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ABSTRACT

This paper presents a comparative study of three of the emerging fre-
quency domain convolutive blind source separation (FDCBSS) tech-
niques i.e. convolutive blind separation of non-stationary sources
due to Parra and Spence, penalty function-based joint diagonaliza-
tion approach for convolutive blind separation of nonstationary sour-
ces due to Wang et al. and a geometrically constrained multimodal
approach for convolutive blind source separation due to Sanei et al.
Objective evaluation is performed on the basis of signal to interfer-
ence ratio (SIR), performance index (PI) and solution to the permu-
tation problem. The results confirm that a multimodal approach is
necessary to properly mitigate the permutation in BSS and ultimately
to solve the cocktail party problem. In other words, it is to make BSS
semiblind by exploiting prior geometrical information, and thereby
providing the framework to find robust solutions for more challeng-
ing source separation with moving speakers.

Index Terms— Frequency domain (BSS), geometrical constraints,
orthogonal/nonorthogonal constraints, penalty functions, cocktail party
problem and multimodal signal separation.

1. INTRODUCTION

During the past decade there has been considerable research per-
formed in the field of convolutive blind source separation due to its
potential wide applications [1]. BSS is used to recover unknown
sources from the observed mixtures with only limited assumptions
such as the sources are independent. Many methods have been pro-
posed to solve the BSS problem [2][3][4][5] [6] and still much work
is required to solve the cocktail party problem [7]. In frequency
domain convolutive blind source separation (FDCBSS) the time-
domain convolutive mixing is converted into a number of indepen-
dent complex instantaneous mixing operations. When the sources
are reconstructed using the outputs for all the frequency bins we
however face the permutation and scaling problems. The scaling
problem can be easily solved by matrix normalization [8]. In most
BSS algorithms the geometrical information which is available from
video information is not utilized. The permutation problem degrades
their performance and has to be solved. The advantage of mul-
timodal BSS algorithms, for example, [8] is that the permutation
problem can be mitigated, as will be shown by later simulations.
The convolutive mixing system can be described as follows: assume
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n statistically independent sources as s(t) = [s1(t), . . . , sn(t)]T

where [.]T denotes the transpose operation and t the discrete time
index. The sources are convolved with a linear model of the phys-
ical medium (mixing matrix) which can be represented in the form
of a multichannel FIR filter H with memory length P to produce m
sensor signals x(t) = [x1(t), . . . , xm(t)]T as

x(t) =

PX
τ=0

H(τ)s(t− τ) + v(t) (1)

y(t) =

QX
τ=0

W(τ)x(t− τ) (2)

where y(t) = [y1(t), . . . , yn(t)]T contains the estimated sources,
the sources can be estimated using a set of unmixing filter matrices
W(τ), τ = 0, .., Q, and Q is the memory of the unmixing filters. In
FDBSS the problem is transferred into the frequency domain using
the short time Fourier transform STFT. Equations (1) and (2) then
change respectively to:

X(ω, t) ≈ H(ω)S(ω, t) + v(ω, t) (3)

Y(ω, t) ≈ W(ω)X(ω, t) (4)

where ω denotes discrete normalized frequency. An inverse STFT
is then used to find the estimated sources ŝ(t) = y(t). In the fol-
lowing section the three approaches will be briefly studied. In Sec.3
performance measures are defined. In Sec.4 the simulation results
for real world data confirm that the incorporation of prior geomet-
ric information (similarly highlighted by S. Haykin in [9]) mitigates
the permutation problem and paves the path to the solution of the
cocktail party problem even in a dynamic environment with moving
sources, and finally conclusions are drawn.

2. OVERVIEW OF THE THREE FDCBSS ALGORITHMS

Parra and Spence [10] utilized second order statistics by exploiting
the non-stationarity of speech to perform BSS. The non-stationarity
of speech is used to provide multiple covariance matrices to be di-
agonalized. The solution to the permutation problem is achieved by
imposing a smoothness constraint on the unmixing filters. The un-
mixing matrix W(ω) is found across all frequency bins from

RY (ω, tk) = W(ω)[Rx(ω, tk)−Λv(ω, tk)]WH(ω) (5)

where (.)H is the Hermitian transpose operator, Rx(ω, tk) and
Λv(ω, tk) are covariance matrices of X(ω, tk) and V(ω, tk). The
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covariance matrices are estimated using an averaged cross-power
spectrum.The cost function based on the off-diagonal elements of
RY (ω, tk) estimated at tk = kTN , k = 1, 2, . . . , K, K being the
number of matrices to diagonalize, is

J(W(ω)) =

TX
ω=1

KX
k=1

‖off [RY (ω, tk)]‖2F (6)

where ‖.‖2F is the squared Frobenius norm. An optimal W(ω) that
minimizes this cost function subject to certain constraints can be for-
mulated as a least squares (LS) estimation problem as

W(ω) = min
W (τ)=0,τ>Q¿T,Wii=1

TX
ω=1

KX
k=1

‖off [RY (ω, tk)]‖2F
(7)

and can be solved numerically by using a constrained gradient de-
cent algorithm.

