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Abstract: Recent increases in railway patronage worldwide have created pressure on rolling stock
and railway infrastructure through the demand to improve the capacity and punctuality of the
whole system, and this demand must also be balanced with reducing life-cycle costs. Condition
monitoring is seen as a significant contributor in achieving this. The emphasis of this article is on
the use of sensors mounted on rolling stock to monitor the condition of infrastructure and the
rolling stock itself. This is set in the context of modern rolling stock being fitted with high-capacity
communication buses and multiple sensors, resulting in the potential for advanced processing of
collected data. This article brings together linked research that uses a similar set of rolling stock
sensors, and discusses: general usage and benefits, a track defect detection method, running gear
condition monitoring, and absolute train speed detection.

Keywords: condition monitoring, real time, vehicle-based sensors, track defects, parameter
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1 INTRODUCTION

The last two decades have seen widespread increases
in railway patronage worldwide, meaning there is
significant pressure to improve the capacity and punc-
tuality of rail services, while reducing life-cycle costs.
Condition monitoring systems are seen as a significant
contributor in achieving such improvements.

Broadly speaking, four different types of monitor-
ing systems exist: infrastructure-based infrastructure
monitoring, rolling-stock-based infrastructure mon-
itoring, rolling-stock-based rolling stock monitoring,
and infrastructure-based rolling stock monitoring [1].
To date, the use of such approaches for fault detection
and diagnosis purposes has been relatively straight-
forward. Dedicated measurement trains are normal in
many railway administrations for assessing the con-
dition of the track [2], and there are some examples
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where simplified versions of these measuring systems
have been fitted to service vehicles. For rolling stock
monitoring, some existing fleets have enhanced their
on-board data logging capabilities with global posi-
tioning system (GPS) and communications equipment Q1
in order to analyse in real-time data from in-service
train sets (for example, see references [3] to [5]).

This article is concerned with monitoring based on
measurements made by sensors fitted to vehicles (i.e.
the second and third types described in the previous
paragraph, in particular focused upon in-service vehi-
cles). Electronic and software systems now form an
essential element of railway vehicle technology; since
it is common for such systems to be connected to a
central control processor through a train communi-
cation bus, there is significant potential for advanced
processing techniques that can extract more sophisti-
cated system/sub-system knowledge, either from the
sensor data currently available or from additional
sensors connected to the communications bus. Mod-
ern wireless communication systems also provide the
opportunity for transferring either the raw sensor data
or information derived from such data to track-based
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information systems that can provide further analysis.
However, the emphasis here is upon the potential for
advanced vehicle-based processing.

The purpose of the article is to describe linked
research activities all using a relatively common set
of vehicle-based sensors combined with advanced
processing concepts, which are aimed towards dif-
ferent technical objectives. Section 2 summarizes the
opportunities from a sensing technology viewpoint
to provide an overview, and then sections 3 to 5
describe three specific processing options – identifica-
tion of track defects, monitoring of running gear con-
dition, and determination of absolute train speed. The
concluding section summarizes where these develop-
ments can contribute at a systems level and identi-
fies the longer-term trends arising from the use of
advanced processing concepts such as these.

2 BOGIE-MOUNTED SENSOR OPTIONS FOR
MONITORING IN GENERAL – TYPE, LOCATION,
NUMBER, AND REQUIREMENTS

Sensors mounted on in-service vehicles can be used
to identify certain track defects, monitor the run-
ning gear condition, and determine the absolute train
speed, all during normal revenue service.

In the case of identifying track defects, the alter-
native approach is to use specialist track inspection
trains. However, due to capacity constraints and the
availability and cost of the inspection train itself, it is
difficult to monitor the whole rail network in a timely
and cost-effective manner.

Table 1 shows an appropriate sensor set for use
on in-service vehicles, and this is also illustrated by
the diagram given in Fig. 1. This is quite a compre-
hensive list of sensing possibilities, and it is therefore
unlikely that all would be fitted to any particular bogie,
although they have generally been chosen as relatively
low-cost items. It is difficult to quantify costs pre-
production, and so the term ‘low-cost’ is being used
qualitatively, but the expectation is that the cost of
the sensors themselves will be marginal with respect
to the cost of a modern bogie. The proposed sen-
sor set comprises predominantly inertial sensors that
are cheap and easy to fit, often in a single box. It is
also worth noting that developments in Micro-Electro-
Mechanical-Systems technology and increasing use
within the automotive industry continue to drive
down the costs of these sensors.

Sensor information from a suitably instrumented
bogie can identify certain irregularities and defects
on the track. For example, a pitch rate gyro can be
used to obtain the mean vertical alignment of the
track at wavelengths longer than those correspond-
ing to the bogie pitch mode. Axlebox accelerometers
can be used to measure shorter wavelength vertical
irregularity. Similarly, the bogie roll rate gyro gives
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Axlebox-mounted vertical
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Bogie-mounted 
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accelerometer and 
pitch rate gyro

Bogie-mounted vertical 
accelerometer, yaw rate 
gyro

Bogie-mounted 
vertical and lateral 
accelerometers;
roll rate gyro

Fig. 1 Bogie and wheelset sensor positions

an approximation of the track cross level for longer
wavelengths, while the difference between the axlebox
vertical motions can be used for shorter wavelengths.
The absolute roll can be estimated using a combina-
tion of lateral sensing accelerometer and roll and yaw
rate gyros on the bogie. The use of axlebox accelerom-
eters and roll rate gyro allows the twist from the design
transitions to be included in the absolute twist esti-
mate. In the processing of the acquired data, the
speed of the vehicle is also necessary to perform
the conversion between time and displacement along
the track.

