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ABSTRACT

In this paper we present an overview of recent research in
the area of audio-visual blind source separation (BSS), toge-
ther with new results of our work that highlight the advan-
tage of including visual information into a BSS algorithm.
In our work the visual information is combined with audio
information to form joint audio-visual feature vectors. The
audio-visual coherence is then modelled using statistical mo-
dels. The outputs of these models are used within a frequency
domain BSS algorithm to control the step size. Experimen-
tal results verify the improvement of the audio-visual method
compared to audio only BSS. We also discuss visual feature
extraction techniques, along with several recently published
methods for audio-visual BSS, and conclude with suggestions
for future research.

Index Terms— active appearance models, audio-visual
processing, blind source separation, feature extraction.

1. INTRODUCTION

Blind source separation (BSS) is a method of separating the
original source signals from a mixture of the sources with lit-
tle or no information about the original source signals or the
manner in which they were mixed. The most challenging BSS
problem is separating convolutive mixtures of signals, which
is more commonly known as “The Cocktail Party Problem”.
The cocktail party problem was first defined by Colin Cherry
in 1953 [1] and is defined as: “Suppose there is a room where
several people are talking simultaneously. How does the lis-
tener recognize what one person is saying among the mix-
ture of voices and background noise (e.g music)?” The hu-
man auditory system is well adapted to such situations as it
is able to use a wealth of information about the speaker and
their surroundings, but from a signal processing perspective
this problem has yet to be solved. Traditionally, BSS is per-
formed using audio information alone, but the performance
of these methods degrades in a noisy environment. Speech
is a bi-modal signal, with both audio and visual aspects. It
has been shown [2] that when we are able to see the speakers
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face, the intelligibility of that persons’ voice in a noisy envi-
ronment increases. The McGurk effect [3] also highlights the
relationship between the audio and visual aspects of speech
and how humans perceive speech. Petajan [4] also showed
that audio-visual speech recognition performs better than au-
dio only speech recognition.

The key challenges when using visual information to im-
prove the performance of BSS are selecting the visual fea-
tures that have a high correlation with the audio features and
extracting that data. Encouraging results were obtained in
early work by Girin et al. [5], where they used visual fea-
tures to enhance speech embedded in noise by selecting fil-
ter parameters that were partially determined by visual in-
formation. Sodoyer et al. [6] extended this idea to combine
audio-visual speech processing and blind source separation to
form an early contribution to audio-visual source separation
research. More recently Wang et al. [7] and Sodoyer et al.
[8] have used visual information to help solve the convolutive
case of BSS. However, audio-visual BSS is still in the early
stages of research compared to audio only BSS; this paper
gives an overview of the research area so far, and provides
recently obtained results and suggestions for future research.
The outline of this paper is as follows. Section 2 covers the
basics of BSS, section 3 describes methods of extracting vi-
sual features, with an overview of active appearance models.
In Section 4 we discuss previous approaches of audio-visual
BSS. Sections 5 and 6 present a novel AVSS algorithm and re-
sults of simulations. We conclude in Section 7 by suggesting
directions for future research.

2. BLIND SOURCE SEPARATION

As stated earlier, (BSS) is a method of extracting the source
signals from a mixture of signals with no a-priori informa-
tion about the nature of the signals or the mixing environ-
ment. Typically, BSS is performed using Independent Com-
ponent Analysis (ICA)[9]. ICA is a statistical tool used to
break down a set of random variables or signals into their in-
dependent components to reveal hidden factors of that data.
However, ICA algorithms suffer from the permutation pro-
blem, i.e. indeterministic order of the estimated signals. To
use ICA, we make an assumption that the sources are statisti-
cally independent.
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The instantaneous form of BSS is defined as

x(t) = As(t) + n(t) (1)

where x(t) represents the zero mean signal mixtures detected
at the sensors at discrete time t, s(t) are the original source
signals, n(t) is additive noise and A is the mixing matrix. In
this work we assume A is not time varying and the number
of sensor measurements is at least as large as the number
of sources. However, in real room environments a signal is
mixed with other source signals in the room together with re-
flections of both itself (which are caused by reverberations
within the room) and other signals present. Thus the problem
is now one of convolutive mixing:

x(t) = A ∗ s(t) + n(t) (2)

where the elements of the mixing matrix A are no longer sca-
lar, they now represent a filter:

x(t) =
k

∑

τ=0

A(τ)s(t − τ) (3)

To recover the original sources from the mixtures we rewrite
(3) to get:

ŝ(t) =
k

∑

τ=0

W(τ)x(t − τ) (4)

where ŝ represents the estimated source signals, W(τ) (for
τ=0...k) are the separation matrices and x(t) are the mixtures.

