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Abstract— This paper studies order reduction issues for
a vehicle active suspension system throughout its modelling,
H-infinity controller design and controller refinement. Com-
puter simulations demonstrate that an H-infinity controller
for a full active suspension can be significantly reduced to
nearly one third of its full order, while the active suspension
performance is only slightly degraded. As a by-product, this
paper also provides an explicit algorithm for reduced H-
infinity control for singular and non-singular continuous-
time systems.

I. INTRODUCTION

The majority of strategies for active suspensions in-
volve observer-based, optimal and robust control, but their
application in engineering practice is hindered by the
resulting high order controllers. Among the over two
thousand publications on active suspension control, only a
few address the order reduction issue. In [1], Hankel norm
reduction method was applied to a half vehicle together
with a comparison with other model reduction methods.
In [2] the order of a quarter-vehicle suspension model
was reduced by analysing the dominant states of the
nonlinear model. In [3] the singular perturbation method
was applied to a full-vehicle suspension model. In [4] an
empirical Gramian balanced model-reduction strategy was
utilised to reduce a nonlinear quarter-vehicle suspension
model. In [5], [6], [7], a full suspension model was
decoupled into two half models or four quarter models,
which reduced model orders but increased the number of
controllers.

Reduced H∞ control has been studied for over a
decade, and majority of the research has been on singular
systems [8], [9]. With the application of linear matrix
inequality (LMI) techniques to H∞ control, research has
moved increasingly to LMI-based H∞ reduced control
problems [10], [11], [12]. More recently, [13] presented
a unified method for reduced H∞ control for both
continuous- and discrete-time general systems. In [13],
only a very simple numerical example was demonstrated.
It is therefore of interest to investigate the applicability of
this theory to a practical engineering problem, such as an

active suspension system, and this is one of motivations
for carrying out the research presented in this paper.

Compared to reduced H∞ control, general model re-
duction problems have been studied since the emergence
of the modern control theory. Reduction techniques can
be generally classified into two categories: (i) direct
methods, i.e. direct reduced controller design, and (ii)
non-direct methods, i.e. model reduction before a design
or a controller reduction after. It is of interest to see how
these methods can work together throughout the whole
process of active suspension system design, and this also
motivated the research.

The paper is organised as follows: Section II presents
the full suspension system model and its approximation
via model reduction. Section III presents an explicit
algorithm for reduced H∞ control and applies it to
the reduced-order suspension system model to obtain a
reduced H∞ controller (with further controller reduction
using the balanced truncation method). The controller is
assessed by computer simulations in Section IV. Finally,
concluding remarks are made and future research direc-
tions are mapped out in Section V.

The following notation is used in this paper, I and
0 denote a unit and a zero matrix respectively. The
dimension subscript of the matrices will be added if
necessary. For a matrix A, rank(A) is its rank, σi(A) is
its ith Hankel singular value, AT is its transpose, A⊥ is
its orthogonal complement and A+ is its pseudo inverse.
Sym(A,X ,B) is defined as AXB+(AXB)T . For a system,
‖·‖∞ stands for its H∞ norm, and ‖·‖H for Hankel norm.
The lower linear fractional transformation between two
systems G and K is denoted by Fl(G,K).

II. SUSPENSION SYSTEM MODELLING

A. Modelling of Full Vehicle Active Suspensions

A schematic diagram of a full-vehicle model with an
active suspension system [14] is shown in Fig. 1.

Each quarter of the active suspension consists of a
spring, a damping valve and a force generator connected
in parallel. The force generator is regulated by a controller
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Fig. 1. Schematic diagram of a full-vehicle model

to improve vehicle ride and handling, while the spring
and damper are employed to suppress high frequency
vibration above the bandwidth of the force generator.

