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ABSTRACT
A novel constrained multimodal approach for convolutive blind source
separation is presented which incorporates video information related
to geometrical position of both the speakers and the microphones,
and the directionality of the speakers into the separation algorithm.
The separation is performed in the frequency domain and the con-
straints are incorporated through a penalty function-based formula-
tion. The separation results show a considerable improvement over
traditional frequency domain convolutive BSS systems such as that
developed by Parra and Spence. Importantly, the inherent permuta-
tion problem in the frequency domain BSS is potentially solved.

Index Terms— Frequency domain BSS, geometrical constraints
and multimodal separation.

1. INTRODUCTION

Convolutive blind source separation (CBSS) has been a subject of
considerable research recently since it attempts to address the inher-
ent characteristics of (a real echoic) mixing environment. Generally,
the main objective of BSS is to decompose the measurement signals
into their constituent independent components as an estimation of
the true sources which are assumed a priori to be independent.

CBSS has been conventionally developed in either the time [1]
or frequency [2] [3] [4] domains. Frequency domain convolutive
blind source separation (FDCBSS) however, has been more pop-
ular as the convolutive mixing is converted into a number of in-
stantaneous mixing operations. The permutation problem inherent
to FDCBSS is more severe and destructive than for time domain
schemes [5]. In such systems there are no priori assumptions on
the source statistics or the mixing system. On the other hand, in a
multimodal approach the video system can capture the positions of
the speakers and the directions they face [6]. The video informa-
tion can thereby help to estimate the mixing matrix more accurately
and ultimately increase the separation performance. Following this
idea, the objective of this paper is to efficiently use such informa-
tion in the enhancement of the separation results. The CBSS sys-
tem can be described as follows: assume m statistically independent
sources as s(t) = [s1(t), . . . , sm(t)]T where [.]T denotes trans-
pose operation. The sources are convolved with a linear model of
the physical medium (mixing matrix) which can be represented in
the form of a multichannel FIR filter H to produce n sensor signals
x(t) = [x1(t), . . . , xn(t)]T as

x(t) =
P∑

τ=0

H(τ)s(t − τ) + v(t) (1)
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where v(t) = [v1(t), . . . , vn(t)]T is the noise vector at discrete
time sample t and H = [H(0),H(1), . . . ,H(P )]. Using time do-
main CBSS, the sources are estimated using a set of unmixing filters
W(τ), τ = 0, .., Q, such that

y(t) =

Q∑
τ=0

W(τ)x(t − τ) (2)

where y(t) = [y1(t), . . . , ym(t)]T are the estimated sources. P and
Q are respectively the lengths of the mixing and unmixing filters.
The length of the signals is T . In FDBSS the problem is transferred
into the frequency domain using the STFT. (1) and (2) then change
respectively to:

X(ω, t) ≈ H(ω)S(ω, t) + V(ω, t) (3)

Y(ω, t) ≈ W(ω)X(ω, t) (4)

where ω denotes discrete normalized frequency. An inverse STFT
is then used to find the estimated sources ŝ(t) = y(t); however,
this will be certainly affected by the permutation effects due to the
variation of W(ωi) with ωi. Parra’s algorithm jointly diagonalizes
the unmixing matrix for all the frequency bins by minimising the
squared error (as the sum of off diagonal elements of the covariance
matrix of the estimated sources) using the constrained gradient de-
scent algorithm [7]. Considering the FDCBSS system developed by
Parra and Spence the main cost function Jm is expressed in the form
of

Jm =

T∑
ω=0

K∑
k=1

||E(ω, k)||2F (5)

where

E(ω, k) = W(ω)[Rx(ω, k) − Λv(ω, k)]WH(ω) − Λs(ω, k) (6)

and Rx, Λv and Λs are respectively the covariance matrices of
the signals, noise and source signals spectra, and ‖.‖2

F denotes the
Frobenius norm. Ignoring the noise for simplicity, the main update
equation for estimation of W(ωi) for the i-th FFT frequency is given
as [2]

Wj+1(ωi) = Wj(ωi) − μ
K∑

k=1

E(ωi, k)Wj(ωi)Rx(ωi, k) (7)

where j, K and μ are the iteration index, the number of FFT points
and learning rate respectively. W is updated for all the frequency
bins ωi and each time is initialized to the identity matrix. In the
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following section we use the spacial information indicating the posi-
tions and directions of the sources using the “data” acquired instan-
taneously by a number of video cameras. The separation process is
then constrained by such information. The comparison between the
original Parra and Spence, and the proposed multimodal constrained
FDCBSS, algorithms will be presented at the end.

