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ABSTRACT 
Wavelet transform is a recent signal analysis tool that is 
already been successfully used in image, video and 
speech compression applications. This paper looks at the 
Wavelet transform as a method of compressing computer 
network measurements produced from high-speed 
networks. Such networks produce a large amount of 
information over a long period of time, requiring 
compression for archiving. An important aspect of the 
compression is to maintain the quality in important 
features of signals. In this paper two known wavelet 
coefficient threshold selection techniques are examined 
and utilized separately along with an efficient method for 
storing wavelet coefficients. Experimental results are 
obtained to compare the behaviour of the two threshold 
selection schemes on delay and data rate signals, by using 
the mean square error (MSE) statistic, PSNR and the file 
size of the compressed output.  
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1.  Introduction 
 

This paper is motivated by the need to monitor the 
performance of high-speed communication networks of 
the future and particularly of the UKLight experimental 
network. The UKLight initiative is a 10 Gb/s, high 
capacity research network facility that interconnects 
JANET, the UK’s research and educational network, with 
several other continental research networks [1]. 

Monitoring for a long period of time such high-speed 
networks produces a high volume of data, making the 
storage of this information practically inefficient. To this 
end, there is a need to derive an efficient method of data 
analysis and reduction in order to archive and store the 
enormous amount of monitored traffic [2].  

Satisfying this need is useful for researchers who run 
their experiments on the monitored network. The 
researchers would like to know how their experiments 
affect the network's behavior in terms of utilization, delay, 
packet loss, data rate etc. Such signals are derived from 
packet information and can be represented as a time series 

process. Thus, these signals can be analyzed and 
compressed with a signal analysis technique. By 
compressing and storing such measurements, researchers 
have the ability to know how their algorithms behaved at 
a particular moment in the past or at present. 

In this paper, Wavelet analysis is applied to network 
delay and data rate measurements in order to compress 
the size of the information without reducing the quality in 
important features of the signal. The data rate signals are 
from a real network and the delay signals are generated in 
HSN’s test bed. Experimental results are obtained to 
compare two different thresholding techniques by using 
the mean square error (MSE), PSNR and the compression 
ratio (C.R) between the original and reconstructed signals. 

The rest of the paper is structured as follows. In 
section 2 the concepts of Wavelet analysis, Wavelet 
compression and thresholding are introduced.  In Section 
3 the methodology of this work is presented with 
particular emphasis on the two examined threshold 
selection techniques. Section 4 discusses the results of the 
two proposed methods after being applied to thirty delay 
and thirty data rate measurement signals. Finally, the 
conclusions and the future work are given in Section 5. 
 
2. Wavelets, Thresholds and Denoising 
 
2.1 Advantages of wavelets 

 
The Heisenberg uncertainty principle suggests that it 

is impossible to know the exact frequency and the exact 
time of occurrence of this frequency in a signal but it is 
possible to obtain the frequency bands that exist in a time 
interval. In other words, there is a trade off between the 
resolution of the time and the frequency domain [3, 4]. 

In contrast with other techniques that use a constant 
window size to analyze a section of a signal (for example 
DCT, STFT), wavelet analysis has the benefit of varying 
the window size. This means that wavelets can efficiently 
trade frequency resolution for time resolution or vice 
versa.  For that reason, wavelets can adapt to various 
time-scales and perform local analysis. With simple 
words, wavelets can reveal both the forest and the trees 
[5, 6]. 



The local analysis feature of the wavelets provides 
the additional benefit of approximating an examined 
signal compactly, i.e. with few coefficients, making 
wavelets an appropriate choice for compression 
applications [6]. 

The finite nature of the wavelet can describe local 
features of the signal better than the infinite length of a 
sinusoid. Thus, another attribute of wavelet analysis is the 
ability to detect characteristics of non-stationary signals, 
i.e. stochastic (random) signals whose statistical 
properties change with time. Most interesting signals are 
non-stationary signals [7,8]. 

 
2.2 Wavelet analysis 
 

Wavelet analysis is not a compression tool but a 
transformation to a domain that provides a different view 
of the data that is more eligible to compression than the 
original data itself. Following the analysis stage, classical 
compression techniques can be applied on the produced 
wavelet coefficients [7].  