In convolutive mixing the length of the mixing filters can
be of the order of 1000’s of samples, dependent upon the
size of the room and the sampling frequency. Thus time do-
main based approaches are computationally expensive, there-
fore frequency domain methods are preferred. In frequency
domain approaches, the time domain convolutive mixture is
turned into that of instantaneous complex mixing at each fre-
quency bin. Unfortunately, working in the frequency domain
amplifies the permutation problem meaning that we need to
correctly separate each frequency bin.

The challenge in audio-visual BSS is to be able to use
the visual information without significant increase in the com-
putational complexity. There are a number of options when
incorporating visual information within BSS: pre-processing
the speech to remove unwanted noise, online to aid in finding
the separating matrix or to post process the estimated speech
sources to solve the permutation problem. So far all have been
attempted, either on their own or in combination and all have
reported improvements over similar audio only methods. Se-
veral such methods are discussed in section 4.

3. VISUAL FEATURE CHOICE AND EXTRACTION

A key challenge in audio-visual speech separation (AVSS) is
to ensure that the chosen features have a high correlation with

the audio information. As we are dealing with speech the
most natural features to use would be those involved with the
production of speech. The most visible components of speech
production are the lips and they are the favoured feature in
AVSS research. There are several lip features that have been
used, such as lip height and width, lip shape and combined
shape and texture information as shown in Fig 1.

(a) Lip Height and Width

(b) Lip Shape

Fig. 1. Example of visual features extracted from the lips.

3.1. Feature Extraction

Careful consideration needs to be given to extracting the lip
features as a poor extraction method can lead to bad repre-
sentation of the lip features. Visual features can be generally
grouped into three main areas [10]: high-level lip contour ba-
sed features, low level video pixel based and features that are
a combination of both. High-level features consist of the in-
ner or outer lip contour, which are then modelled in a sta-
tistical model, or alternatively geometric parameters such as
lip height and width are used. Low-level features consist
of using appropriate transforms, such as the discrete cosine
transform, (DCT) on a region of interest (ROI), such as the
speakers’ mouth area and using the transformed pixel values
as the features. There are many examples of methods where
the low-level and high-level features are combined into one
method to provide both shape and appearance features, such
as the Active Appearance Model (AAM) [11]. To find more
examples of feature extraction methods the reader is directed
to the work by Potamianos et al. [10].

Sodoyer et al. [6],[8] extract the internal width and height
of the lips using a chroma-key process and contour tracking
on lips with blue makeup. Wang et al. [7] and Aubrey et al.
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[12] use facial features found on the basis of an AAM. AAMs
provide a statistical model of both shape and texture informa-
tion of the lips, thus representing more information. Dan-
sereau [13] captures visual information by combining mo-
tion, colour and edge information into a Markov random field
(MRF) and extracting the three lip features; outer lip height,
inner lip height and corner to corner mouth width. Rajaram et
al. [14] implement a neural network based approach that uses
a set of support vector machine classifiers to track the mouth
and generate a binary sequence of visual features.

3.2. Basics of Active Appearance Models (AAMs)

Here, we present a brief overview of AAMs. A more detailed
description of the method can be found in [11].

Cootes and Taylor [11] introduced active appearance mo-
dels (AAMs) as a way of modelling selected features. An
AAM is a joint statistical model of shape and grey-level para-
meters (texture), where a single appearance parameter defines
a corresponding texture and shape vector. Our model is built
in several stages. Firstly, the lip shape is tracked through the
video by placing landmarks (manually or automatically) on
the outer edge of the lips (Figure 1b is an example of this).
Each landmark is represented with its cartesian coordinates
(xi, yi), so for a single image, the vector x describing the lip
shape is:

x = (x1, . . . , xN , y1, . . . , yN ) (5)

For a given set of j images there are x1, . . . ,xj such vectors.
Next, we generate a statistical model of the shape variation
from the landmarks. The mean shape is found and all images
in the set are warped to the mean shape. We proceed by buil-
ding a statistical model of the texture within the shape and
apply principal component analysis (PCA) to shape and tex-
ture features separately to obtain:

x = x̄ + Psbs (6)

g = ḡ + Pgbg (7)

where x̄ and ḡ are the mean normalised shape and grey-
level vectors. Ps and Pg are matrices formed from eigen-
vectors, and bs, bg are shape and grey-level parameters. By
concatenating bs and bg and performing PCA, we obtain our
required appearance parameters c:

c = PT
c b (8)

where Pc is a set of matrices formed from eigenvectors
describing to shape and texture and b are the combined para-
meters bs and bg.

