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Abstract: : A high redundancy actuator (HRA) is composed of a high number of actuation elements,
increasing both the travel and the force above the capability of an individual element. This provides
inherent fault tolerance: if one of the elements fails, the capabilities of the actuator may be reduced, but
it does not become dysfunctional. This paper analyses the likelihood of reductions in capabilities. The
actuator is considered as a multi-state system, and the approach for k-out-of-n:G systems can be extended
to cover the case of the HRA. The result is a probability distribution that quantifies the capability of the
HRA. By comparing the distribution for different configurations, it is possible to identify the optimal
configuration of an HRA for a given situation.
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1. INTRODUCTION

1.1 Fault Tolerance

Fault tolerance is about dealing with faults in technical systems
(Blanke et al., 2006). Its goal is to prevent a component fault
from becoming a system failure (Blanke et al., 2001).

So far, most theoretical considerations have focused on sensor
and controller faults. These redundant structures are very effi-
cient. Obviously, the probability of a fault in several identical
components is much lower than the probability of a fault in
a single one. In order to avoid common causes of failures
in redundant components, redundant diversity approaches are
applicable. This could mean e.g. to measure the same physical
quantity by different principles, or to measure different physical
quantities with a known correlation. Whilst significant achieve-
ments have been made for sensors and controllers, many of
these results are not directly applicable to faults in actuators.

The reason for the difference is the effect of redundancy for
actuators. Whereas redundancy for sensors and controllers is
always realized by parallel configurations, the adequate config-
uration of actuators depends on the failure mode. For instance,
a blocked valve in the closed position can be tolerated by means
of a redundant valve in parallel, but a blocked valve in the open
position by means of a redundant valve in series. Therefore,
networks of redundant actuators with respect to their specific
faults and failure modes have to investigated.

Most existing approaches for the treatment of actuator failures
are derived from the information view used to handle sensor
faults. For example, the observer based approach has been ex-

tended to cover actuator faults in the form of the virtual actuator
(Steffen, 2005). Likewise, the idea of analytical redundancies
in sensors (Frank, 1990) has its equivalent for actuators in
the form of dynamic gain scheduling and control allocation
(Oppenheimer and Doman, 2006).

Consequently, the classical fault tolerant approach for actuation
is replication, the same strategy usually used for sensors. Typ-
ically, 2, 3 or 4 actuators are used in parallel, very much like
redundant sensors. Each actuator is strong enough to meet the
performance requirements by itself. This leads to a significant
amount of over-engineering and consequently a less efficient
system (e.g. because of a higher weight). Also these parallel ar-
rangements fail if one element locks up, and additional counter-
measures are necessary to reduce the impact of such lock-up
faults.

Fig. 1. High Redundancy Actuator



1.2 High Redundancy Actuator

The most general way to improve reliability in an efficient way
is to use a greater number of smaller actuation elements. For
example, a system with ten elements may still work with only
eight of them operational. The reliability improves because two
faults can be accommodated. At the same time, the overall
capacity is only over-dimensioned by 25%, making the system
more efficient. This is the central idea of the high redundancy
actuator (HRA).

This idea is inspired by the human musculature. A muscle is
composed of many individual fibres, each of which provides
only a minute contribution to the force and the travel of the
muscle. This allows the muscle as a whole to be highly resilient
to damage of individual fibres.

In an HRA, actuation elements are used both in parallel and in
series (see Fig. 1). This increases the available travel and force
over the capability of an individual element, and it makes the
actuator resilient to faults where an element becomes loose or
locked up. These faults will reduce the overall capability, but
they do not render the assembly functionless.

So far, the research has focused on the modelling and con-
trol of simple configurations with four elements (Du et al.,
2006, 2007). Previous studies on the reliability of compli-
cated electromechanical assemblies are rare: the reliability of
electro-mechanical steering is discussed by Blanke and Thom-
sen (2006), and electrical machines and power electronics are
analysed by Ribeiro et al. (2004).

This paper presents a method to analyse the reliability of an
HRA of any size, as long as it can be interpreted as a hierar-
chy of parallel and series configurations. The difficulty with
analysing an HRA is that many faults can occur simultane-
ously, and the system may be still be functional. Conventional
methods of reliability analysis (fault tree, event tree, stochastic
automaton etc) suffer from an extreme increase of complexity,
which renders the analysis infeasible even for reasonable small
systems such as 10×10.