2. THE CONSTRAINED PROBLEM

Given the position of the speakers and the microphones, the dis-
tances between the ith microphone and the jth speaker dij , and also
their propagation times τij , can be calculated (See Figure 1 for a sim-
ple two-speaker two-microphone case). Accordingly, in a homoge-
nous medium such as air, the attenuation is related to the distances
via

αij =
κ

d2
ij

(8)

where κ is a constant representing the attenuation per unit length in a
homogenous medium. Similarly, τij in terms of the number of sam-
ples, is proportional to the sampling frequency fs, sound velocity C,
and the distance dij as:

τij =
fs

C
dij (9)

which is independent of the directionality. Both fs and C are con-
sidered constant within each observation block for a block-based
BSS system, or slowly varying in a real-time BSS process. How-
ever, in practical situations the speakers directions introduce another
variable into the attenuation measurement. In the case of electronic
loudspeakers (not humans) the directionality pattern depends on the
type of loadspeaker. Here, we approximate this pattern as cos(θij/r)
where r > 2, and has a smaller value for highly directional speakers
and vice versa (an accurate profile can be easily measured using a
SPL meter). Therefore, the attenuation parameters become

αij =
κ

d2
ij

cos(θij/r) (10)

If, for simplicity, only the direct path is considered the mixing filter
is expected to have a form as:

Ĥ(t) =

[
α11δ(t − τ11) α12δ(t − τ12)
α21δ(t − τ21) α22δ(t − τ22)

]
(11)

for which in the frequency domain the above filter has the form

Ĥ =

[
α11e

−jωτ11 α12e
−jωτ12

α21e
−jωτ21 α22e

−jωτ22

]

=

[
α11z

−τ11 α12z
−τ12

α21z
−τ21 α22z

−τ22

]
(12)

Although the actual mixing matrix includes the reverberation terms
related to the reflection of sounds by the obstacles and walls, in such
a room environment it will always contain the direct path compo-

nents as in the above equations. Therefore, we can consider Ĥ as a
biased estimate of the mixing filter and set the following constraint,
which minimizes the Frobenius norm distance between the unmixing

filter W and the permuted mixing filter Ĥ , i.e.

Jc = ‖W − PĤ−1‖2
F = ‖vec(W − PĤ−1)‖2

2 (13)

Fig. 1. A two-speaker two-microphone setup for recording within
a reverberating (room) environment; only distances and angles be-
tween sources and microphones are shown.

where ‖.‖2
2 represent respectively, the Euclidean norm, vec(.) con-

verts a matrix argument column-wise into a column vector, and P
is the permutation matrix. Ultimately, the cost function Jc has to be
minimized with respect to both W and P.

3. THE OVERALL CONSTRAINED BSS

In order to achieve the above goal, we need to minimize jointly Jm

and Jc with respect to W, and also minimise Jc with respect to the
permutation matrix P. The constrained optimisation problem can be
changed to an unconstrained one using a Lagrangian approach or by
means of a penalty function as in [8]. In this case

J(W(ω)) = Jm(W(ω)) + λJc(W(ω)) (14)

where λ is the Lagrange multiplier. W and P are then found by
minimizing the gradients of J and Jc respectively with respect to
W and P, i.e.

Wopt(ω) = arg min
W

{Jm(W(ω)) + λJc(W(ω))} (15)

and
Popt(ω) = arg min

P
{Jc(W(ω))} (16)

Therefore, at each frequency bin ωi the estimated sources will be
aligned with the input source signals; as one of the major advantages
of this algorithm there will not generally remain any permutation
problem. Consequently, the update equations are obtained as:

Wj+1(ω) = Wj(ω) − μ∇W(J(Wj(ω))) (17)

Pj+1(ω) = Pj(ω) − η∇P(Jc(Wj(ω))) (18)

where j is the iteration index, μ and η are the learning rates, and

∇W∗(J(W)) = ∇W∗(Jm(W)) + λ∇W∗(Jc(W))