4. AUDIO-VISUAL ALGORITHMS

AVSS is still a new area of research, and so only a small num-
ber of papers have been published on using visual information

to aid source separation. What follows is an overview of exis-
ting techniques that use visual information.

Early work by Sodoyer et al. [6] proposed a method that
used a statistical model of the coherence of audio and vi-
sual speech features to estimate the separating matrix for the
case of simple additive mixtures. A Gaussian mixture mo-
del (GMM) was built that provides the joint probability of
a video vector (containing the visual features) and an audio
vector containing spectral characteristics of the sound, which
was then used to estimate the separating matrix. Rajaram et
al. [14] developed a Bayesian framework for speech sepa-
ration of a 2x2 linear mixture using a Kalman filter on the
audio-visual observations, while Dansereau [13] used spec-
tral matching of the audio-visual inputs to separate a mixture
of speech for the case of a 2x2 first order decorrelation fil-
ter. These methods are concerned with simple mixtures of
speech, but in a real environment the speech mixture is more
complex. A convolutive mixing model best describes a rea-
listic mixture.

Taking this into account, Rivet et al. [15] extended the
audio-visual coherence idea in [6] for the case of convolu-
tive speech mixtures. In [15] the speech signals were first se-
parated using a time-frequency domain BSS algorithm. The
results were then post processed using the audio-visual cohe-
rence model to solve the permutation and scaling ambiguities
by cumulating the joint probability of audio-visual coherence
for consecutive frames. Wang et al. [7] also exploited the
audio-visual coherence of speech. In [7] the visual features
were found on the basis of an AAM, and the speech fea-
tures are extracted using Mel-frequency cepstral coefficients
(MFCC’s). A collection of joint audio-visual vectors is for-
med and modelled using a GMM. At each iteration the joint
audio-visual probability between the estimated source and the
video parameters is calculated using the above GMM and
used as a penalty to estimate the separating matrix in a se-
cond order penalty function based BSS algorithm [16]. More
recently, Aubrey et al. [12] presented a novel algorithm that
uses an audio-visual model to control the learning rate of
the penalty function BSS algorithm in [16]. In the experi-
ments the audio-visual coherence was initially captured using
a GMM, and then in later experiments the GMM was sub-
stituted for an Hidden Markov Model (HMM) to capture the
coarticulation in speech (Section 5).

An alternative use of audio-visual information is presen-
ted in [8]. There the visual information was used for a voice
activity detector (VAD). The VAD finds the silence periods in
a speech signal by using the change in lip height and width at
each frame. If the change over a number of frames is grea-
ter than a threshold value then it is said that the segment
was speech, if not then it was assumed to be a silence per-
iod. However, this method assumes that when a person is not
speaking, their lips remain stationary, which is not always the
case.
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5. AUDIO-VISUAL EXPERIMENTS

The basis of our approach is to maximise the coherence C
between a set of visual features vi and a set of audio features
ai to provide a criterion for controlling the learning rate of a
second order frequency domain BSS algorithm [16]. It should
be noted that we do not use all of the appearance parameters
c, we use a dimensionally reduced vector v.

For N speakers we maximise the coherence in the follo-
wing way:

J(W ) = arg max
W

N
∑

i=1

C(ai, vi) (9)

An AAM is used to obtain a model of the visual features
of the speakers lips over a number of frames. To extract the
corresponding audio features we use Mel-cepstral coefficients
(MFCCs). MFCCs were chosen for their ability to mimic
non-linear frequency resolution of the human ear. The audio
and visual features are concatenated to provide joint audio-
visual feature vectors:

u = [vT , aT ] (10)

The probability distribution of u can be modelled using
either a GMM or an HMM. Training of the model is achieved
using the same method as in [7]. For our experiments we
compare the results using both models.