The approach presented here is based on the concepts devel-
oped using graph theory in Steffen et al. (2007, 2008). It avoid
the issue complexity by ignoring the temporal dimension of the
problem, and by abstracting from individual faults. Using the
principle of divide and conquer, the system is decomposed level
by level, relying on simple aggregation equations. This leads to
an analysis of low computational complexity. As an example,
this approach is applied to different 4× 4 configuration for
comparison.

1.3 List of Symbols

This paper follows the notation used in the first part of Pham
(2003), supplemented by the application specific interpretation
of the capability c. This leads to the following symbols.

P(·) probability of an event,
q failure probability (unreliability) of an element, typically

close to 0,
p reliability of an element, typically close to 1,
c generic capability, in multiples of a single element,
c vector of capabilities for several elements,
ct travel (or velocity) capability,
c f force capability,

a) nominal b) loose fault c) lock-up fault

Fig. 2. A Single Actuation Element
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rx(c) probability of capability c of system x:
rx(c) = P(cx = c),

Rx(c) reliability of system x wrt. the requirement c,
R(c) = P(cx ≥ c).

R f x(c f ) reliability of x wrt. the force requirement c f .
Rtx(ct) reliability of x wrt. the travel requirement ct .
R f tx(ct) reliability of x wrt. the force requirement c f

and travel requirement ct .

1.4 Structure of the Paper

Section 2 deals with the basic terms and concepts used for the
reliability assessment, and it defines the behaviour of individual
actuation elements. In Section 3, the effect of series or par-
allel arrangement of elements on reliability is investigated. In
Section 4, the special cases of series-in-parallel and parallel-
in-series configuration is analysed for a simple 2× 2 system.
In Section 5, this concept is extended to configuration with
multiple layers, and an exhaustive study of 4×4 systems is pre-
sented. The paper finishes with some conclusions in Section 6.

2. SPECIFICATION OF ACTUATION ELEMENTS

The individual actuation elements of the HRA are specified
using a number of different measures. From an abstract per-
spective, they can be divided into two types: physical measures
and reliability measures. The first kind contains physical pa-
rameters related to the mechanical movement, such as force,
speed, acceleration, or distance. The second kind of parameters
describes the probability of a fault.

2.1 Specification of the Nominal Performance

An actuation element can perform a one-dimensional mechani-
cal movement (expansion or contraction) in response to a con-
trol input as shown in Fig. 2a. To simplify the analysis, only
the static case is considered in the following. So the central
performance measurements of an element are the force f it can
produce and the amount of travel t it can provide.

While it is entirely possible to use the measurements in physical
units (Newton for the force and meter for the travel), this paper
will use normalised values instead. The force capability c f
and travel capability ct of a nominal element are defined to
be one (without unit). The use of integer values simplifies the
probability analysis significantly, because discrete distributions
can be used.

2.2 Specification of Faults

The two capability measures lead to two main fault modes of
an element: loss of force (loose fault, see Fig. 2b) and loss of



Table 1. Influence of Faults on Capabilities

Fault Force Capability Travel Capability

None nominal (1) nominal (1)
Loose affected (0) nominal (1)

Lock-Up nominal (1) affected (0)
Both affected (0) affected (0)

travel (lock-up fault, see Fig. 2c). Both faults are assumed to
be complete: a fault reduces the relevant capability to zero (see
Table 1).

Because both faults are considered to be independent, they can
also appear together. It may seem impossible to have an element
that is both loose and locked-up at the same time. However,
this analysis is concerned with the guaranteed performance of
an element, and it is perfectly possible that it cannot reliably
provide neither force nor travel.

It is also assumed that a locked-up element is fixed in its neutral
position (this would be the medium length if the nominal travel
is symmetric to both sides). This requirement is for convenience
only and can be relaxed later.