TABLE I
VEHICLE MODEL SYMBOLS AND VALUES

Symbols Physical meanings Value Unit
ms sprung mass 1500 kg
Ix roll moment of inertial 460 kg m2

Iy pitch moment of inertial 2160 kg m2

mu1∼4 unsprung mass 59 kg
cs1∼2 suspension damping ratio 1000 Ns/m
cs3∼4 suspension damping ratio 1100 Ns/m
ks1∼2 suspension stiffness 35000 N/m
ks3∼4 suspension stiffness 38000 N/m
ku tyre stiffness 190000 N/m
zus1∼4 suspension deflection
zu1∼4 wheel vertical displacement
zr1∼4 vertical road displacement
zru1∼4 tyre deflection
F1∼4 actuator force

The symbols and parameters of the vehicle model are
listed in Table I and the differential equations can be
derived straightforwardly as given in [1], [14].

By choosing the following vectors of state, disturbance
and control signals

x =
[

z ż θ θ̇ φ φ̇ zu1 żu1 zu2 żu2 zu3 żu3 zu4 żu4
]T

w =
[

zr1 zr2 zr3 zr4 Mr
]T

u =
[

F1 F2 F3 F4
]T

we obtain the state equation for the active suspension
system

ẋ = Ax+Bww+Buu (1)

The ride comfort is quantified by the power of weighted
vehicle body acceleration z̈, θ̈ and φ̈ . In addition, we
need to constrain force generated by actuators. Hence we
choose the vector of regulated output variables as

z =
[

z̈ θ̈ φ̈ F1 F2 F3 F4
]T

The most common sensors for active suspension control
are accelerometers and gyrometers [15]. In this paper, we
choose the vector of measuring signals as

y =
[

z̈ θ̇ φ̇
]T

Combined with the state equation given in (1), a state-
space model Ggel for the integrated active suspension
control is formulated as follows:







ẋ = Ax+Bww+Buu
z = Czx+Dzww+Dzuu
y = Cyx+Dyww+Dyuu

(2)

where the matrices Cz, Cy, Dzw, Dzu, Dyw and Dyu are
obtained in a straightforward manner. Then the passive
suspension system model Gpss is

{

ẋ = Ax+Bww
z = Czx+Dzww (3)

In this paper, we choose the following scaling matrices
for w and z to get a normalised system:

Sw = diag(0.0014,0.0014,0.0014,0.0014,500)

Sz = 10−3 ·diag(280.0,840.0,280.0,0.3,0.3,0.3,0.3)

As human sensitivity to vibration depends on fre-
quency [16], we follow [17] and choose the following
weighting functions for z̈, θ̈ and φ̈ :

Wz̈ =
s2 +314.2s+987
s2 +43.98s+987

, Wθ̈ = Wφ̈ =
s2 +50.27s+25.27
s2 +7.037s+25.27

Since we do not have any particular frequency require-
ments on actuator force, we simply choose Wu = 1 as its
weighting function. In summary, the weighting function
matrix for the regulated output z is

Wz = diag(Wz̈,Wθ̈ ,Wφ̈ ,Wu,Wu,Wu,Wu)

The generalised open-loop system with scalings and
weights is computed by linear operators, i.e.

Gol =

[

Wz ·Sz 0
0 I

]

·Ggel ·

[

Sw 0
0 I

]

(4)

B. Model Reduction of Suspension System

Observer-based modern control-design methodologies
such as LQG, H∞ and H2 are widely used in active sus-
pension design, because they are theoretically well devel-
oped, equipped with user-friendly software, and can ap-
propriately deal with active suspension design objectives.
However, these methods typically result in controllers
of an order comparable to that of the plant (possibly
augmented with extra filter dynamics). Since a high-order
controller is clearly impractical in most situations, e.g.
to implement in economical single-chips while satisfying
real-time control requirements, some approximation or
model reduction techniques are essential.

Model reduction techniques attempt to approximate the
dynamic model of the plant by a lower-order system easier
to control. In addition, reducing the complexity of the
system can offer further advantages, such as elimination
of system modes irrelevant to control, simplification of
the design process and the accompanying simulations,
identification of crucial system characteristics, etc.