Sensors measuring the dynamic response of a bogie
to excitations from track irregularity and other inputs
can also be used to identify variations in performance
arising from faults and/or wear in the mechani-
cal components (springs, dampers, etc). Of course,
(through, e.g. inverse models) the same sensor set can
also be used to identify the track inputs which excite
the bogie dynamics.

3 DETECTING TRACK DEFECTS

Perfect track alignment results in wheelsets, bogies,
and vehicle bodies following smooth trajectories
through space, following gradual changes in height
and sweeping through horizontal curves, typically
accompanied by a suitable tilt on canted track. Imper-
fect track results in deviations being superimposed
on the otherwise smooth trajectories that can be used
to identify random track irregularities, or discrete
defects. Attempts to monitor track irregularity have
used vertically and/or laterally sensing accelerometers

mounted on the body [6], bogie [7], or axlebox [8, 9]. In
some cases, a measure derived from acceleration (such
as frequency-weighted rms) is used to identify poor
ride quality that is generally associated with poor track
geometry. The most extensive and expensive option is
to fit a full track geometry measuring system with an
inertial measurement unit on the bogie coupled with
optical line sensors.

3.1 Sensors

Axlebox-mounted accelerometers can provide short
wavelength information about the vertical profile,
ideal for detecting corrugation and bad rail joints
[8]. The vertical acceleration associated with a 30 m
wavelength irregularity with an amplitude of 2 mm,
on a vehicle travelling at 45 m/s (100 mph), is only
0.18m/s2. An axlebox-mounted accelerometer typi-
cally has a range of 100 g (1000 m/s2). Hence, there
is likely to be a problem with poor signal-to-noise
ratio. A practical solution to this problem is to use
very high-quality accelerometers with a smaller oper-
ating range mounted on the bogie, and to measure the
displacement down to left and right axleboxes using
displacement sensors. The bogie is subject to smaller
accelerations as the primary suspension filters out
some of the high-frequency, high-acceleration signals.
This provides the ability to obtain results at speeds
down to about 15 km/h.

Even though the bogie is isolated from the rails
by the primary suspension, the bogie orientation
and motion inevitably tend to follow the track. For
vertical track irregularities with wavelengths longer
than the bogie wheelbase, at which frequency the
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filtering effect of the primary suspension is small,
bogie vertical motion and vertical track irregular-
ity are very similar. Hence, it is possible to monitor
track vertical irregularity by using a bogie-mounted,
vertically sensing accelerometer to reconstruct the
vertical path taken by the bogie. In practice, the double
integration of the drifting offset in the sensor out-
put and of noise within the sensor and generated in
the analogue-to-digital conversion process results in
uncontrollably large errors at increasing wavelengths.
This means that some high-pass filtering is required so
that only sufficiently accurately reconstructed wave-
lengths remain. The position on the bogie at which
the accelerometer is attached considerably affects the
results obtained. One sensible location is above the
centre of a wheelset.

A pitch rate gyro attached to a bogie can also mea-
sure the vertical trajectory taken by the bogie [10]. A
vertical curvature signal is obtained by dividing the
pitch rate (measured by the pitch rate gyro) by the
vehicle speed, similar to dividing the acceleration by
the square of the vehicle speed. This curvature sig-
nal can be doubly integrated in the spatial domain
to give a vertical alignment (irregularity) from which
various quantities can be obtained using various high-
pass filters. As with an accelerometer, the long wave-
length information is lost in the errors from double
integration. However, the signal-to-noise ratio turns
out to be more favourable using a pitch rate gyro,
partly because the pitch rate signal increases linearly
with speed instead of with the square of the vehi-
cle speed, and also because the signal falls off less
quickly at low frequencies. Hence, a pitch rate gyro
provides results at longer wavelengths at low vehi-
cle speeds than an accelerometer of similar quality
(and cost). This is particularly advantageous when
mounted on an in-service vehicle that makes frequent
station stops, as compared to a track recording vehi-
cle that can travel without slowing down too often.
In addition, the location of the pitch rate gyro on
the bogie is much less important than that of an
accelerometer.

Similar results are obtained using a yaw rate gyro to
monitor lateral irregularity rather than a laterally sens-
ing accelerometer. However, the bogie does not follow
the lateral alignment of the track as closely as it follows
the vertical alignment. There is usually a very stiff pri-
mary natural suspension and the wheelsets can move
laterally with respect to the track, which of course
does not happen in the vertical direction. These lat-
eral and yaw kinematic motions are at significantly
lower frequencies than the primary vertical suspen-
sion, which means that this is a significant effect.
However, because of the dynamics relating lateral
irregularity to the path taken by the bogie (kinematic
wavelength), it is theoretically possible to determine a
transfer function to negate this effect and to return to
an estimate of lateral track irregularity [11].

3.2 Processing

The processing chain was found to result in the best Q2
performance for detecting vertical and lateral irregu-
larity is described in detail in reference [10]. In sum-
mary, it consists of obtaining curvature by dividing the
time-domain pitch rate by the instantaneous vehicle
speed. These time-domain curvature samples are re-
sampled into the spatial domain, using the speed of
the vehicle. In this article, they are 0.125 m apart. The
resulting spatial-domain curvature samples are dou-
bly integrated with respect to distance along the track
and then high-pass filtered to obtain estimates of ver-
tical irregularity with wavelengths less than 35 m or
70 m, for example. The processing to obtain lateral
irregularity is identical but uses data from the yaw
rate gyro.

3.3 Examples

Some examples of vertical and lateral track irregu-
larity obtained from sensors mounted on the bogies
of a Tyne and Wear Metro vehicle and a Class 175
mainline vehicle have been published [10, 11]. More
recently, an inertial measurement system, comprising
three accelerometers and three rate gyros, has been
mounted on the bogie of a Class 508 vehicle as part
of an energy monitoring system. Custom-designed
and built electronics sample the sensors at 8192 Hz
and the results are down sampled to allow data to
be saved 256 times a second to local flash memory.
A tacho signal to provide train speed is also recorded.
Data will be collected continuously from an in-service
vehicle.