Next we integrate the audio-visual information into a BSS
algorithm. For our experiments we used a penalty function
based frequency domain BSS algorithm [16]. In the origi-
nal algorithm of [16] the learning rate µJc is controlled by a
function of the present penalty value. In the current work it is
controlled by a function of the audio-visual coherence.

µJc(ω) =
ξ

ζ + f ′(Pav)
(11)

where Pav is the joint audio-visual probability (a measure of
the coherence), ξ and ζ are constants and f ′ is a certain non-
linear mapping [12]. It is necessary to calculate Pav using a
different method when using a GMM or HMM to model the
training data. For the case of a GMM we have:

p(us) =

K
∑

i=1

wi

exp{−1/2(us − µi)
T Σ−1

i
(us − µi)}

√

(2π)K | Σi |
(12)

where µi, Σi, wi and K are the mean vector, covariance ma-
trix, kernel weights and the number of Gaussian kernels res-
pectively. Pav is then found by summing the log of (12) and
for the HMM the log probabilities were calculated using the
method in [17].

The AVSS algorithm is performed using the following
steps:

1. Estimate the source signals from the current estimate of
W(τ) (for τ = 0...k) and calculate the audio features.

2. Concatenate the audio feature with the visual features
to form a new joint audio-visual feature.

3. Calculate the joint probability Pav using either the GMM
or HMM model parameters.

4. Calculate a new value for (11).

5. Update W(τ) (for τ = 0...k) until converged.

The algorithm is said to have converged when the change
in value of µJc falls below a chosen threshold.

6. RESULTS

The statistical models (GMM, HMM) were trained on the
audio-visual features extracted from a video of a subject in
an office environment with low level acoustic noise and artifi-
cial front on lighting. Video data were captured using a digital
video camera at 25fps and the audio was captured using a di-
rectional microphone, and sampled at 32KHz, 16-bit mono.
The lip region in the video was tracked using an AAM to pro-
vide a joint model of shape and texture information with 10
appearance parameters per frame. The speech features were
extracted using Mel-cepstral analysis with a 20ms Hamming
window, providing 12 MFCCs per frame. The appearance
parameters (40ms) were then interpolated in order to retain
one-to-one correspondence with the audio parameters (20ms).
The number of Gaussian kernels for the GMM and the num-
ber of states for the HMM were set to 10. Finally, the audio-
visual feature space had 22 dimensions, 10 video plus 12 au-
dio and remained the same size during separation.

Only 2x2 mixtures were considered, where the speech si-
gnal of the speaker present in the video was mixed with ano-
ther speaker in a convolutive system with 9 taps. Figure 2
shows the results of the simulations. It can be seen that the
audio-visual model requires fewer iterations to converge (the
end of the curve denotes convergence of the BSS algorithm),
hence there is a lower overall complexity which is very li-
kely to be useful in a non-stationary environment when the
speaker is moving. Furthermore, the advantage of using an
HMM compared to a GMM was also observed. This could be
contributed to the fact that HMMs are better able to capture
the co-articulation of speech. The quality of the reconstruc-
ted sources was judged subjectively by listening tests to be
essentially identical for the 3 methods.

7. CONCLUSION

Using video to aid BSS is still a new area. The first steps in
using video to control the search parameters in a BSS algo-
rithm show promising results. Experimental results indicate
that by combining audio and visual information we achieve a
faster learning rate. The results were confirmed by using se-
veral different datasets to evaluate the method, although due
to limited space we only present one example.
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Fig. 2. Comparison of learning rate using (a)HMM, (b)GMM,
(c)audio only to control the step size

Nonetheless there are still many outstanding challenges
for audio-visual BSS:

• Finding the best method for extracting the chosen vi-
sual features.

• Appropriate modelling of the audio-visual features.

• Incorporating the visual information into the BSS algo-
rithm.

Currently, visual lip feature extraction techniques are in
their infancy. There are several methods available depen-
ding on what features you require but none are robust to both
speaker identity and to lip motion that is not speech related
(e.g. people often smile during a conversation and this can
be wrongly classified as speech). Modelling the audio-visual
features is not always necessary but can improve the robust-
ness. For audio-visual blind source separation to be success-
ful, what is required is a technique that exploits the video data
but that is robust to a wide range of possibly moving speakers,
and this is the subject of our future work.
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