for the PE model usage option
(ii), for the setting as per case II of Section 3.3, i.e. where a legitimate device B is
present, and the attacker M is impersonating A which is not present. We exploit the
fact that for this case, the attacker M can generate and display any passkey of its
choice. See Fig. 7. The attack follows:

1. During stage 1, M impersonating A initiates the pairing protocol with device B by
sending its public key PKm to device B.



Analyzing the Secure Simple Pairing in Bluetooth v4.0 17

M impersonating initiating device A Non-initiating device B

PKm−→ K = SKb · PKm ·G (1)
PKb←−

K = SKm · PKb ·G
M selects a random passkey Rm and displays it as a 6-digit number. (2)

The user enters the same 6-digit passkey Rb = Rm into B via its device input.
Let Rmi be the ith bit of Rm for i = 1, . . . , 20. The rest of this stage is performed up to 20 times for i = 1, . . . , 20.

Select random Nmi. Select random Nbi.
Cmai = f1(PKm, PKb, Nmi, Rmi) Cbi = f1(PKb, PKm, Nbi, Rbi)

Cmai−→
Cbi←−
Nmi−→ Check Cmai = f1(PKm, PKb, Nmi, Rbi)

If check fails, abort.
Nbi←−

Nb = Nb20 (3)
Ema = f3(K,Nm, Nb, Ra, IOa, A,B) Eb = f3(K,Nb, Nm, Rb, IOb, B,A)

Ema−→
Check Ema = f3(K,Nm, Nb, Ra, IOa, A,B)

If check fails, abort.
Eb←−

At both devices: LK = f2(K,Nm, Nb, “btlk”, A,B) (4)
At both devices: the encryption keys are derived based on K and LK. Further messages are encrypted with the encryption keys. (5)

Fig. 7 MitM attack against PE(ii) model for case II

2. The exchanged DH key is therefore computed by B as

K = SKb · PKm ·G,

while M computes it as
K = SKm · PKb ·G.

3. During stage 2, M arbitrarily selects a passkey Rm and displays this as a 6-digit
number on its screen. The user enters the same 6-digit passkey Rb = Rm into B

via its device input.
4. Let Rmi be the ith bit of Rm; then repeating for i = 1, . . . , 20, the following steps

are performed: M selects an arbitrary nonce Nmi; and computes and sends this to
B:

Cmai = f1(PKm, PKb, Nmi, Rmi),

5. B randomly selects a 128-bit nonce Nbi and computes

Cbi = f1(PKb, PKm, Nbi, Rbi),

and sends this to A which is received by M .
6. M sends Nmi to B.
7. B recomputes f1(PKm, PKb, Nmi, Rbi) and checks if it equals the received Cmai.

It aborts the protocol if this check does not pass. It then sends Nbi to A which is
received by M .



18 Raphael C.-W. Phan, Patrick Mingard

8. The attack proceeds to stage 3 and is easily completed since M knows the DH key
K shared with B. In the end, M shares a link key

LK = f2(K,Nm, Nb, “btlk”, A,B)

with B, when B thinks it is paired with A. This additionally achieves the objective
of an unknown key-share (UKS) attack [6].

In fact, a similar attack applies for the reverse direction, i.e. a legitimate device A is
present, while the attacker M is impersonating B which is not present. In this case,
the adversarial device of M will obtain the input passkey entered by the user.

The OoB Model. The above MiTM attacks do not apply to the OoB model, assum-
ing that the adversary has no access to the OoB channel, since this would otherwise
be outside the scope of protocol analysis.

Bluetooth LE Models. The MitM attacks described in this subsection do not apply
to the SSP of Bluetooth LE. The reason is because LE differs from Bluetooth BR/EDR
only in the non-usage of the DH key as input to the link key computation function f2.
While the MitM attack allows the adversary to influence the DH key via its public key,
such an attack does not allow control nor knowledge of the shared secret between A

and B used in place of the DH key. Therefore, an MitM attack would not be able to
proceed past stage (3).

4 Concluding Remarks

We have presented a detailed security analysis of Bluetooth v4.0’s Secure Simple Pairing
(SSP) protocol in both BR/EDR and LE operational modes, for all its association
models that aim to provide MitM security, i.e. NC, PE(i), PE(ii) and OoB.