The level of wavelet decomposition determines the 
scale of detail that is subtracted from the analysed signal. 
As the depth of decomposition increases, a cruder 
approximation of the signal is analysed and the detail 
wavelet coefficients correspond to a larger scale of detail. 
If the scale of detail exceeds a limit, then the analysed 
signal becomes distorted [7]. 

 
2.3 Achieving compression 
 

What really matters in the compression scheme is the 
sequence of zero coefficients. Zero coefficients should be 
gathered sequentially rather than spread and being 
separated by non-zero values. If all zero coefficients are 
gathered together then by applying Run Length Encoding 
(RLE) we can take advantage of the repetitive values and 
achieve compression. 

Many of the detail coefficients produced from the 
wavelet analysis have an absolute value close to zero. 
These small coefficients are likely attributed to the noise 
of the signal, while large coefficients represent important 
characteristics of the signal. The small coefficients 
contain a small percentage of the signal’s total energy and 
can be discarded without a significant loss in the quality 
of the signal and more importantly of the interesting 
features [7,8,9]. 

The detail coefficients can be discarded by applying a 
threshold that sets to zero all coefficients that are less than 
this threshold. Thus the sequence of zeros is increased 
while an insignificant amount of the signal’s energy is 
lost. A higher threshold would yield a better compression 
but a greater loss in the signal’s quality [7]. 
 
3.  Methodology 
 

The connection between lossy compression and 
denoising has been discussed in several papers, like [9] 

and references therein. In this work, denoising techniques 
are used in order to achieve compression.   

The compression - decompression algorithm is given 
below:  

 
1. Perform Wavelet analysis at multiple levels on the 
examined signal 
2. For each decomposition level select the detail 
coefficient threshold as discussed in section 3.1 
3. Apply the threshold on the detail coefficients 
4. Normalize the coefficients as discussed in section 3.2 
5. Apply Run Length Encoding (RLE) 
6. Apply inverse RLE 
7. De-normalize coefficients 
8. Perform Inverse Wavelet transform to reconstruct the 
signal  
  
3.1 Threshold selection 
 

Even though a lot of research has been done in 
selecting a threshold [5, 7-13], most of it is focused on 
recovering signals that have been corrupted by additive 
Gaussian noise. In this paper, the examined signals, 
network delay and data rate measurements, are not 
affected by noise, thus a threshold selection scheme that 
depends on the values of the wavelet coefficients has to 
be deployed.  

The first scheme that is examined is proposed by 
Birge and Massatrt and has become a popular threshold 
selection technique used widely in image and speech 
compression [5]. 

The scheme depends on three parameters: 
1. The level of decomposition J 
2. A positive constant M 
3. A sparsity parameter a 
 
This scheme keeps all approximation coefficients at 

the level of decomposition J. At each level i only the ni 
largest coefficients are kept. ni is estimated by this 
formula: 
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Usually, a takes the value 1.5 for compression and M 

depends on how scarcely the wavelet coefficients are 
spread and on the number L of approximation coefficients 
in the coarsest level (Table 1). For highly scarcely spread 
coefficients, M becomes equal to the number L. For low 
scarcely spread coefficients M becomes twice the number 
L. 

 
Scarce M value 
High L 

Medium 1.5*L 
Low 2*L 

 
Table 1: M depends on how scarce the coefficients are spread. 



For delay signals the high scarcity option of the Birge 
Massart algorithm was used. For data rate the low scarcity 
was more appropriate as more coefficients were required 
for more precise reconstruction. 

The second of the examined threshold selection 
techniques was recently proposed by Gupta and Kaur 
[14]. They proposed an adaptive thresholding technique 
that is calculated from the value of the wavelet 
coefficients. Specifically, the standard deviation (σ) and 
mean (µ) of the absolute value of non-zero detail 
coefficients is first calculated. If the standard deviation is 
larger than the mean, then the threshold is set to two times 
the mean (2*µ), otherwise it is equal to the mean minus 
the standard deviation (µ-σ). 

In the following paragraphs the first technique will be 
referred to as BM technique and the second as GK 
technique from the initials of the names of their 
developers. 
 