We follow the traditional model reduction approach,
whereby the input-output characteristics of the plant are
approximated by a lower order dynamic system, automat-
ically resulting in lower-order controllers when modern-
control methods are employed. The approximation is
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TABLE II
COMPARISON OF MODEL REDUCTION APPROACHES

Order of reduced model

norms×10−2 18 16 14 12 10 8

MT ||E||∞ 15.59 15.59 17.75 52.33 82.08 85.09

||E||H 9.66 9.66 10.52 24.05 48.97 49.58

BT ||E||∞ 1.35 2.09 7.19 12.22 39.50 47.83

||E||H 1.09 2.05 5.41 8.96 27.82 38.64

OHNR ||E||∞ 1.09 1.05 4.56 8.17 23.26 33.01

||E||H 0.80 1.05 3.99 7.04 18.46 20.19

carried out sensibly so that the critical modes of the
system are not highly affected. In particular, most model-
reduction techniques using this approach are normally
accompanied by some form of robust control-design
methodology (H∞ or µ) to ensure that the additional
uncertainty introduced by the approximation on system
has minimal effects on system stability and performance.
Such a robust control method is discussed in the next
section. An alternative model reduction approach is to
apply approximation techniques directly to the (high-
order) controller [18], but it is not considered in this work.

Three model reduction methods are utilised and com-
pared for the reduction of the 20th order plant Gol defined
in (4), i.e. modal truncation (MT), balanced truncation
(BT) [19], optimal Hankel-norm reduction (OHNR) [1].

Modal truncation is a straightforward reduction method
whereby modes of the system with little influence on the
dynamics of interest are removed (usually high frequency
modes). The remaining poles of the MT reduced model
are a subset of the original poles and thus retain their
physical interpretation.

Balanced truncation first transforms the system such
that the controllability P and observability Q Grammians
are equal and diagonal, i.e. P = Q = diag(σ1,σ2, . . . ,σn),
where σi are system Hankel singular values (HSVs).
States corresponding to small HSVs, i.e. having less
effects on the input/output characteristics of the system,
can be discarded.

In the optimal Hankel norm reduction, the aim is to
minimise the Hankel norm of the approximation error
between the full and reduced order systems. In particular,
OHNR offers better infinity norm bounds than BT. The
interested reader can find more detailed discussions on the
aforementioned model reduction methods in the original
literature.

Table II compares the Hankel and H∞ norms of the
approximation errors by the different reduction methods
for a number of reduced order models. MT results in
the largest approximation errors, although it is easy to
use (note that, due to Wφ̈ = Wθ̈ , the 18th and 16th order
are identical for MT). OHNR gives the best results, with
BT following closely in performance. Moreover, the 12th
reduced order system is a good candidate for control
design, as the errors increase substantially after that.

Fig. 2 shows the maximum singular value (MSV)
plot of the approximation errors between the 20th full-

order system and the 12th reduced-order model by the
different reduction approaches. Note that the BT and
OHNR produces very similar results especially within the
frequency range of interest for the suspension system (1
to 10Hz).
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Fig. 2. Comparison of approximation errors for MT, BT and OHNR

Although the OHNR strictly gives the best 12th ap-
proximation, a simple calculation of the rank indexes in
(6) and (8) show that it is not suitable for applying the
control method in Section III-A (i.e. no further reduction
exists). However, it is possible to apply the technique in
Section III-A with the BT approximate model. Thus we
choose to employ the BT 12th-order reduced model Gbt12
for further control design. The maximum singular value
between the full-order model Gol and Gbt12 can be seen
in Fig. 3.
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Fig. 3. System approximation

III. CONTROL DESIGN

A. Reduced H∞ Control Design

Given a standard 2×2-block state-space model






ẋ = Ax+B1w+B2u
z = C1x+D11w+D12u
y = C2x+D21w+D22u

(5)

where x ∈ ℜnx , w ∈ ℜnw , z ∈ ℜnz , u ∈ ℜnu and y ∈ ℜny

are respectively the system state, disturbance, regulated
output, control signal and measure signal vectors.
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Define

[

MB NT
B
]

,

[

B2
D12

]⊥ [ A Inx

C1 0nz×nx

]

(6)