It is prudent that a revised version of a protocol, such as is the Bluetooth v4.0,
undergo a continual security analysis process by designers and third parties. In this
paper, our intention is to contribute to this process.

Table 3 Security Properties of SSP Association Models for Bluetooth BR/EDR and LE

OoB NC PE(ii) PE(i) OoB PE(ii) PE(i)
KKS

√ √ √ √ √ √ √

KC
√ √ √ √ √ √ √

PFS ⋆ ⋆ ⋆ ⋆
√ √ √

KCI
√ √I,×II √I,×II √I,×II √ √ √

UKS/MitM
√∗ √I,×II √I,×II ×

√ √ √

Table 3 summarizes our results, sorted from left to right based on the order of
priority for SSP models specified by Bluetooth v4.0, according to the IO capability of
a device. Achievement of a security property is denoted by a

√
, non-achievement by

an ×. The first four columns denote the SSP models for Bluetooth BR/EDR while the
last three columns denote the SSP models for Bluetooth LE. The symbol ⋆ denotes
that the security is policy-dependent, while the superscripts I,II refer to cases I, II as



Analyzing the Secure Simple Pairing in Bluetooth v4.0 19

described in Section III.C. The superscript ∗ denotes that security is dependent on
the OoB channel e.g. Near Field Communication or human-involved channel, whose
security consideration is external to typical protocol analysis.

These results indicate that the priority order of these models has been well chosen
by the Bluetooth v4.0 specification, i.e. OoB offers the best security if the external
OoB channel is assumed secure. That said, this has to be taken with a grain of salt.
The gist is the assumption that the underlying OoB channel is secure. This depends
on the kind of OoB channel; for instance, Kainda et al. [15] show that human-involved
OoB channels should be used carefully by taking into consideration human-involved
factors, e.g. non-compelling OoB channels may be susceptible to humans comparing
passkeys inaccurately due to distraction or bypassing some steps due to laziness. In
the absence of a secure OoB channel, NC model is the next alternative, or else PE(ii)
model should be used, and where the PE(i) model is really seldom used. Thinking
further on the latter point, the fact that the PE(i) model has been included in the
specification, apparently indicates that there could be cases (even if it is hard to think
of real concrete examples) where the PE(ii) model cannot be used for which the PE(i)
model would be; this would be a fair assumption. Having said that, specifications like
SSP should be careful not to include models that exhibit vulnerabilities, even if these
vulnerabilities can be avoided by choosing other models. Indeed, if this is the case, is
it useful in practice to still include the weaker model under the list of MitM-secure
models?

Summarizing the table, we can say that while the most appropriate model in the
performance sense is based on the IO capability of the device, in contrast in the security
sense the question of which is the best model depends on the underlying assumptions.
For instance, OoB is the best choice if the underlying OoB channel is secure. NC can be
used if no secure OoB channel exists other than a human being able to view the screen
and to press a ‘Yes/No’ button at each device, as long as the human factors (human
mistakes, human laziness) are taken into account during the human interface design.
Otherwise, it may make more sense to employ the PE model to compel the human to
explicitly type in the passkey digits leaving less margin for comparison error.

Despite that the SSP for Bluetooth BR/EDR was designed with multi-factor au-
thentication layers, namely the use of elliptic curve public-private keys to protect the
secrecy of the established DH key, and the use of out-of-band SAS to provide authenti-
cation of communicated protocol message transcripts without needing a PKI; however,
as we highlighted, the fact that key substitution attacks are possible on the DH key
exchange of Bluetooth BR/EDR’s SSP leads to cases where an adversary computes
the shared DH key and subsequently has less obstacles in bypassing the security mech-
anisms within the SSP, i.e. he has one less authentication factor to worry about. In
contrast, the Bluetooth LE does not exhibit this problem since the DH key is not
used. Furthermore, the non-usage of the DH key in Bluetooth LE also means that
compromise of the long-term private key does not affect the shared secret between
Bluetooth parties. Indeed, the gist of the PFS, KCI and MitM attacks on Bluetooth
BR/EDR exploit the fact that the private key directly influences the shared DH key;
hence Bluetooth LE is not affected by PFS, KCI or MitM attacks.