3.2 Normalization 
 

In order to improve the way that data is stored, 
normalization of the coefficients takes place. The aim is 
to use just 8 bits to store one coefficient. But with an 8 bit 
variable only 256 values can be stored (0…255) or 127 
values (27 bits) saving one bit for the sign of the wavelet 
coefficient. So, first the coefficient values have to be 
normalised using the following formula: 
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where x is a coefficient, min is the minimum value that 
appears in the coefficients and max the maximum. The 
scaling factor in this case is 127, which is the maximum 
value of a signed number that can be stored in 1 byte. In 
order to avoid the detail coefficients to be skewed by the 
larger values of the approximation coefficients, the 
normalization process is applied separately for the detail 
and for the approximation coefficients. 
 
3.3 Run Length Encoding 
 

The simplest version of the RLE algorithm replaces a 
sequentially repetitive symbol with the symbol itself 
followed by a number that indicates how many times the 
symbol should be repeated. However, this simple version 
of RLE expands single symbols into a pair of symbol-run 
length.  

In order to avoid this shortcoming, a more 
sophisticated RLE implementation utilises a run length 
that is used only for symbols that appear more than 2 
times. This method has beneficial effect only for symbols 
that appear 3 or more times [15]. However, the RLE 
limitation persists for symbols that appear sequentially for 
just two instances and expand into symbol-symbol-run 
length triple.  
 

4.  Results and Discussion 
 

For the purpose of examining the behaviour of the 
applied threshold selection techniques 30 delay and 30 
data rate measurement signals are examined. Each signal 
has 1024 measurement points and is decomposed at all 
possible levels, level 1 through level 10, using the Haar 
wavelet. The following PSNR, MSE and C.R. values refer 
to the average over those 30 signals (delay or data rate) 
except when explicitly noting for which signal they refer. 

In order to examine if the normalization and RLE 
steps of the coefficient values in the compression scheme 
have any negative effect on the error of the reconstructed 
signal, the same experiments as above were repeated but 
without applying the normalization and RLE steps. The 
MSE is calculated for relative comparison between the 
cases of applying the normalization and RLE steps and of 
omitting them.  

The results show that for most cases the average error 
of compression performs similarly either if normalization 
and RLE are applied or not. The only exception happens 
with the data rate signals examined with the GK 
technique. The reason is discussed later in section 4.2. 

MSE is also used to indicate how the error increases 
with the increase of the decomposition level. MSE is 
calculated by 
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Its value itself is not of concern, as it does not reveal 
much about the quality of the reconstructed signal. The 
quality of the reconstructed signal is compared with the 
original by using the PSNR value calculated by  
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where MAX is the maximum value of the signal. 
In addition to PSNR values there are also figures of 

some signals with the original and the reconstructed 
signal. The error is also provided for easier understanding 
of the magnitude of error.  

 
4.1 Results for Birge Massart (BM) technique 
 
Fig. 1 and 2 show the compression performance and 

the error of compression for the delay signals with respect 
to the level of decomposition. As the level of 
decomposition increases, the number of approximation 
coefficients decreases and so does the number of kept 
detail coefficients as can be inferred from equation (1).  

This has as a result the MSE and C.R. to become very 
high above level 4, giving an average PSNR of 34.2 dB at 
level 4. PSNR values less than 35 dB loose some of the 
important signal characteristics while PSNR values less 
than 30 dB are not acceptable for such signals. Table 2 
includes PSNR and C.R. values for the first four levels 
where PSNR remains above 30 dB. 

The first two levels of decomposition give good 
PSNR values (above 40 dB) and perform very well for 



almost all signals. Fig. 3 shows signal 24, its 
reconstruction and the error after analysis at level 2. 

Signal 10 of the experiments is the only signal from 
the delay measurements that is much more bursty than the 
rest. BM technique fails to retain the quality of that signal 
even in the lowest level of decomposition giving a PSNR 
of 25.7 db at level 1 (Fig. 4). Such bursty signals require 
more coefficients to be kept in order to preserve their 
quality and thus a more appropriate algorithm.  
 