Wang et al. [11] proposed a solution to the BSS problem by in-
corporating a penalty function into the cost function (6). A penalty
function is a non-negative function that is zero in the region where all
constraints are satisfied (feasible region of solution space) and posi-
tive when any of the constraints are not satisfied (infeasible region of
solution space). As the constraints in [10] are equality constraints,
an exterior penalty function is used to convert it to an unconstrained
optimization problem. We can write the modified cost function after
incorporating a penalty term as

J(W(ω)) =

TX
ω=1

KX
k=1

[JM (W)(ω, k) + λJC(W)(ω, k)] (8)

where λ is a penalty weighting factor, JM (W)(ω, k) is the original
cost function in (6) and JC(W)(ω, k) is the penalty function.

The key issue for successful implementation of this approach is
the choice of a suitable penalty function, which depends on the na-
ture of the constraint. We choose the penalty function as Jc(W)(ω, k) =
‖diag[W(ω)−I]‖. where diag[.] is an operator that equates all off-
diagonal elements to zero.

We can now formulate the cost to find the optimal W(ω) as

J(W(ω)) = arg min
W

TX
ω=1

KX
k=1

[JM (W)(ω, k) + λJC(W)(ω, k)]

(9)
which has the form of a least squares problem and can be solved by
an unconstrained gradient descent method with the update equation

W+(ω) = W(ω)− (µJM

∂JM

∂W∗(ω)
+ µJC λ

∂JC

∂W∗(ω)
) (10)

where (.)∗ denotes the complex conjugate operator, µJM and µJC

are the normalized step sizes. The permutation indeterminacy is po-
tentially mitigated by limiting the unmixing filter lengths.

Multimodal signal processing can offer non-trivial improvements
in performance over standard uni-modal signal processing. Sanei et.
al. in [8] incorporated video information regarding the geometrical
position of both the speakers and the microphones as shown in Fig-
ure 1, and the video information describing the geometrical position
of the jth speaker and the ith microphone, the distance and the time
delay between them can be calculated as dij and τij respectively.
The positions and directions information used in simulations was
obtained from video cameras.

αij =
κ

d2
ij

cos(θij/r) τij =
fs

C
dij (11)

Fig. 1. A two-speaker two-microphone setup for recording within a
reverberant (room) environment; only distances and angles between
sources and microphones are shown.

where κ is the attenuation per unit length in the medium and r > 2
which depends on the type of loudspeakers, fs is the sampling fre-
quency and C is velocity of sound. Considering only the direct-
paths, the mixing filter Ĥ(ω) in the frequency domain can be for-
mulated as

Ĥ(ω) =

�
α11e

−jωτ11 α12e
−jωτ12

α21e
−jωτ21 α22e

−jωτ22

�
(12)

We can now formulate a penalty function based on the distance
between the unmixing filter W and biased estimate of the mixing
filter Ĥ as

JC = ‖W −PĤ−1‖2F = ‖vec(W −PĤ−1)‖22 (13)

where P is the permutation matrix and vec(.) converts a matrix
column-wise into a vector. The optimum W and P with the overall
cost function are

Wopt(ω) = arg min
W
{JM (W(ω)) + λJC(W(ω))}

Popt(ω) = arg min
P
{JC(W(ω))} (14)

which can be found with a gradient descent algorithm and the adap-
tation of the permutation matrix P is also used in solving the permu-
tation problem.

3. PERFORMANCE MEASUREMENT

In this section, we briefly describe objective performance measures
that will be used for evaluation of separation. In BSS, the objective
evaluation is possible only if true system parameters are known. In
this paper initially the algorithms are objectively evaluated based on
the real recorded room impulse responses, i.e. the mixing filters
are real recorded room impulse responses, and the observed mixture
signals are obtained by convolving the source signals with these real
room impulse responses. Finally, the performance on the real room
recordings of the same room geometry were confirmed subjectively
by listening tests. In this paper the performance of the algorithms is
evaluated on the basis of two criteria on real room recordings.

The SIR is calculate as in [8]

SIR =
ΣiΣω|Hii(ω)|2〈|si(ω)|2〉

ΣiΣi6=jΣω|Hij(ω)|2〈|sj(ω)|2〉 (15)

where Hii and Hij represents respectively, the diagonal and off-
diagonal elements of the frequency domain mixing filter, and si is
the frequency domain representation of the source of interest.
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The PI [3] as a function of the overall system matrix G = WH
is given as

PI(G) =
h 1

n

nX
i=1

� mX
k=1

abs(Gik)

maxkabs(Gik)
− 1
�i

+
h 1

m

mX
k=1

� nX
i=1

abs(Gik)

maxiabs(Gik)
− 1
�i

(16)

where Gik is the ikth element of G. The motivation for selecting
this criterion is the evaluation of performance at bin level.

4. EXPERIMENTAL RESULTS

The simulations were performed on real recorded speech signals
generated for a room geometry as illustrated in Figure 2.
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Fig. 2. A two-speaker two-microphone layout for recording within
a reverberating (room) environment. Room impulse response length
is 130 ms.