In order to address the key substitution attack issue, we need to revisit the funda-
mental problem behind it, i.e. the lack of initial trust setup. An example that allows for
setting up initial trust is the public key infrastructure (PKI) leveraging on the exchange
of certificates, which allow parties to have trust in the correct long-term public key of
other parties. In contrast, Bluetooth allows devices during stage 1 of an SSP protocol



20 Raphael C.-W. Phan, Patrick Mingard

run, to send their public keys to each other (such public keys could be generated in
advance or a device could choose to generate a new one after discarding an existing
one); at the end of stage 1, a common DH key is generated based on the public key
received from the other device. All this is done without any authentication [6], thus
making key substitution possible.

It is worthwhile to mention here the relation between Bluetooth’s SSP and the
wUSB standard [27] to see the difference in their resistance to key substitution. The
wUSB protocol has similar association models i.e. a connected model and a numeric
comparison model. Also, wUSB is designed such that key substitution attacks cannot
work because exchange of public keys between devices (this would correspond to SSP
stage 1) is part of a ceremony [27,7] that involves the human user verifying via an
out-of-band mechanism that the public keys correspond to correct public IDs of the
devices. This completes the initial trust setup, i.e. trust in each other device’s public
key. Thus, to overcome the key substitution issue, we suggest that for SSP similarly
to have its stage (1) be via an out-of-band authenticated channel involving the human
user to setup the initial trust in each device’s public key, so that key substitution
attacks can be prevented, and as a consequence, all the UKS and MitM security issues
we highlighted here can be avoided.

Furthermore, we remark that wUSB does not have any problem with respect to PFS
since its public-private key-pair is totally ephemeral and needs to be freshly generated
for every pairing.

References

1. S.S. Al-Riyami, K.G. Paterson, “Tripartite Authenticated Key Agreement Protocols from
Pairings,” Proceedings of IMA Cryptography and Coding ’03, LNCS 2898, pp. 332-359,
2003.

2. S. Blake-Wilson, A. Menezes, “Unknown Key-Share Attacks on the Station-to-Station
(STS) Protocol,” Proceedings of Public Key Cryptography (PKC ’99), LNCS 1560, pp.
154-170, 1999.

3. Bluetooth SIG, “Bluetooth Core Specification v4.0,” 30 June 2010. Available online at
http://bluetooth.com/English/Technology/Building/Pages/Specification.aspx.

4. C. Boyd, A. Mathuria, Protocols for Authentication and Key Establishment, Springer-
Verlag, 2003.

5. R. Chang, V. Shmatikov, “Formal Analysis of Authentication in Bluetooth Device Pair-
ing,” Proceedings of LICS/ICALP Workshop on Foundations of Computer Security and
Automated Reasoning for Security Protocol Analysis (FCS-ARSPA ’07), July 2007.

6. W. Diffie, P.C. van Oorschot, M.J. Wiener, “Authentication and Authenticated Key Ex-
change," Designs, Codes and Cryptography, Vol. 2, pp. 107-125, 1992.

7. C. Ellison, “Ceremony Design and Analysis,” 17 October 2007. Available online at IACR
ePrint Archive, http://eprint.iacr.org/2007/399.

8. K. Haataja, P. Toivanen, “Practical Man-in-the-Middle Attacks against Bluetooth Secure
Simple Pairing,” Proceedings of IEEE International Conference on Wireless Communica-
tions, Networking and Mobile Computing (WiCOM ’08), pp. 1-5, 2008.

9. K. Haataja, P. Toivanen, “Two Practical Man-in-the-Middle Attacks on Bluetooth Secure
Simple Pairing and Countermeasures,” IEEE Transactions on Wireless Communications,
Vol. 9, No. 1, pp. 384-392, 2010.

10. K. Hyppönen, K. Haataja, “Niño Man-in-the-Middle Attack on Bluetooth Secure Simple
Pairing,” Proceedings of IEEE International Conference in Central Asia on Internet (ICI
’07), pp. 1-5, 2007.