QB ,

[

B2
D12

]⊥ [ B1BT
1 B1DT

11
D11BT

1 D11DT
11− Inz

][

B2
D12

]⊥T

(7)

[

MC NT
C
]

,

[

CT
2

DT
21

]⊥ [AT Inx

BT
1 0nw×nx

]

(8)

QC ,

[

CT
2

DT
21

]⊥ [CT
1 C1 CT

1 D11
DT

11C1 DT
11D11− Inw

][

CT
2

DT
21

]⊥T

(9)
(10)

A singular value decomposition to MB yields

MB = UMB

[

ΣMB 0
0 0

]

V T
MB

=
[

UMB1 UMB2
]

[

ΣMB 0
0 0

][

V T
MB1

V T
MB2

]

= UMB1ΣMBV T
MB1

where the matrices are of compatible dimensions.
Then, we can apply a transformation to matrix X ∈

ℜnx×nx as follows

X̄ = V T
MBXVMB ,

[

X11 X12
X21 X22

]

Similarly, we can define the following matrices:
• For matrix NB:

NB = UNB

[

ΣNB 0
0 0

]

V T
NB = UNB1ΣNBV T

NB1

X̄ = UT
NBXUNB ,

[

X11 X12
X21 X22

]

• For matrix MC:

MC = UMC

[

ΣMC 0
0 0

]

V T
MC = UMC1ΣMCV T

MC1

X̄ = V T
MCXVMC ,

[

X11 X12
X21 X22

]

• For matrix NC:

NC = UNC

[

ΣNC 0
0 0

]

V T
NC = UNC1ΣNCV T

NC1

X̄ = UT
NCXUNC ,

[

X11 X12
X21 X22

]

Now we are in a position to give an explicit algorithm
for reduced H∞ control. Interested readers can refer to
[13] for the proof.

Algorithm 1: Let a system G has a minimal state-space
representation given in (5). Assume that (A,B2,C2) is
stabilisable and detectable, and D22 = 0.

1) Compute the ranks of matrices MB, NB, MC and
NC. Define nk as the minimal value of the ranks.
Now, the H∞ control problem is categorised into
the following four cases:

• MB Case if nk = rank(MB)
• NB Case if nk = rank(NB)

• MC Case if nk = rank(MC)
• NC Case if nk = rank(NC)

2) Setup one of the following four sets of LMIs. Solve
the LMIs as a feasible problem and obtain the
associated matrices by using feasp.m in MATLAB
LMI Control Toolbox.

a) MB Case:

Sym(UMB1ΣMB,X11,V T
MB1NB)+

Sym(UMB1ΣMB,X12,V T
MB2NB)+QB < 0

(11)

MCY NC +(MCY NC)T +QC < 0 (12)




X11 X12 V T
MB1

XT
12 X22 V T

MB2
VMB1 VMB2 Y



≥ 0 (13)

b) NB Case:

Sym(MBUNB1,X11,ΣNBV T
NB1)+

Sym(MBUNB2,XT
12,ΣNBV T

NB1)+QB < 0
(14)

MCY NC +(MCY NC)T +QC < 0 (15)




X11 X12 UT
NB1

XT
12 X22 UT

NB2
UNB1 UNB2 Y



≥ 0 (16)

c) MC Case:

MBXNB +(MBXNB)T +QB < 0 (17)

Sym(UMC1ΣMC,Y11,V T
MC1NC)+

Sym(UMC1ΣMC,Y12,V T
MC2NC)+QC < 0

(18)




X VMC1 VMC2
V T

MC1 Y11 Y12
V T

MC2 Y T
12 Y22



≥ 0 (19)

d) NC Case:

MBXNB +(MBXNB)T +QB < 0 (20)

Sym(MCUNC1,Y11,ΣNCV T
NC1)+

Sym(MCUNC2,Y T
12,ΣNCV T

NC1)+QC < 0
(21)





X UNC1 UNC2
UT

NC1 Y11 Y12
UT

NC2 Y T
12 Y22



≥ 0 (22)

If the LMIs are not feasible, it is impossible to
design an H∞ controller for such a system.