2.3 Specification of Reliability

In practical applications, different ways can be used to describe
the reliability of an element, such as mean time to failure
(MTTF), availability, failure probability over a given time, or
failure probability during a specified mission. The relevant
specification depends very much on the application. However,
all measures are based on probabilities or probability densities
over time. These functions over time can then be interpreted
using any of the above measures. Therefore, this paper will use
fault probabilities as a generic way to measure reliability:

P(loose) = P(c f = 0) = q f

P(lock-up) = P(ct = 0) = qt .

2.4 Capability Distributions

Together with the corresponding OK-probability P(c f = 1) =
p f = 1−q f and P(ct = 1) = pt = 1−qt , these values span the
two capability distributions

r f (i) = P(c f = i)

rt( j) = P(ct = j) .

Because there are two capabilities, the state space is two-
dimensional. However, to avoid the complexity of two-dimensional
distributions, this paper deals with one capability at a time in the
following. This separation is possible because both fault modes
are assumed to be statistically independent.

In some cases, the cumulative capability distributions

R f (i) = P(c f ≥ i) =
c f ,max

∑
k=i

P(c f = k) =
c f ,max

∑
k=i

r f (k)

Rt( j) = P(ct ≥ j) =
ct,max

∑
k= j

P(ct = k) =
ct,max

∑
k= j

rt(k)

are used for determining the reliability of more complex con-
figurations.

a) parallel b) series c) 2x2 SP d) 2x2 PS

Fig. 3. Basic Configurations

Table 2. Configurations and Capabilities

Configuration Force Capability Travel Capability

Parallel increased (sum) unchanged (min)
Series unchanged (min) increased (sum)
Grid increased (× columns) increased (× rows)

3. AGGREGATION ON A SINGLE LEVEL

The main reason for using several elements is that they serves to
increase the capabilities (see Fig. 3, Table 1). Two elements in
parallel can produce twice the force, and two elements in series
can achieve twice the travel. In the following, it is assumed
that n equal elements are combined, and that the capability
distribution for one individual element is known.

3.1 Limiting Capabilities

Some capabilities do not increase when subsystems are com-
bined. Instead, the capability of the resulting system is deter-
mined by the weakest part. This happens e.g. with the force
capability c f for actuation elements used in series (see Fig. 3b)

c f S(c f ) = min{c f 1,c f 2} , (1)

where c f denotes the vector (c f 1 c f 2)T . The same equation also
applies to the travel capability of elements in parallel

ctP(ct) = min{ct1,ct2} (2)
(see Fig. 3a). These equations follow directly from the specifi-
cation and physical laws, so they will be assumed as given for
the reliability analysis.

In both cases, the capability of such a combined system is the
minimum capability over all the subsystems or elements:

clim(c) = min{c1, . . . ,cn} . (3)
This represents a classic series arrangement of multi-state sub-
systems (MSS), and the reliability has been well studied in the
literature. Here, a new operator is introduced to calculate the
new cumulative reliability distribution for the overall system.

Theorem 1: If n elements with the cumulative reliability dis-
tributions Ri(c) are connected so that the overall capability
is limited by the weakest element according to Eqn. (3), the
cumulative reliability distribution Rlim(clim) of the new system
can be calculated as

Rlim(c) = R1⊕R2⊕ . . .⊕Rn(c) (4)

with the operator
(R1⊕R2)(c) = R1(c)R2(c) . (5)

Proof: According to the definition, the reliability Rlim(c) is the
probability that the overall capability is at least c:

clim ≥ c .



Because of Eqn. (3), this inequality holds if and only if all
elements have at least this reliability:

∀i : ci ≥ c .

Since the capability of the elements ci are considered to be
independent, the probability of this condition can be calculated
as the product of the probabilities of the individual terms:

P(∀i : ci ≥ c) = ∏
i

P(ci ≥ c) = ∏
i

Ri(c) .

This is exactly the result defined by the operator ⊕.

Since the original Eqn. (3) is applicable in two cases, the same
is true for the resulting operator ⊕. It can be used to describe
the force of elements in series

R f S = R f 1⊕R f 2 (6)
or the travel for elements in parallel

RtP = Rt1⊕Rt2 . (7)

3.2 Additive Capabilities

If several actuation elements are used together, the capability of
the combined system may increase above the capability of any
element. In fact, this increase is the motivation for using several
element in the first place.