In reference [10], the vertical and lateral alignment
are considered over wavelengths longer than the bogie
wheelbase, where the bogie pitch and yaw follow the
track slope and heading fairly closely. However, one
can see details at shorter wavelengths by examin-
ing the lateral and vertical curvature signals. As the
wheelsets encounter an irregularity such as a dipped
joint, or a disruption to the heading, the leading and
the trailing wheelsets are affected in turn, spatially
separated by the bogie wheelbase.

Figure 2 shows the vertical 35 m alignment over
100 m of jointed track, obtained as described in refer-
ence [10], together with the vertical curvature signal.
The vertical alignment shows the presence of dipped
joints spaced approximately 18 m apart (consistent
with 60 ft rail sections). The vertical curvature shows
a characteristic pattern associated with dipped joints.
In particular, there are step changes in curvature when
the leading wheelset reaches the bottom of the dip
and a step change in the opposite direction, approxi-
mately 2.5 m later, when the trailing wheelset reaches
the same point. The magnitude of the step change is
related to the severity of the dip. Hence, the joints can
be monitored not only from the point of view of how
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Fig. 2 Jointed track: vertical alignment 35 m and vertical
curvature (offset by 25 units) seen at the bogie

deep they are from the perspective of the bogie but
also in terms of dip angle.

A second example concerns the motion of the bogie
through a pair of back-to-back switches and crossings
forming a crossover, where the train is travelling at
approximately 5 m/s. Figure 3 shows the 35 m lateral
alignment through a crossover and over approximately
100 m of plain track beyond. Labels A to F are used
for alignment with later figures. As is typical, the
lateral irregularity around the switch and crossing
work is significantly higher than that on the plain
track. The rotational symmetry of the physical cross-
ing that would be expected is apparent about the
zero point midway between C and D. Figure 4 shows
the bogie yaw angle through the same crossover. The
start and end of the crossover are at A and F, respec-
tively, roughly 75 m apart, based on the tacho signal
that may have significant inaccuracies at low speeds.
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Fig. 3 Lateral 35 m alignment through a crossover bet-
ween A and F, generated from the bogie-mounted
yaw rate gyro
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Fig. 4 Bogie yaw through a crossover between A and F

The maximum (negative) yaw is nearly 0.077 radians,
which is consistent with a 1 in 13 crossing angle. Other
small features are visible, but it is difficult to interpret
their cause.

Figure 5 shows the vertical and lateral curvature seen
from the yaw and pitch rate gyros together with the
tacho signal, through the same crossing. The figure
shows a greater level of detail about the switch and
crossing work than is available in Figs 3 and 4.

From the lateral curvature, the progress over the
crossover is characterized by curving to the left (nega-
tive curvature) as the bogie leaves the first track, then
going more or less straight, and finally curving to the
right to join the other track. It is possible to infer the
causes of some of the features in the vertical and lateral
curvatures. At A, the bogie begins to be turned away
from the initial track, and so this must be where the
switch blade tips are located. There is a disturbance
in the vertical curvature at C and D, similar to those
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Fig. 5 Crossover: vertical and lateral curvature seen
from the bogie
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seen previously for jointed track but of smaller mag-
nitude. This is interpreted as the two crossings where
the vertical path of the bogie is disturbed as the lead-
ing and then the trailing wheelsets pass. The lateral
curvature shows some mild transient effects over the
crossings. The vertical curvature suggests that the toe
of the trailing switch is approximately at F, but the exact
position is not clear from the lateral curvature. The dis-
tances from switch toe to heal (A to B) and switch toe
to crossing (A to C) are reasonably consistent with a
standard 1 in 13 crossing.

3.4 Summary and future work

Sensors mounted only on the bogie do not allow left
and right vertical rail irregularity to be separated, and
do not give any information about gauge or twist.
Information about vertical and lateral track align-
ment over 35 m or 70 m can be obtained from yaw
and pitch rate gyros mounted on the bogie, in com-
bination with a tacho signal. While this alignment
information is good for establishing general track
condition, it does not reveal shorter wavelength details
such as those found at dipped joints and through
switch and crossing work. However, these particular
details have been shown to be observed in the cur-
vature signal derived from the pitch and yaw rate
gyros.

The next phase of in-service trials is intended to
provide data from which changes over time may be
observed. Data will also be obtained at different speeds
over the same sections of track, which will allow
the consistency of the curvature information to be
assessed.

4 MONITORING DYNAMIC PERFORMANCE
CHARACTERISTICS

The bogie, with its associated suspension compo-
nents and wheelsets, consumes a large proportion of
the maintenance budget for rolling stock. The bogie
has a variety of tasks, principally to provide guidance
both on straight track and through curves, to ensure
dynamic stability, and to provide ride comfort for the
passengers. Failure mode studies have shown that the
majority of vehicle faults emanate from faulty wheel
profiles and suspension components [12, 13].

Currently, railway condition monitoring for bogie-
related applications is primarily through signal pro-
cessing and knowledge-based assessments [14]. There
is potential for increased performance of these tech-
niques if a priori knowledge of the system is used in
the form of a system model [15]. Therefore, all of the
techniques presented here use a form of model-based
estimation.

Presented in this section are a number of techni-
ques for real-time parameter detection for three safety

critical aspects of the bogie. Firstly, the suspension
parameters are estimated, then wheel–rail adhesion
forces, and finally, three approaches to wheel–rail
profile estimation are described.

4.1 Suspension parameter estimation

Suspension parameter estimation has previously been
reported in references [16] to [18]. These articles
describe the use of model-based Rao–Blackwellized
Particle Filters to determine the condition of sec-
ondary lateral and yaw dampers. In addition, the effec-
tive conicity of a wheel–rail combination is estimated.