The important variables were selected as: FFT length T = 1024
and filter length Q = 512 half of T , r = 4, the sampling frequency
was 8KHz and the room impulse duration was 130ms, λ was empir-
ically chosen (here λ = 0.15) and the learning rates µ and η were
gradually decreased with respect to the iteration index j

µj = ηj = γ
0.02

1− (0.98)j
(17)

where γ is a constant with γ = 0.01. In the first experiment the
positions of the sensors and speakers are Mic1 = [2.47, 2.50, 1.5],
Mic2 = [2.53, 2.50, 1.5], Speaker1 = [1.0, 2.0, 1.5] and Speaker2 =
[3.5, 2.0, 1.5]. The resulting performance indices are shown in Fig-
ure 3.

Since we know that performance index calculated by (16) is in-
sensitive to permutation. We therefore introduce another criterion
for the two sources case which is sensitive to permutation and shown
for the real case for convenience, i.e. in the case of no permutation,
H = W = I or H = W = [0, 1; 1, 0] then G = I and in the
case of permutation if H = [0, 1; 1, 0] then W = I and vice versa
therefore, G = [0, 1; 1, 0]. Hence for a permutation free FDCBSS
[abs(G11G22)− abs(G12G21)] > 0. The results of calculating this
criterion for the first experiment are shown in Figure 4.

In the second experiment we only changed the positions of the
speakers. Mic1 = [2.47, 2.50, 1.5], Mic2 = [2.53, 2.50, 1.5],
Speaker1 = [2.00, 1.20, 1.5] and Speaker2 = [3.25, 1.20, 1.5]. The
resulting performance indices are shown in Figure 5, and for this
experiment we also evaluated the permutation on the basis of the
criterion mentioned above and the results are shown in Figure 6.
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Fig. 3. Performance index at each frequency bin for the (a) Parra
and Spence algorithm [10], (b) Wang et al. algorithm [11], and (c)
multimodal FDCBSS algorithm [8]. A lower PI refers to a superior
method.
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Fig. 4. Evaluation of permutation in each frequency bin for the
(a) Parra and Spence algorithm [10], (b) Wang et al. algorithm
[11], and (c) multimodal FDCBSS algorithm [8]. [abs(G11G22) −
abs(G12G21)] > 0 means no permutation.
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Fig. 5. Performance index at each frequency bin for the (a) Parra
and Spence algorithm [10], (b) Wang et al. algorithm [11], and (c)
multimodal FDCBSS algorithm [8].
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Fig. 6. Evaluation of permutation in each frequency bin for the (a)
Parra and Spence algorithm [10], (b) Wang et al. algorithm [11], and
(c) multimodal FDCBSS algorithm [8].
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In the third and last experiment we reduced the distance between
the microphones. Mic1 = [2.48, 2.50, 1.5], Mic2 = [2.52, 2.50, 1.5],
Speaker1 = [2.00, 1.20, 1.5] and Speaker2 = [3.25, 1.20, 1.5]. The
resulting performance indices are shown in Figure 7, and the evalua-
tion for permutation on the basis of the criterion mentioned above is
shown in Figure 8. Figures 3(c), 5(c) & 7(c) show good performance
i.e. close to zero across the majority of the frequency bins since this
is due to the multimodal approach. Figures 4(c), 6(c) & 8(c) show
that the multimodal FDCBSS method mitigate the permutation. Ac-
tually, in unimodal BSS no priori assumptions are typically made
on the source statistics or the mixing system. On the other hand,
in a multimodal approach a video system can capture the approx-
imate positions of the speakers and the directions as done in [8].
Such video information can thereby help to estimate the unmixing
matrices more accurately and ultimately increase the separation per-
formance. We highlight that the convergence time of [11] and [8] is
slightly higher than [10].
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Fig. 7. Performance index at each frequency bin for the (a) Parra
and Spence algorithm [10], (b) Wang et al. algorithm [11], and (c)
multimodal FDCBSS algorithm [8]. A lower PI refers to a superior
method.
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Fig. 8. Evaluation of permutation in each frequency bin for the
(a) Parra and Spence algorithm [10], (b) Wang et al. algorithm
[11], and (c) multimodal FDCBSS algorithm [8]. [abs(G11G22) −
abs(G12G21)] > 0 means no permutation.

Finally, the SIR (15) is calculated and results are shown in Table-
1, and the results have been confirmed subjectively by listening tests.

Table 1. Comparison of SIR-Improvement between algorithms for
different sets of mixtures.

Algorithms SIR-Improvement/dB
Parra’s Method 6.8

Wang et al. Method 9.2
Multimodal FDCBSS Method 9.8

5. CONCLUSION

In this work the separation of emerging FDCBSS algorithms was
evaluated objectively by the performance indices with solution for
permutation at frequency bin level and overall SIR-Improvement at
different conditions of sources and subjectively by listening tests,
which confirms the advantage of the multimodal FDCBSS algorithm,
and the need for a multimodal solution in frequency domain BSS.
This will particularly be the case with moving speakers in the cock-
tail party scenario (for moving speakers, the direction of the source
can also be obtained from the cameras, and can be used to improve
the performance of BSS), and as such the multimodal approach pro-
vides the foundation for such work.
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