In contrast to the maximum operator in Eqn. (1), the sum
applies to the force capability of two elements in parallel (see
Fig. 3a),

c f P(c f ) = c f 1 + c f 2 (8)
and to the travel capability of two elements in series (see
Fig. 3b)

ctS(ct) = ct1 + ct2 . (9)
In both cases, the relevant capabilities of the elements add up
to the capability of the overall system:

cadd(c) = c1 + c2 + . . .+ cn . (10)
This is unlike typical multi-state systems (Jenab and Dhillon,
2006), because the state space of the system cadd can be larger
than the state space of any element ci. Again, a new operator ⊗
is introduced to calculate the cumulative reliability distribution
of the combined system of two elements.

Theorem 2: If n elements with cumulative reliability distri-
butions Ri(ci) are arranged so that the capabilities add up
according to Eqn. (10), the cumulative reliability distribution
Radd(cadd) of the resulting system is defined by

Radd(c) = R1⊗R2⊗ . . .⊗Rn(c) (11)
with the operator

(R1⊗R2)(c) =
c

∑
i=0

(R1(i)−R1(i+1))R2(c− i) . (12)

Proof: It is easier to work with the same statement in terms of
reliability distributions r. Because only integer capabilities are
used, it follows from the definition of R and r that r(i) = R(i)−
R(i+1). Therefore, the following equation is equivalent to (12):

radd(c) =
c

∑
i=0

r1(i)r2(c− i) . (13)

Central to this proof is the set of all capability combinations
c1 and c2 that lead to the same overall capability cadd = c.
According to Eqn. (10), this set is

C (c) = {(c1,c2) ∈ N2
0 : c1 + c2 = c} .

The probability of the two elements to have the capabilities
(c1,c2) is

P(c1,c2) = P(c1)P(c2) = r1(c1)r2(c2)
because both are considered to be independent. Now the prob-
ability of a given overall capability of c can be calculated as:

P(cadd = c) = ∑
(c1,c2)∈C (c)

P(c1)P(c2)

which is equivalent to Eqn. (13).

This operator ⊗ is applicable in two situations: the force of
elements in parallel

R f P = R f 1⊗R f 2 (14)
and the travel for elements in series

RtS = Rt1⊗Rt2 . (15)

4. HIERARCHICAL AGGREGATION

An HRA contains elements in series and in parallel. Thus it is
important to analyse the reliability resulting from multiple lev-
els of aggregations. Assuming that the configuration is given,
this section explains how to find the reliability distribution of
the overall system by combining the operators defined above.

Any structure can be analysed using an iterative bottom-up
approach. From the capability distribution of the individual el-
ements, it is possible to calculate the distributions for the basic
subsystems, which are either parallel or series arrangements of
elements. Basic subsystems can be aggregated to more complex
subsystems, and this can be repeated until the reliability of the
overall system is found. For a successful application of this
iterative approach, it is required that the actuator configuration
is described as a series-parallel network.

4.1 Notation and Formalism

For the examples used here, it is assumed that two equal subsys-
tems are used in series or in parallel. A series configuration is
denoted with the letter S, and the parallel configuration with
the letter P (cf. Section 3). A sequence of letters denotes a
hierarchical configuration, from the bottom level of aggregating
individual elements up to the complete system.

So two series elements, duplicated in parallel, are called SP.
The dual configuration (two parallel elements, and two of these
blocks arranged in series) is denoted as PS. Using two SP
systems in series leads to an SPS configuration and so on. It is
also possible to have identical levels following each other, for
example a PP configuration consists of 4 elements in parallel.

Several examples are shown in Fig. 4. All systems defined by
this notation are highly regular and symmetrical, which sim-
plifies the analysis considerably. Following the notation from
Section 3, the cumulative force capability of a configuration x
is denoted with R f x(c f ), and the cumulative travel capability
with Rtx(ct). This allows an easy comparison between different
configurations. In the following, all elements are assumed to be
identical as specified using the properties defined in Section 2.

4.2 Iterative Reliability Calculation

In each iterative step, two equal subsystems with a known
reliability distribution are combined to a new system. The



configuration of a subsystem is assumed to be x, and the
cumulative force and travel reliability distributions are R f x(c f )
and Rtx(ct).