Simulation work showed that with a full idealized
sensor set on the wheelsets, the bogie and the body
measuring all of the lateral and yaw accelerations
(Fig. 6) plus a detailed knowledge of the track distur-
bance, the suspension parameters, and conicity could
be estimated with confidence. Eliminating the sensors
on the wheelsets marginally reduced the quality of the
estimates. When uncertainty was added to the lateral
track disturbance signal, the suspension parameter
estimates were largely unaffected. The conicity esti-
mates, however, failed to converge to the expected
value of λ = 0.15 and settled to an incorrect value with
a steady-state offset that depended on the assump-
tion of the input disturbance. This observation was
repeated with estimates from data gathered on a Class
175 Coradia vehicle as can be seen in Fig. 7.

Estimation of the suspension component parame-
ters validated the use of a model-based approach that
was subsequently adopted to estimate adhesion levels,
as described in the next subsection. The poor conicity
estimates obtained in this study motivated a search for
new techniques that will be described in section 4.3.

4.2 Low-adhesion estimation

Low-adhesion conditions are a continuing problem
for many railways. These conditions result in signifi-
cant disruption to timetabled operations, particularly
during the leaf fall season, and in some cases, can
lead to signals being passed at danger. Anything that
can help identify such conditions is potentially an
important contribution to railway technology. Such
knowledge could be used within a train, or transmit-
ted to a national adhesion management system to
inform drivers of local reductions in adhesion char-
acteristics. This subsection summarizes work on a
novel approach based on monitoring bogie dynamic
performance [19].

The work proposes that adhesion conditions can be
estimated in real time from dynamic measurements
of the vehicle’s lateral dynamics without the need to
apply braking. This technique relies on the assump-
tion that forces generated for guidance are the same
as those used for braking performance.
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Condition monitoring opportunities using vehicle-based sensors 7

Fig. 6 Plan view of half-body Coradia Class 175 railway vehicle and sensor configuration

Fig. 7 Results of parameter estimation using data from real tests: (a) estimate of Csy , (b) estimate
of Csay , (c) estimate of λ, and (d) ratio of the standard deviations over parameter estimates

As with the previous section, the model used was
a plan view, half body vehicle, and single bogie withQ3
two wheelsets, as shown in Fig. 6. It is assumed that
ideal sensors are present that can measure the lateral
and yaw accelerations of the wheelsets, the lateral and
yaw accelerations of the bogie, and the lateral acceler-
ation of the vehicle body. Wheel–rail contact forces are
typically calculated as a function of creep in the con-
tact patch and are linearized using Kalker coefficients.
This generalization is normally used for stability and

control calculations; however, force non-linearities are
important in this case to understand creep forces up to
and beyond adhesion saturation. Use was made of the
contact force model of Polach [20], which is effectively
a curve fitting mechanism.

Experimentation has shown that the initial slope of
the creep curve varies with different adhesion prop-
erties. Figure 8 shows the creep curves for varying
conditions for fixed contact patch size and load.
Although the theory predicts that at zero creepage
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8 C P Ward, P F Weston, E J C Stewart, H Li, R M Goodall, C Roberts, T X Mei, G Charles, and R Dixon

Fig. 8 Creep curves for dry, wet, low-, and very low-adhesion conditions (wheel load of 4000 kg,
20 m/s)

the gradient should remain constant for different
adhesion conditions, a number of experiments have
shown that this is not the case [21, 22]. This character-
istic is very important to the concept of low adhesion
detection, because it governs the ability to detect
adhesion level differences during normal unsaturated
dynamic running.

A pragmatic approach to finding the contact force
is to estimate its value in the wheel–rail contact. This
model ignores the complex non-linear relations and
instead considers the system as a rigid body ‘floating’
on a series of contact points. Initial application of this
technique on longitudinal forces at each wheel found
these individual forces to be unobservable, and there-
fore this technique was applied to the net lateral force
and net yaw moment at each wheelset.

Simulations performed showed that there is some
difference between the estimated creep and the real
creep forces due to the Kalman filter not distinguish-
ing between creep and gravitational forces. Varying
adhesion conditions can be detected by looking at
the power spectral density (PSD) of the estimated
creep force and creep moment time samples. This can
be observed by the peak of the PSD for the creep
forces reducing as the adhesion condition worsens
(Fig. 9). In this half vehicle simulation, the trailing
wheelset in the bogie displayed the largest difference
in creep forces between adhesion conditions. Further
tests will be required on representative models of a full
rail vehicle composition to determine which wheelsets
will provide the best signals for adhesion detection.

4.3 Wheel–rail profile estimation

The wheel–rail contact interaction is one of the
most important elements of the rail system. The
characteristic of this contact governs the straight-
line stability and the cornering performance of the
rolling stock. However, this geometric relationship
changes with time as the wheel and railhead wear.
Currently, the conditions of these two components
are monitored on a scheduled basis and are measured
independently. The concepts described in the follow-
ing subsections are for real-time assessment of the
wheel–rail contact geometry.

The speculative nature of this work requires a sim-
ple model of a single wheelset with suspended mass
(Fig. 10). The wheelset dynamics have lateral, roll, and
yaw degrees of freedom, with vertical and longitudi-
nal modes omitted due to the small level of coupling
between the planes. The suspended mass has a lateral
degree of freedom only.