 
Fig. 1: Performance of compression for delay signals with BM 

technique 
 

 
Fig. 2: Error of compression for delay signals with BM 

technique 
 

Level L1 L2 L3 L4 
PSNR 51.2 43 38.5 34.2 
C.R. 5.3 7.9 13.1 22.6 

 
Table 2: PSNR and C.R. values for levels 1-4 of decomposition 

for delay signals with the BM technique 
 

 
Fig. 3: Delay signal 24 decomposed at level 2 with BM method, 

PSNR = 40.3 dB 

 
Fig. 4: Delay signal 10 decomposed at level 1with BM method, 

PSNR = 25.7 dB 
 

Regarding the Data Rate signals, the performance of 
compression behaves as in delay signals. The significant 
increase in error in level 10 (Fig. 6) occurs because the 
nominator in equation (1) is very small which makes the 
number of kept detail coefficients in each level to be very 
small. Compression ratios and PSNR values for the first 4 
levels are given in Table 3. From level 5 and above the 
average PSNR values become less than 30 dB and are not 
included in Table 3 

BM technique behaves the same in all cases of Data 
rate signals keeping close values of PSNR for all signals 
ranging from 49 dB to 52.8 dB in level 1 and 35.7 db to 
40.7 in level 2. Fig. 7 shows signal 16, its reconstruction 
with PSNR=40.7 dB and the error after analysis at level 2.  

  

 
Fig. 5: Performance of compression for data rate signals with 

BM technique 
 

 
Fig. 6: Error of compression for data rate signals with BM 

technique 
 
 



 
Level L1 L2 L3 L4 
PSNR 49 35.7 32.2 30.4 
C.R. 10.3 13.2 20.5 34.2 

 
Table 3: PSNR and C.R. values for levels 1-4 of decomposition 

for data rate signals with the BM technique 

 
Fig. 7: Data rate signal 16 decomposed at level 2 with BM 

method, PSNR= 40.7 dB 
 

4.2 Results for Gupta Kaur (GK) technique 
 

 First the results for delay signals using the GK 
technique are discussed and then the results of data rate 
signals. 

Fig. 8 shows the performance of compression and 
Fig. 9 the average MSE of the reconstructed signals over 
the depth of decomposition. The C.R. begins at 7.5 in 
level 1 and stabilizes around 17 from level 6 and above. 
The MSE stabilizes after level 7. The PSNR and C.R. 
average values for all levels are in Table 4a and 4b. 

In contradiction to the BM technique, GK performs 
very well in keeping the reconstructed quality of signal 10 
even at the crudest level. This happens because GK is 
based on the statistical characteristics of the coefficients 
to determine the number of coefficients that should be 
kept. The results can be seen in Fig. 10. 
 

 
Fig. 8: Performance of compression for delay signals with GK 

technique 
 

 
Fig. 9: Error of compression for delay signals with GK 

technique 
 

Level L1 L2 L3 L4 L5 
PSNR 44.3 42 41 40.5 40 
C.R. 7.5 10.7 13.6 15.5 16.5 

 
Table 4 (a): PSNR and C.R. values for levels 1-5 of 

decomposition for delay signals with the GK technique 
 

Level L6 L7 L8 L9 L10 
PSNR 39.6 39.2 39.2 39.2 39.2 
C.R. 17 17 17 17.2 17.4 

 
Table 4 (b): PSNR and C.R. values for levels 6-10 of 

decomposition for delay signals with the GK technique 

 
Fig. 10: Delay signal 10 decomposed at level 10 with GK 

method, PSNR= 44.3 dB 
 

In contrast with the delay signals, for the data rate 
signals there is no significant increase in the compression 
ratio as the level of decomposition increases (Fig. 11). 
The C.R. range is between 10.5 and 11.2 in contrast with 
the wider range (7.5 – 17.4) for delay signals (see Table 
4a b). This happens because data rate signals have a lot of 
high frequency components that make the GK algorithm 
to keep a lot of detail coefficients. The PSNR and C.R. 
average values for all levels of decomposition are in 
Table 5a and 5b. 

An interesting implication of the normalization and 
RLE steps with the wavelet coefficients of data rate 
signals is that the compression performance does not 
stabilize as it happens with the delay signals. In particular, 



there is a decrease in C.R. after level 5 and a sudden peak 
at level 10. 