For a parallel configuration (xP) of two identical subsystems x,
the force increases (c f 1 + c f 2), and the travel is limited by the
weaker subsystem (min{ct1,ct2}). As discussed in Section 3,
the following two operators can be used to calculate the cumu-
lative reliability distributions.

Theorem 3: The cumulative reliability distributions for a system
of two identical parallel subsystems are

R f xP = R f x⊗R f x (16)

RtxP = Rtx⊕Rtx . (17)

Similarly, in a series configuration (xS), the force is limited by
the weakest element (min{c f 1,c f 2}), and the travel increases
(ct1 + ct2). So the cumulative reliability distributions are deter-
mined by the other operator, respectively.

Theorem 4: The cumulative reliability distributions for a system
of two identical subsystems in series are

R f xS = R f x⊕R f x (18)

RtxS = Rtx⊗Rtx . (19)

The proofs for these two theorems are analogue to the proofs
of Theorems 1 and 2 in Section 3. Instead of the two individual
elements assumed there, two identical subsystems specified by
R f x and Rtx are used. These subsystems satisfies all the assump-
tions made about the elements, including the independence.

5. EXAMPLES

Some representation examples will be discussed in this section.
A comprehensive study of further symmetrical configuration
will be presented in a forthcoming paper.

Each level combines two subsystems, therefore each configura-
tion consists of four levels, two of which are series connections,
and while the other two parallel connections. All six possible
configurations are shown in Fig. 4. In the nominal state, all
configurations are identical: both force and travel capability are
four times the value of a single element.

However, the response to faults differs significantly. The high
number of layers makes the reliability slightly more compli-
cated to analyse than in the examples above, but the procedure
is still the same: the two Eqns. (16) and (18) are used to
determine the cumulative reliability distribution for series and
parallel connections.

The values of 1−R f (2) (allowing two effective element faults)
are calculated (they are all polynomials in q f of order 16) and
plotted over q f on a logarithmic scale in Fig. 5. A number of
observations are interesting from the point of high redundancy
actuation.

(1) All reliabilities have the same polynomial structure: they
start at 1, the first non-constant term is a factor of q2

f . This
is a consequence of the basic requirements, which can be
fulfilled in every configuration with none or one faulty
element.

(2) The reliabilities maintain a partial order over the configu-
ration

a) SSPP b) SPSP c) PSSP

d) SPPS e) PSPS f) PPSS

Fig. 4. All Symmetrical 4×4 Configurations

R f SSPP(2) > R f SPSP(2) > R f PSSP(2),

R f SPPS(2) > R f PSPS(2) > R f PPSS(2)
for all 0 < q f < 1. (There is no clear relation between
R f PSSP(2) and R f SPPS(2).)

(3) The reliability of travel (Rt(2)) follows the opposite or-
der, because of the correspondence R f SSPP = RtPPSS (for
corresponding qt = q f ) etc.

Based on these results, it is possible to calculate the failure
probability due to insufficient force and travel, and then select
the best configuration for given reliability values qt and q f .

The same results are shown in Figure 6 over time. The as-
sumption is that each element fails with a constant rate of 1
faults every τ second (shown by the reference line), leading to
q f (t) = 1− e−t/τ . Inserting this function into the polynomial
R f x(2) leads to a combination of exponential functions describ-
ing the system reliability over time. By calculating this result
in two steps, the complexity of the problem is greatly reduced
over approaches that work in the time domain directly (such
as stochastic automatons). The reliability of a single element
(1−q f ) is also shown in the Figure as 1×1 for comparison.

6. CONCLUSIONS

This document has shown how to calculate the reliability of an
HRA. Due to the high number of actuation elements, a new
generic approach had to be developed. Using probability distri-
butions, the problem can be solved with a low computational
effort and using well understood operations.

Different configurations consist of several levels series and
parallel connections are considered and modelled using multi-
state systems. The results show that even with the same number
of elements in the same two dimensional arrangement, the se-
lection of the best suitable configuration (as determined by the
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lateral connections) has a significant influence on the reliability
of the HRA. The influence is especially important when high
numbers of elements are used, as planned for the HRA. A
more comprehensive analysis will be provided in a forthcoming
journal paper.
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