Sections 4.3.2 to 4.3.4 review simulation results
of model-based parameter estimation techniques.
Included are: the use of Kalman filtering for esti-
mating effective conicity [19]; least squares estima-
tion of conicity using a piecewise cubic polynomial
(PCP) function [23, 24]; and, using local linear recur-
sive least squares estimation of the rolling radii and
contact angles. The next subsection touches on the
source of models used for each of these methods,
although each technique makes its own assumptions
and approximations.
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Condition monitoring opportunities using vehicle-based sensors 9

Fig. 9 PSD of the Kalman filter estimates of the lateral contact forces on the front and rear wheelsets
for varying adhesion conditions

Fig. 10 Schematic of the single wheelset and single mass
model used for the wheel–rail profile estimation

4.3.1 System model

A non-linear model for the wheelset lateral and
yaw dynamics is taken from reference [25] and is
shown in Appendix 2 as equations (11) and (12). The

accompanying equations for the suspended mass, the
lateral suspension force, and the yaw suspension force
are shown in equations (13) to (15), respectively. Static
non-linearities are present in the wheelset dynamics in
the form of the contact geometry described by the left
and right rolling radii and contact angles (rL, rR, δL, δR),
which are functions of the relative lateral wheel–rail
displacement. Industrial practice is to linearize the
system of equations about the central portion of the
running surface and create a function known as coni-
city, often denoted λ. This assumes point contact and
can be represented by four relationships

1
2
(rL − rR) = λy,

1
2
(rL + rR) = r0

1
2
(δL − δR) = 0,

1
2
(δL + δR) = λ

(1)

If substituted into the non-linear wheelset model,
full linear equations can be generated, equations (16)
and (17) from reference [25]. Further simplifications
to this model can be made by ignoring the smaller
creep force terms, equation (18) from reference [26].
Parameters and states are given for all of the models in
Appendix 1.

It is assumed that with all of the models there are
ideal sensor sets present, and this includes measure-
ment of the wheelset lateral, yaw and roll accelera-
tions, and the lateral acceleration of the suspended
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10 C P Ward, P F Weston, E J C Stewart, H Li, R M Goodall, C Roberts, T X Mei, G Charles, and R Dixon

mass. Further, it is assumed that the lateral rail irregu-
larity and the gauge width variation are known for use
in the system identification methods.

4.3.2 Conicity estimation through Kalman filtering

In the initial stages of the work, a Kalman filter [27]
was used to estimate a generic smooth continuous
conicity parameter applied to linear equations (16)
and (17). The state of the Kalman filter was augmented
to include the conicity parameter so that it could be
estimated, therefore making the problem non-linear
and an extended Kalman filter was used. However, this
simplistic approach failed to converge [19].

The Kalman filter was augmented further by esti-
mating the unknown track disturbance (d). Figure 11
shows the real and estimated values of the distur-
bance and conicity parameters. The estimates in sim-
ulation are acceptable, but uncertainty increases at
lower conicity values. The estimation process can be
improved further by adding another equation which
provides additional dynamic information about how
the conicity function varies with lateral displacement.
This is added into the state equations in the form

λ̇ = dλ

dy
ẏ (2)

ḋ = 0 (3)

This process stores a lookup table of corresponding
conicity relative to the wheel–rail position. The table
is then used to give the Kalman filter some knowledge
of the variability of the conicity. Figure 12 shows the

Fig. 12 Kalman filter updating estimation of the conicity
function

results of this process. Around small displacements
there is a very good fit, because a cluster of information
is available but at larger displacements, where there
may be fewer data points available, the fit fails.

4.3.3 Conicity estimation by system identification

An alternative to using the Kalman filter as a param-
eter estimator is to use system identification. The
disadvantage with this approach is that a detailed
knowledge of the input to the system from the track
disturbance is required and this might not be measur-
able in practice.

Fig. 11 Estimation of the non-linear conicity function with two additional state variables
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Condition monitoring opportunities using vehicle-based sensors 11

If the system can be modelled as a ‘grey box’
regression model defined as

ŷ(i) = X T(i)θ + ω(i) (4)

where ŷ is the estimated output variable, X is the vec-Q4
tor of regressors, θ is the vector of unknown para-
meters, ω are the combined known parameter and
regressor terms, and i is the discrete sample number,
then the parameter estimate can be obtained using
least squares estimation [28–30]. Non-linear terms can
be added into the regressor matrix, such as higher
order terms [31] or multiple PCP functions [32]. The
PCP technique is a multi-section smoothing func-
tion that enables complex non-linear shapes to be
approximated.

Figure 13 shows the results of using the PCP tech-
nique to estimate conicity as a function of relative
wheel–rail position applied to the model of equation
(18) [23]. There is a very close fit to the non-linear
shape of the conicity function. It should be noted that
the conicity may in practice be discontinuous and
therefore not so well matched when using the smooth
PCP technique.

4.3.4 Contact geometry estimation by system
identification

When the identification technique of the previous
section was applied to the non-linear model of equa-
tions (11) and (12), the conicity estimates were of poor
quality, due to the estimation model being insuffi-
cient to fit to the complex dynamics of the simulation
model. An alternative approach is to estimate the
rolling radii and contact angles directly.

The unknown non-linear parameters present in
the system equations are the four geometric com-
binations (rL + rR), (δL + δR), and (δL − δR). P8 wheel
profiles and 113A railhead shapes in various states

Fig. 13 Least squares estimated conicity function with
PCP function

of wear were used for the study. Due to the com-
plex discontinuous non-linear nature of these com-
binations, a piecewise linear approach was adopted
rather than attempting to fit parameters across the
entire range of lateral displacement. To achieve this,
the collected dynamic data are first separated into a
number of discrete sections that represent a restricted
range of the relative wheel–rail displacement. Indi-
vidual identifications are performed on each of these
sections.