This is because by increasing the level of 
decomposition in data rate signals, some of the produced 
coefficients are much larger than the rest of coefficients. 
In other words the dynamic range of the detail 
coefficients is being increased. For this reason, after the 
normalization step, close values are assigned the same 
normalized value. This phenomenon happens occasionally 
across the coefficients taking advantage of the RLE 
limitation and producing file sizes that are larger than the 
files before the RLE step. 

In the highest decomposition level, the maximum 
detail coefficient value is so large that normalizes many 
detail coefficients to the value of zero (because 
denominator in equation (2) is very high). In that case the 
RLE will take advantage of the repeating values but also 
the MSE will increase because of the loss of detail 
coefficients (Fig. 12).  

This is the only case that the normalization and RLE 
steps increase significantly the error of the reconstructed 
signal. However, this is only limited in the last three 
levels of decomposition (Fig. 12). 

Fig. 13 shows an example of a data rate signal 
decomposed at level 5 with the GK method. The 
reconstructed signal has a very good quality with 
PSNR=56.9 db and very low error. 

Fig. 14 shows a more interesting case of a data rate 
signal. This signal includes a spike, which is kept intact 
after the compression. A characteristic of the GK 
algorithm is that it detects the spike as a more interesting 
feature than the rest of the signal.   

As a result, the algorithm’s first priority becomes to 
preserve this characteristic and then comes the rest of the 
signal. That is the reason why PSNR is around 35 and 
there is much higher error in comparison to Fig. 13.  

 
Fig. 11: Performance of compression for data rate signals with 

GK technique 

 
Fig. 12: Error of compression for data rate signals with GK 

technique 

 
Level L1 L2 L3 L4 L5 
PSNR 56.3 55.6 55.4 55.2 54.9 
C.R. 10.5 10.8 11 11.1 11.2 

 
Table 5 (a): PSNR values for levels 1-5 of decomposition for 

data rate signals with the GK technique 
 

Level L6 L7 L8 L9 L10 
PSNR 53.4 49 43.9 42.1 39.4 
C.R. 11.2 11.1 10.9 10.7 11 

 
Table 5 (b): PSNR values for levels 6-10 of decomposition for 

data rate signals with the GK technique 

 
Fig. 13: Data rate signal 20 decomposed at level 5 with GK 

method, PSNR = 56.9 

 
Fig. 14: Data rate signal 16 decomposed at level 5 with GK 

method, PSNR = 35.4 dB 
 
5. Conclusions – Future work 
 

This paper implements Wavelet based denoising in 
order to achieve lossy compression of network delay and 
data rate measurements while maintaining the 
characteristic features of the examined signals. Two 
techniques of coefficient threshold selection are utilized 
and their behaviour on these types of signals is examined.  

In general, the BM technique increases the MSE and 
C.R. as the level of decomposition increases. On the other 



hand, the GK method restricts C.R. in higher levels of 
decomposition while keeping the quality of the 
reconstructed signals at reasonable levels. 

For the delay signals, the BM technique gives better 
PSNR than the GK only in the first two levels. However, 
the offered C.R. for both of those levels is lower than the 
one offered by GK (see Tables 2, 4a). 

For data rate signals the BM technique is not giving 
better average PSNR, than GK even in the first level. The 
same applies for the C.R. However, it gives more 
consistent PSNR values for data rate signals (see Tables 
3, 5a). 

The GK method is more appropriate for both types of 
signals as it offers more reasonable C.R. and good PSNR 
values even when reaching high levels of decomposition. 
It can adapt to bursty signals like in the case of signal 10 
(Fig. 10) and it does not require any parameter like BM. 
The reconstructed signals preserve quality on interesting 
features while smoothing out the detail information in 
non-significant parts. 

However, some improvements should be done in how 
the algorithm deals with the threshold in cases that spikes 
occur in an already bursty signal like in signal 16 (Fig. 
14). This would lead to more control over the quality of 
the reconstructed signal. 

The GK algorithm is already implemented in CoMo. 
CoMo is a passive monitoring platform developed for the 
purpose of monitoring network links at high speeds and 
replying to real time queries [16, 17].  

CoMo has various modules that each calculates one 
or more measurements. The proposed algorithm is 
imbedded in the modules and compresses these 
measurements. When CoMo receives a query, the 
information is first decomposed and then shown to the 
end user [16, 17]. 
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