11. K. Hyppönen, K. Haataja, “Man-in-the-Middle Attacks on Bluetooth: a Comparative Anal-
ysis, a Novel Attack, and Countermeasures,” Proceedings of IEEE International Sympo-
sium on Communications, Coding and Signal Processing (ISCCSP ’08), pp. 1096-1102,
2008.



Analyzing the Secure Simple Pairing in Bluetooth v4.0 21

12. M.E. Hoque, F. Rahman, S.I. Ahamed, J.H. Park, “Enhancing Privacy and Security of
RFID System with Serverless Authentication and Search Protocols in Pervasive Environ-
ments,” Wireless Personal Communications, Vol. 55, No. 1, pp. 65-79, 2010.

13. B. Howard, “The Bluetooth Car,” PC Magazine, 30 January, 2004.
14. M. Just, S. Vaudenay, “Authenticated Multi-Party Key Agreement,” Advances in Cryp-

tology - Asiacrypt ’96, LNCS 1163, pp. 36-49, 1996.
15. R. Kainda, I. Flechais, A.W. Roscoe, “Usability and Security of Out-of-Band Channels

in Secure Device Pairing Protocols,” Proceedings of Symposium on Usable Privacy and
Security (SOUPS ’09), 2009.

16. C. Kuo, J. Walker, A. Perrig, “Low-cost Manufacturing, Usability, and Security: An Anal-
ysis of Bluetooth Simple Pairing and Wi-Fi Protected Setup,” Proceedings of International
Conference on Usable Security (USEC ’07), pp. 325-340, 2007.

17. A. Lindell, “Bluetooth v2.1 - a New Security Infrastructure and New Vulnerabilities,”
BlackHat Briefings, Las Vegas, 2008.

18. A. Lindell, “Attacks on Password Pairing in Bluetooth v2.1,” CSI ’08, Maryland, 2008.
19. A. Menezes, M. Qu, S. Vanstone, “Some New Key Agreement Protocols Providing Mutual

Implicit Authentication,” Proceedings of Selected Areas in Cryptography (SAC ’95), pp.
22-32, 1995.

20. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, CRC
Press, 1997.

21. P. Mingard, “Elliptic Curve based Diffie-Hellman in Bluetooth v2.1,” Master of Computer
Science Semester Project Thesis, EPFL, Switzerland, 2007.

22. C.J. Mitchell, M. Ward, P. Wilson, “Key Control in Key Agreement Protocols," IEE
Electronics Letters, Vol. 34, No. 10, pp. 980-981, 1998.

23. J.S. Moon, J.H. Park, D.G. Lee, I.-Y. Lee, “Authentication and ID-based Key Management
Protocol in Pervasive Environment,” Wireless Personal Communications, Vol. 55, No. 1,
pp. 91-103, 2010.

24. C. Ntantogian, C. Xenakis, “One-Pass EAP-AKA Authentication in 3G-WLAN Integrated
Networks,” Wireless Personal Communications, Vol. 48, No. 4, pp. 569-584, 2009.

25. K. Scarfone, J. Padgette, “Guide to Bluetooth Security,” Spe-
cial Publication 800-121, NIST, September 2008. Available online at
http://csrc.nist.gov/publications/nistpubs/800-121/SP800-121.pdf.

26. J. Suomalainen, J. Valkonen, N. Asokan, “Security Associations in Personal Networks: A
Comparative Analysis,” Proceedings of European Workshop on Security and Privacy in
Ad-hoc and Sensor Networks (ESAS ’07), LNCS 4572, pp. 43-57, 2007.

27. USB Implementers Forum (USB-IF), “Wireless USB Specification,” revision 1.0, 12 May
2005.

28. S. Vaudenay, “Secure Communications over Insecure Channels based on Short Authenti-
cated Strings,” Advances in Cryptology - CRYPTO ’05, LNCS 3621, pp. 309-326, 2005.

29. E.-J. Yoon, K.-Y. Yoo, S.-S. Yeo, C. Lee, “Robust Deniable Authentication Protocol,”
Wireless Personal Communications, Vol. 55, No. 1, pp. 81-90, 2010.