It was also appreciated that the input from the track
disturbance should not be modelled as an idealized
source [33], as this would have different frequency
content to that found in a real system. Consideration
was also given to the gauge width variation as this adds
a degree of uncertainty into the model parameters.
Input data used were from the Paddington to Bristol
line with lateral disturbance and gauge width variation
sampled every 0.2 m by a track recording vehicle. The
standard deviation of the track disturbance and gauge
width variation are of similar magnitudes at approx-
imately 2 mm. Figure 14 shows (rL + rR) generated
during simulation, demonstrating that the parameters
being identified are distributed over a region rather
than being a single-valued function of lateral displace-
ment. This is because the gauge width variation adds
uncertainty to the relationship. The gauge width vari-
ation also excites the system dynamically, because
of the asymmetry of the wheelset tread shapes used,
though this is a secondary effect.

In practice, for real-time applications, the least
squares algorithm from the previous section can be
run recursively in a similar manner to a Kalman filter.
The method potentially saves computation expense,
because the calculation is not dealing with the entire
dataset for each iteration, just the latest data. This
makes it feasible for applications where the processing
power may be limited.

Fig. 14 Uncertainty in the parameters due to gauge
width variation in simulation
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Two ‘grey box’ multiple input single output
identifications are performed, where for the lateral
acceleration equation, from equation (11)

�1 =
[(

−2f22

mv
− fy

m

)
ẏ +

(
−ky

m

)
y +

(
fy

m

)
ẏm

+
(

ky

m

)
ym +

(
−2f23

mv

)
ψ̇ +

(
−W

m

)
ϕ

]
(5)

X1 = [ψ , ϕ̇, 1] (6)

and for the yaw acceleration equation, from equation
(12)

�2 =
[(

−2f23

Iv

)
ẏ +

(
−2l2f11

Iv
− 2f33

Iv
− fψ

I

)
ψ̇

]
(7)

X2 = [ψ , ϕ̇, 1] (8)

Figure 15 shows the estimates when the gauge width
variation is fixed at zero for (rL + rR) and indicates
good parameter convergence. Figure 16 shows the esti-
mates with gauge width variation present. There is
some spreading of the estimates because of the gauge
width variation. Although not shown, the estimates of
(δL + δR) fail to converge. The failure to converge may
be due to this parameter being most closely related
to the variation in gauge width, which is no longer
zero.

4.4 Summary and future work

This section covered a number of methods for the
real-time estimation of critical components associ-
ated with the bogie. The first concept was a particle
filter method for the estimation of suspension compo-
nents. This showed that a reduced sensor set, on the
bogie and the body, could be used to estimate damper

Fig. 15 Recursive least squares estimate of the rolling
radii sums with no gauge width variation

Fig. 16 Recursive least squares estimate of the rolling
radii sums with gauge width variation

coefficients, but was unable to estimate the effective
conicity. This was demonstrated with real data col-
lected from a Class 175 train. The next step is to apply
this technique in real time to a suspension parameter
estimation problem.

The second concept was a method for estimating
wheel–rail adhesion using a Kalman filter. Simulations
showed that, in principle, very low-adhesion condi-
tions can be detected. This technique will be applied
to a real system in the future.

The final concept was estimation of the wheel–rail
profile. Kalman filtering and non-linear identification
were applied to the conicity estimation problem. A
piecewise-linear identification was also applied to the
direct estimation of the contact geometry. All the tech-
niques demonstrated the potential of the concept,
with the main disadvantage being that the distur-
bance input from the rail is required, and that this may
be difficult to measure. Possible alternative solutions
for this are a combined state/parameter estimation
loop to first estimate the disturbance, or the use of
frequency analysis of output signals along a known
section of track, both of which are currently being
investigated.

5 VEHICLE SPEED MONITORING

The speed of a railway vehicle is normally measured
through the use of inductive sensors detecting the
teeth of a gearbox or slots of a slotted wheel [34].
However, significant problems arise when the con-
ditions cannot be satisfied. When wheel slip/slide
occurs (e.g. due to excessive tractive effort and/or
extremely low adhesion, the measurement becomes
unreliable as large errors may be introduced from
the wheel slip/slide regardless how accurate the mea-
surement of the wheel speed is due to the much
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Condition monitoring opportunities using vehicle-based sensors 13

increased speed difference between the axle and the
vehicle). The use of unbraked and unpowered axle
can solve the problem, but is not always desirable
as the reduction on the number of axles for traction
and/or braking may compromise the train control in
low-adhesion conditions. Also, the tachometry-based
technique requires regular re-calibration as the wheel
diameter is reduced due to wear. It is also worth
noting that the new technique could be used in
conjunction with tachometry to avoid the need for
re-calibration.

Although a number of new methods have been pro-
posed, most noticeably those based on spatial mea-
surement/filtering using sensing technologies such as
Doppler radar [35], Eddy current sensors [36], and
image processing [37], those have not been applied
for traction and braking control applications because
the measurement accuracy and reliability achievable
are not considered sufficient.

5.1 Speed measurement using bogie-based
inertial sensors

The idea for monitoring vehicle speed included in
this article was first proposed in 2008 [38, 39] and
was followed by more detailed studies that tackle
specific technical issues [40, 41]. The new concept
was conceived from the observation that the absolute
vehicle speed determines the time delay in bounce
motion between any two wheelsets as all railway
wheelsets travel on and pass any point of a track
one after another. The time delay in the wheelset
motions in response to the track irregularities if/when
detected can therefore be used to determine the vehi-
cle speed. The measurement can be highly accurate
if the speed does not change rapidly and/or the time
required to detect the delays is sufficiently small not
to introduce significant errors in rapid acceleration or
deceleration.