3) Compute two full-column-rank matrices M,N ∈
ℜnx×nk such that MNT = Inx −XY , where rank(I−
XY ) = nk 6 nx.

a) MB Case:
Define

Z ,

[

X11 X12
XT

12 X22

]

−V T
MBY−1VMB ,

[

Z11 Z12
ZT

12 Z22

]
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Then, we have

X = VMB

[

X11 X12
XT

12 X22−Z22 +ZT
12Z+

11Z12

]

V T
MB

b) NB Case:

Z ,

[

X11 X12
XT

12 X22

]

−UT
NBY−1UNB ,

[

Z11 Z12
ZT

12 Z22

]

X = UMB

[

X11 X12
XT

12 X22−Z22 +ZT
12Z+

11Z12

]

UT
MB

c) MC Case:

Z ,

[

Y11 Y12
Y T

12 Y22

]

−V T
MCY−1VMC ,

[

Z11 Z12
ZT

12 Z22

]

Y = VMC

[

Y11 Y12
Y T

12 Y22−Z22 +ZT
12Z+

11Z12

]

V T
MC

d) NC Case:

Z ,

[

Y11 Y12
Y T

12 Y22

]

−UT
NCY−1UNC ,

[

Z11 Z12
ZT

12 Z22

]

Y = UNC

[

Y11 Y12
Y T

12 Y22−Z22 +ZT
12Z+

11Z12

]

UT
NC

4) Xcl is obtained as the unique solution of the linear

equation
[

T I
NT 0

]

= Xcl

[

I S
0 MT

]

.

5) By using basiclmi.m in MATLAB, we can solve

ΨXcl +Q
T ΘT

PXcl +P
T
Xcl

ΘQ < 0

for the controller parameter Θ =
[

Ak Bk
Ck Dk

]

, where

ΨXcl ,





AT
o Xcl +XclAo XclBo CT

o
BT

o Xcl −I DT
11

Co D11 −I





Q ,
[

C D21 0(nk+ny)×nz

]

PXcl ,
[

BT Xcl 0(nk+nu)×nw DT
12
]

and
Ao =

[

A 0nx×nk
0nk×nx 0nk×nk

]

, Bo =
[

B1
0nk×nw

]

, Co = [C1 0nz×nk ]

B =
[0nx×nk B2

Ink 0nk×nu

]

, C =
[0nk×nx Ink

C2 0ny×nk

]

D12 = [ 0nz×nk D12 ], D21 =
[

0nk×nw
D21

]

.

6) Obtain the controller K = Dk + Ck(sI − Ak)
−1Bk

so that the closed-loop system satisfying
‖Fl(G,K)‖∞ ≤ 1.

Remark 1: This algorithm is mainly based on [13], in
which only the procedures for the MB case was given.
This algorithm simplifies the results in [13], and presents
an explicit procedure for four cases. Hence, it is of great
interest for engineering applications.

Remark 2: The LMIs given in (11) ∼ (22) can be
obtained in a straightforward manner. For example,

MBXNB = UMB1ΣMBV T
MB1VMBX̄V T

MBNB

= UMB1ΣMB
[

I 0
]

[

X11 X12
X21 X22

][

V T
MB1

V T
MB2

]

NB

= UMB1ΣMB(X11V T
MB1 +X12V T

MB2)NB

Hence, the standard LMI

MBXNB +(MBXNB)T +QB < 0 (23)

can be transformed into (11).

B. Reduced H∞ Control of Active Suspension

We now design a reduced H∞ controller for the active
suspension systems. The design is based on the 12th-
order active suspension model, denoted by Gbt12, which
is designed in Section II-B by the balanced truncation
method.

Since the ranks of MB, NB, MC and NC (defined in (6)
and (8)) for Gbt12 are [12, 12, 12, 9], the reduced H∞
control of Gbt12 is treated as an “NC Case” and a 9th-order
controller K9 is designed for it by Algorithm 1.