= 2

K∑
k=1

E(ω, k)W(ω)Rx(ω, k)

+2λ[W(ω) − P(ω)H̃−1(ω)] (19)
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and

∇P(Jc(W)) = −2H̃−1(ω)[W(ω) − P(ω)H̃−1(ω)] (20)

Before starting the update process H̃−1(ω) is normalised once using

H̃−1(ω) ← H̃−1(ω)/‖H̃−1(ω)‖F where ‖.‖F denotes the Frobe-
nius norm and after each iteration W(ωi) is also normalised. In the
case of fractional filters where the distances between the speakers
and the microphones are not integer multiples of the sampling in-
terval, a previously developed algorithm to firstly estimate the frac-
tional delay and then perform the BSS process [9] [10] can be used.

4. EXPERIMENTAL RESULTS

Two experiments were carried out; in the first experiment two sin-
gle tones were used. The mixing matrix H was carefully chosen to
model the room environment and H̃ was selected to include only the
direct path and the angle of departures θ (r considered to be 4). Both
the Parra and Spence algorithm, and the proposed constrained FD-
CBSS were employed and the signal-to-interference ratio (SIR) was
calculated as [2]

SIR =
ΣiΣω|Hii(ω)|2〈|Si(ω)|2〉

ΣiΣi�=jΣω|Hij(ω)|2〈|Sj(ω)|2〉 (21)

Using the Parra and Spence algorithm the SIR was 6.1dB and using
the CBSS the SIR achieved was 9.25dB. The 3dB superior perfor-
mance is not only because of application of the geometrical con-
straints but also as a result of solving the permutation problem. Two
major drawbacks of the system are the slight increase in the com-
plexity and potential slower rate of convergence. In the second ex-
periment, the Parra and Spence algorithm and the proposed CBSS
were tested for a real room recording. The variables were selected
as: d11 = 24 cm, d12 = 50 cm, d21 = 40 cm, d22 = 18 cm, r = 4,
θ11 = 60o, θ12 = 5o, θ21 = 45o, and θ22 = 45o. λ is empirically
chosen (here λ = 0.15) and the learning rates μ and η gradually
decreased with respect to the iteration index j

μj = ηj = γ
0.02

1 − (0.98)j
(22)

where γ is a constant equal to γ = 0.01. Figure 2 shows the original
signals using a couple of microphones very close to the mouth of
the speakers, the mixed signals, the separated signals using the Parra
and Spence algorithm, and the estimated signals using our proposed
CBSS method. SIRs for P = Q = 1024 have been calculated ac-
cording to [2]. In this experiment we achieved SIRParra′s = 6.8dB
and SIRCBSS = 9.4dB, which shows a marked improvement. In
addition the filter length (DFT points) may be changed according to
the room geometry to obtain even better results. Table 1 shows the
SIR values for both experiments. Figure 3 illustrates the convergence
graph of the cost function within the last frequency bin for both Parra
and Spence, and the proposed CBSS method. As expected, by us-
ing the constraint term the convergence is slightly slower and the
complexity of the system is higher.

( a
 ) 

( b
 ) 

( c
 ) 

( d
 ) 

Fig. 2. (a) the original signals recorded by very close microphones,
(b) the mixed signals (c) the separated sources using Parra and
Spence algorithm, and (d) the estimated sources using the con-
strained FDCBSS.

Table 1. Comparison between Parra and Spence algorithm and the
proposed method for different sets of mixtures.

SIR Parra’s Constrained
Method/dB FDCBSS/dB

Sinusoidal Signal 6.1 9.25

Speech Signal 6.8 9.4

Fig. 3. The convergence graphs for both the Para and Spence, and
the proposed constrained FDCBSS algorithms for only the last fre-
quency bin.
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5. SUMMARY AND CONCLUSIONS

In this paper the conventional FDCBSS algorithm has been modified
by accommodating the geometrical information about the sources in
a multi-modal BSS approach. The location and direction informa-
tion have been obtained using a number of cameras equipped with a
speaker tracking algorithm. The constrained problem has been par-
tially changed to an unconstrained problem using Lagrange multipli-
ers. The results show that the modified CBSS system enhances the
performance of the traditional FDBSS system both objectively and
subjectively. The outcome of this approach paves the way for estab-
lishing a multi-modal audio-video system for separation of speech
and music signals.
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