A measurement scheme that takes into consider-
ation the practical requirements of the rail industry
was proposed as illustrated in Fig. 17. The need for
the installation of any sensors on the wheelsets/axle
boxes, which presents a harsh working environ-
ment for sensors, is removed. This is replaced by
using inertial sensors mounted on a bogie frame,
which is preferred because the reliability require-
ment and also the cost of the sensors will be
much lower compared with axle-mounted ones. An
intelligent data processing method is then devel-
oped to derive (or estimate) the wheelset bounce
motions from the measured bogie bounce and pitch
vibrations. The data processing is made as sim-
ple as possible to reduce potential difficulties in
practical implementation, but sufficiently effective
to obtain the estimation of the wheelset motions
suitable for detecting time delays between them

Fig. 17 Speed measurement scheme

[38]. The detection of the time shift is achieved
by computing the cross-correlations of the two fil-
tered signals and detecting the time shift at the
peak correlation value. It is then straightforward to
calculate the vehicle speed (Vm) from the detected
time delay (Tdelay) and semi wheel space (Lb) using
equation (9)

Vm = 2Lb

Tdelay
(9)

5.2 Measurement performance

As the proposed technique is independent from the
wheel rotational speed of the wheels/wheelsets, the
measurement is not affected by wheel slip/slide and
it does not require knowledge of wheel radius. There
is also a clear advantage of the low sensing require-
ment. The use of inertial sensors on the bogies can be
expected to become standard installations in future
railway vehicles, not least as required for tilting con-
trol systems, so that there is little extra cost involved
for practical implementation of the technique. The
measurement technique is also tolerant to sensor
errors (e.g. the effect of sensor noise tends to be fil-
tered out by the cross-correlation computations as the
noise components are uncorrelated between different
signals [40]).

A moving window of sampled data for cross-
correlation calculations as illustrated in equation (2)
will enable the continuous detection and update of
the train speed and is used in the study for perfor-
mance assessment. The number of shifted intervals m
is incremented from −N to N , where N is the total
number of sampled data used for each time window
(Twdw = N ∗ Ts) of the running cross-correlation

Rxy(m) =
N−m∑

i=1

x(i + m)y(i) (10)
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Fig. 18 Detected vehicle speed on a low-speed curve

In each computation step (for each time window),
the detection of the peak point of cross-correlations
and the corresponding delay intervals will be carried
out which is in turn used to calculate the speed (Vm).
Repeating the computation steps, as the time win-
dow moves, provides a regular and fast update of the
measured speed signal at the rate of the sampling
interval (Ts).

There are two factors that may potentially affect the
accuracy of the scheme. One is the truncation error
introduced due to the finite sampling rate for collect-
ing/processing data, and the other is due to a delay
in the speed detection during vehicle acceleration or
deceleration. However, the use of reasonably selected
sampling rate and data length for the new measure-
ment technique will be able to deliver a high level of
performance as illustrated in the two examples given
below.

Figure 18 shows the estimated speed of the pro-
posed measurement method, where a comprehensive
vehicle model for a conventional bogie vehicle in a
multi-body simulation package (Vampire) environ-
ment is run at the two different speeds of 50 km/h and
100 km/h on a track profile that includes track irregu-
larities superimposed on a low-speed curve consisting
of a constant curve section of 400 m in curve radius and
6◦ in cant angle connected to a straight track section
via a transition at either end. Curved tracks present
one of the most difficult conditions for the proposed
measurement scheme, as there will be variations in the
wheel space (increased between the outer wheels and
decreased for the inner wheels).

The measurement for the vehicle speed of 50 km/h
varies within a small range of the real speed and the
maximum measurement error is 0.22 km/h. The mea-
surement for the speed of 100 km/h gives also a small
error range with a maximum error of 0.65 km/h. The
measurement errors here are largely due to the trun-
cation caused by the discrete time processing. In this
case, a sampling interval of 1 ms is used. For the wheel
space of 2.6 m for the vehicle used in this study, the

Fig. 19 Detected vehicle speed during vehicle accelera-
tion

truncation errors are expected to be within [−0.22,
+0.05 km/h] at the vehicle speed 50 km/h and [−0.57,
+0.65 km/h] at the speed of 100 km/h, which are con-
firmed by the simulation results. It is possible to reduce
the error further by using a smaller sampling interval,
but this would have to be balanced with the increased
computational demand [41].

Figure 19 shows the second type of error in the form
of a measurement delay when the vehicle accelerates
(from 40 to 48 m/s, or from 144 to 172.8 km/h) at the
rate of 1 m/s2, where the truncation error (in a ran-
dom manner) is superimposed with a steady state
error (or offset) due to the delay. This is because the
cross-correlation technique detects the average time
shift between the two signals for a given time win-
dow and therefore is likely to cause a measurement
error during acceleration or deceleration. This type
of error tends to be more significant at low speeds,
as longer time windows are required to provide an
accurate measurement of the time shift [38].

5.3 Summary and future work

Reliable and accurate measurement of the vehicle
ground speed even in adverse conditions such as
wheel slip/slide does not have to be achieved through
the expensive equipment and/or complex systems. It
is possible to provide an effective solution with an
innovative use of inertial sensors as demonstrated
in this study, even though this type of sensors is not
normally associated with speed measurement. The
performance of the new measurement method can
be substantially better than the requirement specified
in the UIC standard for wheel slide control (UIC- Q5
5014-05) [40]. Possible applications for the proposed
measurement solution include.

1. Replacement or supplement of the conventional
axle-based speed sensors to provide more accurate
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Condition monitoring opportunities using vehicle-based sensors 15

measurement for traction/braking control systems
in all operation conditions including wheel slip
or slide.

2. A tool for accurate calibration of the axle-based
sensors, the accuracy of which is affected by the
changes in wheel contact radius due to wear/
re-profiling, etc.

3. It can be particularly useful in conditions such as
tunnels and underground where the use of other
devices (e.g. GPS) may be problematic.