For the purpose of performance comparison, the full-
order controller K20 based on the model Gol (20th-order)
and K12 on Gbt12 are also designed. It is of interest to
notice that the time for searching a feasible solution to
the LMIs (denoted by tLMI ) and for reconstructing a
controller (denoted by tctr) are quite different as shown in
Table III. Note that the total time for K9 is only 0.541%
of that for K20. It strongly demonstrates how significantly
model reduction can reduce the burden of model-based
controller design especially for a high-order system.

TABLE III
TIME FOR H∞ CONTROLLER DESIGN IN A PENTIUM-4 COMPUTER

Controller tLMI (s) tctr (s) Total time (s) Percentage
K20 5.047 81.848 86.895 100 %
K12 0.120 0.922 1.042 1.199 %
K9 0.090 0.380 0.470 0.541 %

Once the controller K9 is designed, a question is raised
naturally: Can the controller be further reduced with little
performance deterioration? As always, we first take an
examination of the Hankel singular values of K9:

σ(K9) = 104 ·
[

5.973, 2.876, 2.331, 2.229, 2.192,

1.807, 0.069, 0.037, 0.019
]

Based on the singular values, we can reduce the controller
by order 3 as the last three singular values are much
less than the rest. However, when the closed-loop system
performance is considered, we decide only to reduce
the controller by order 2 so that system performance is
less deteriorated. Hence, the controller design process is
concluded with a 7th-order controller K7.

IV. SIMULATION RESULTS AND ANALYSES

In this section, computer simulations are carried out to
evaluate the performance of the reduced H∞ controller
K7 for the full vehicle suspension system. For a proper
assessment the following five systems are compared.

• PSS: Passive suspension system Gpss.
• FASS: Active suspension system with a full-order

H∞ controller (designed on the 20th order suspension
model), i.e. Fl(Ggel,K20).

• RASS-12: Active suspension system with a 12th

order H∞ controller (designed on the 12th order
suspension model), i.e. Fl(Ggel,K12).
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• RASS-9: Active suspension system with a 9th order
H∞ controller (designed on the 9th order suspension
model in Section III-B), i.e. Fl(Ggel,K9).

• RASS-7: Active suspension system with a 7th order
H∞ controller (the concluded controller in Section
III-B), i.e. Fl(Ggel,K7).

A. Frequency Response Simulations

We first look at the frequency responses of the five
suspension systems. Due to limited space, we only choose
two typical frequency response plots as shown in Fig.4
and Fig.5.

Fig.4 shows the frequency response magnitude of the
vehicle vertical acceleration to front-right road distur-
bance. It is clear that the accelerations of all the active
suspension systems, compared to PSS, are considerably
mitigated in the frequency range 1∼ 10 Hz, where people
are more sensitive to vibrations. Roughly speaking, the
ride performance of the active suspensions FASS, RASS-
12, RASS-9, RASS-7 are very close. Note that, the
frequency response magnitude of all the systems are the
same around 9 Hz, i.e. the resonant frequency of the
unsprung mass (wheels and tyres), because the unsprung
mass is out of suspension control loop and the active
suspension cannot change its inherit characteristics.
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Fig. 4. Bode plot of vertical acceleration to front-left road disturbance.

Fig.5 shows the frequency response magnitude of the
vehicle front-right suspension deflection to roll moment
disturbance caused by driver manoeuvrers such as a sharp
turn. We can observe that, at frequencies below 6 Hz,
the active suspension systems have no larger suspension
deflection than the passive one, and RASS-12 and RASS-
9 even have less deflections in this frequency range.
However, at the frequencies above 6 Hz, the active
suspensions have much larger suspension deflections,
especially a peak around 9 Hz. This is due to the so called
“water bed” phenomenon [20]. Note that, we usually
expect large suspension deflections of active systems,
which is acceptable as long as suspension deflections are
within a suitable bounded space. At high frequencies, the
PSS, RASS-9, RASS-7 systems have similar suspension
deflection responses while the FASS and RASS-12 have
larger deflections. The RASS-7 system in general has

the best suspension deflection response among the active
suspension systems.
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Fig. 5. Bode plot of the front-left suspension deflection to roll moment
disturbance.

B. Minor-Road Test Simulations

We now assess the performance of active suspension
systems under a typical road-test scenario: the vehicle is
travelling on a minor road at a longitudinal speed Vx =
20 m/s. Since the frequency-domain comparison of the
different active suspension systems have been made in
Section IV-A, we put a more emphasis on the comparison
between PSS and RASS-7.

Here a more precise approximation of minor road
profiles is utilised:

Srd(Ω) =











Crd(Ωco/Ω0)
−N1 , Ω ∈ [0,Ωco)

Crd(Ω/Ω0)
−N1 , Ω ∈ [Ωco,Ω0)

Crd(Ω/Ω0)
−N2 , Ω ∈ [Ω0,∞)

(24)

where Srd is the PSD function for road profiles in
m3/cycle, Crd = 5.6×10−7 is road roughness coefficient,
Ωco = 0.01 clcle/m is the cut-off wavenumber, Ω0 =
0.2 clcle/m is the wavenumber where two lines intersect,
and N1 = 3.15 and N2 = 2.42 are the slopes for low and
high wavenumbers respectively [21]. Note that Ω = f /Vx,
where f is the frequency in Hz. The road profiles of the
front wheels are regenerated, as shown in Fig. 6, and the
rear ones follow the front by a time delay δ = l/Vx, where
the wheelbase l = 2.8 m.
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Fig. 6. Road disturbance to front wheels.

According to the ISO 2631 [16], the ride comfort level
of a vehicle is quantified by the combination of the RMSs
of the weighted body accelerations. In this paper, we
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define the comfort index (CI) as follows:

CI ,
1

√

k2
z · rms2(Wk z̈)+ k2

θ · rms2(Weθ̈)+ k2
φ · rms2(Weφ̈)

where kz = 1, kθ = 0.4 m/rad and kφ = 0.63 m/rad, and
Wk and We are standard weighting functions for vertical
acceleration and pitch/roll angular accelerations. Due to
limited space, the expression for Wk and We are omitted
here. Readers can refer to [16], [1] for detail.

The RMSs of the weighted vehicle body accelerations
and the comfort index of all the systems are computed
and listed in Table IV. It is observed from this table

TABLE IV
COMPARISON OF WEIGHTED VEHICLE ACCELERATIONS

PSS FASS RASS-12 RASS-9 RASS-7
rms(Wk z̈) 0.110 0.069 0.068 0.078 0.069
rms(Weθ̈) 0.130 0.013 0.016 0.062 0.063
rms(Weφ̈) 0.167 0.030 0.068 0.114 0.114
CI 6.227 13.893 12.423 9.170 9.712

that the full active suspension system achieve the best
ride comfort level while the passive one has the worst.
The comfort index of RASS-7 is 30.1% less than the
full active suspension system, but it is still 60.0% larger
than the passive one. The RASS-7 does achieve excellent
ride comfort considering that the order of the RASS-7 is
reduced to nearly one third of the full order.

In summary, the 7th-order H∞ controller K7 for the
full-vehicle active suspension system achieves efficient
performance although its order is reduced to approxi-
mately one third of a full controller.

V. CONCLUSIONS AND FUTURE WORKS

This paper designed a reduced H∞ controller for a
full-vehicle suspension system by employing the balanced
truncation and direct H∞ control methods throughout the
whole controller design process. The reduced control,
with size nearly one third of a full controller, achieved
a level of performance comparable to the full one. This
research demonstrates that a careful selection and in-
tegrated application of different reduction methods can
achieve exceptional performance which no single method
can nearly touch at its best.

This paper summarised an explicit and complete algo-
rithm for reduced H∞ control of continuous-time systems.
The advantage of the algorithm is its applicability to
both singular and non-singular systems. However, this
algorithm cannot guarantee whether or how much the
controller can be reduced.

Future work will be on a hardware-in-the-loop active
suspension framework. It will be of great interest to
implement the results in this framework, and undoubtedly
only in a real-time application can the advantages of the
reduced control design be fully explored.
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