6 CONCLUSIONS–TRENDS, OPPORTUNITIES,
AND RESEARCH CHALLENGES

The article has illustrated potential monitoring oppor-
tunities arising from advanced processing of vehicle-
mounted sensors: two applications relate to condition
monitoring of both track and vehicles for enhanced
maintenance and/or improved system reliability, and
a third provides operational information for use on
board the train in real time.

The emphasis has very much been upon developing
the processing concepts and the associated algo-
rithms, but it is of course necessary to convert the con-
cepts into practical engineering solutions, principally
involving (i) identification of minimized sensor con-
figurations for lower cost and (ii) high-reliability solu-
tions to ensure consistently verifiable information.
The second point is particularly important, because
without good-quality, reliable information the system
will be difficult to validate where system integrity is
involved, and may also be discredited where it is used
to inform maintenance processes.

As the title implies, the article has strongly focused
upon the on-train sensing and processing aspects,
but one of the key issues that must be addressed
prior to the deployment of practical condition mon-
itoring systems is the management of data once it
leaves the vehicle, in particular because the collec-
tion of in-service data will inevitably lead to the need
to retain large quantities of data. Data need to be
retained and processed in a number of different ways,
ideally together with the context of how, when, and
where they were collected. Initially it is important
that the data are verified to ensure that they are cor-
rect and no sensor errors are present (off-set faults,
noise, null values, communication errors, etc.). Sec-
ondly, straightforward robust algorithms need to be
used to ensure that critical faults are identified in close
to real-time. Thirdly, the data need to be stored for
post-processing (the main focus of this article) to iden-
tify longer-term incipient faults. As confidence grows
in the accuracy of condition monitoring algorithms
it will not be necessary to retain data for long peri-
ods of time. As more data are collected from both
infrastructure and vehicle-borne sensors, the railway
industry needs to address the need for standards

for data collection, such standards need to address
the relationship between data collection by various
means.

It is inevitable that condition monitoring technol-
ogy will increasingly take advantage of new pro-
cessing techniques as they emerge, both to extract
higher-integrity information from existing sets of
sensors and to provide lower-cost solutions using
simpler, more robust sensor sets. It is therefore
important to maintain a ‘watching brief’ on such
theoretical developments, the challenge being to
identify these possibilities, research their applica-
tion within railway systems, and critically evaluate
their prospective contributions from a business view-
point.
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APPENDIX 1

Notation

d lateral track displacement (m)
fy lateral damper coefficient (Nm2)
fψ yaw damper coefficient (Nms)
Fs lateral suspension force (N)
f11 longitudinal creep coefficient (N)
f22 lateral creep coefficient (N)
f23 lateral/spin creep coefficient (Nm)
f33 longitudinal creep coefficient (Nm2)

g track gauge width (m)
I wheelset yaw inertia (kgm2)
Iwy wheelset roll inertia (kgm2)
ky lateral suspension stiffness (N/m)
kψ yaw suspension stiffness (Nm)
l half wheelset width (m)
m wheelset mass (kg)
mm suspended mass (kg)
Lb semi wheel spacing (m)
Ms suspension moment (Nm)
N total number of sampled data
r0 nominal rolling radius (m)
rL left rolling radius (m)
rR right rolling radius (m)
Rxy running cross correlation
Tdelay time delay (s)
Twdw time window (s)
V vehicle speed (m/s)
Vm estimated vehicle speed (m/s)
W wheelset weight (N)
X least squares regressor matrix
y lateral displacement (m)
ÿ lateral acceleration (m/s2)

ẏ lateral rate (m/s)
ŷ least squares estimation output vector

δL left contact angle (rad)
δR right contact angle (rad)
θ least squares parameter estimate vector
λ wheelset linear conicity
ϕ̇ wheelset roll rate (rad/s)
φ wheelset roll angle (rad)
ψ wheelset yaw angle (rad)
ψ̈ wheelset yaw acceleration (rad/s2)

ψ̇ wheelset yaw rate (rad/s)
� grey box least squares known state and

parameter matrix

APPENDIX 2

A2.1 Monitoring dynamic performance
characteristics equations

A2.1.1 Non-linear wheelset and suspended mass model

Wheelset lateral dynamics

mÿ + 2f22

V

[
ẏ + rL + rR

2
ϕ̇ − V ψ

]
+ 2f11

[
1 − rL + rR

2r0

]
ψ

+ 2f23

[
ψ̇

V
− δL − δR

2r0

]
+ W

[
δL − δR

2
+ ϕ

]
= Fs

(11)

Wheelset yaw dynamics

I ψ̈ + Iwy
V
r0

ϕ̇ + 2l2f11

r0

(
rL − rR

2l

)
− 2f23

V
ẏ

− f23(rL + rR)

V
ϕ̇ + 2f23ψ + 2l2f11

V
ψ̇ − f33(δL − δR)

r0

− lW (δL + δR)

2
ψ + 2f33

V
ψ̇ = Ms (12)

Suspended mass lateral dynamics

ÿ = 1
mm

(Fs) (13)

Lateral suspension force

Fs = ky(ym − y) + fy(ẏm − ẏ) (14)

Suspension yaw moment

Ms = −kψψ − fψψ̇ (15)

A2.2 Full linear equations

Wheelset lateral dynamics

mÿ + 2f22

V

[
ẏ + r0

λ

l
ẏ − V ψ

]
+ 2f23

V
ψ̇ + W λ

l
y = Fs

(16)

Wheelset yaw dynamics

I ψ̈ + Iwy
V λ

r0l
ẏ + 2l2f11λ

r0
y − 2f23

V

(
ẏ + r0λ

l
ẏ − V ψ

)

+ 2l2f11

V
ψ̇ − lW λψ + 2f33

V
ψ̇ = Ms (17)

A2.3 Simplified linear equation

Wheelset yaw dynamics

I ψ̈ + 2l2f11λ

r0
y + 2l2f11

V
ψ̇ = Ms (18)
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