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Abstract: Increased railway patronage worldwide is putting pressure on rolling stock and in-
frastructure to operate at higher capacity and with improved punctuality. Condition monitoring
is seen as a contributing factor in enabling this and is highlighted here in the context of rolling
stock being procured with high capacity data buses, multiple sensors and centralised control.
This therefore leaves scope for advanced computational diagnostic concepts. The rail vehicle
bogie and associated wheelsets are one of the largest and most costly areas of maintenance on
rolling stock and presented here is a potential method for real time estimation of wheel-rail
contact wear to move this currently scheduled based assessment to condition based assessment.
This technique utilises recursive ‘grey box’ least squares system identification, used in a piecewise
linear manner, to capture the strongly discontinuous nonlinear nature of the wheel-rail geometry.
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1. INTRODUCTION

Increased patronage of railways worldwide in the past two
decades has put pressure on rolling stock and engineering
infrastructure to operate at a higher capacity and with
increased punctuality. This therefore creates a demand on
maintenance systems to reduce the time rolling stock is out
of service due to condition checks and regular servicing.
Contemporary trains are being built with high capacity
communication buses and numerous sensors at important
locations on the vehicle. This means there is scope for the
application of advanced numerical methods for condition
monitoring of key components in real time.

One such component is the railway vehicle bogie and its
associated wheelsets, consisting of two wheels solidly fixed
to an axle. This system is responsible for one of the largest
areas of maintenance costs of the entire system and is
therefore one of the key targets for condition monitoring.
This paper covers; context of wheel-rail profile estima-
tion; development of simulation models that include gauge
width variation with the use of disturbance signals more
representative of the frequency content of real track geom-
etry; and development of a recursive identification process
using a linear piecewise approach to identify rolling radii
and contact angles of the wheel-rail interaction instead of
the effective conicity. This last point was previously briefly
described in Ward et al. (2010) and is expanded here.
Further discussion is made of: a potential looped track
disturbance estimation with geometry estimation concept;
signal frequency content analysis of different wear states
of wheelsets along a section of track; and the potential use
of creep force estimation to determine the condition of the
wheel-rail interface, Charles et al. (2008c).

This work carries on research performed in various sources
to determine the wheel-rail profile. Initially Li et al. (2003),
Li et al. (2004) and Li et al. (2006) showed that con-

dition monitoring of suspension components such as sec-
ondary dampers can be achieved in real time using Rao-
Blackwellised Particle Filters (RBPF). This was less suc-
cessful at monitoring the condition of wear of the wheelset
in combination with the rail, known as a linearised effective
conicity function, λ. Further investigations of linear conic-
ity estimation were covered in Selamat and Yusof (2009),
with the limitation that the model was linear and that the
lateral rail irregularity was known.

Ideas for the estimation of a nonlinear conicity were ex-
plored initially in Charles et al. (2008c) using Extended
Kalman-Bucy Filtering (EKBF). Later Charles et al.
(2008b) and Charles et al. (2008a) used a Piecewise Cubic
Polynomial (PCP) function in a least squares identification
of the nonlinear conicity. The Kalman filter technique had
weaknesses at larger relative displacements of the wheelset
to the rail and the system identification method required
a knowledge of the exact input to the system, the lateral
track disturbance d. This last point may be unfeasible in
application or may require estimation.

2. WHEELSETS AND CURRENT PRACTICE

Railway vehicles’ wheelsets and how they interact with
the railhead are the most fundamental component of a
railway vehicle. Two coned and flanged wheels connected
solidly to a central shaft provide: straight line guidance
to negate the effect of stochastic lateral rail irregularities;
cornering performance; braking traction; accelerative trac-
tion; and ride characteristics, Iwnicki (2006). Therefore,
the condition of these components is of safety critical
importance for the operation of the whole system. If the
geometry of the wheelset in combination with that of the
railhead moves out of allowable tolerance, the rail vehicle
can become dynamically unstable and potentially cause
vehicle derailment, Wickens (2003). This relationship is



highly nonlinear as the wheel treads are not perfectly
coned and the railheads are not point contact, but domed,
an example of which is shown in Figure 1.
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Fig. 1. Wheel profile and railhead cross section

At present, the level of wear in the wheel tread and
the railhead are monitored separately with the use of
physical measuring devices, such as the MiniProf system,
Greenwood-Engineering (2010). This is time consuming,
costly and could potentially miss a wheelset or railhead
in dangerous condition in-between inspection intervals.
Therefore, a system that can detect the level of wear
in the wheel-rail contact geometry in real-time is highly
desirable. This would make use of cost effective and reliable
inertial sensors positioned around the bogie system, with
processing performed by advanced filtering.

Condition monitoring is currently becoming more preva-
lent in rail vehicles. They are being manufactured with
multiple sensors, high capacity communication buses and
powerful processing capability. One such system in oper-
ation is Bombardier Transportation Orbita, Bombardier
(2010), which followed trends set in the aerospace and
automotive industries where knowledge of fleet condition
can be built up through health monitoring systems. The
ideas proposed here could be integrated into such a system.

3. WHEELSET AND VEHICLE MODELS

The research presented is in the proof of concept stage and
so was initially developed using a simple model for simula-
tion, consisting of a single wheelset and single suspended
mass (Figure 2). As the work progresses more complex
models will be used. Due to minimal coupling between
lateral, longitudinal and vertical planes, the wheelset dy-
namics are considered with only lateral displacement, yaw
rotation and roll rotation, with the suspended mass con-
taining only lateral displacement dynamics. A simplified
nonlinear model is taken from Garg and Dukkipati (1984),
where the equation for the lateral dynamics of the wheelset
is

Fig. 2. Wheelset and mass model
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which consists of the longitudinal creep force, lateral creep
force, lateral/spin creep force and gravitational creep force.
The yaw dynamics equation for the wheelset is
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which consists of the roll moment, longitudinal creep
moment, lateral/spin creep moment, spin creep moment
and the gravitational stiffness moment. The equation for
the lateral dynamics of the suspended mass is

ÿ =
1

mm

(Fsy) (3)

the lateral suspension forces is

Fsy = ky(ym − y) + fy(ẏm − ẏ) (4)

and the suspension yaw force is

Msψ = −kψψ − fψψ̇ (5)

Parameters and states for all of the equations are given in
Table A.1.

The significant nonlinearities in the equations are in the
form of static geometric relationships of the rolling radii
and contact angles, rL rR δL δR. These are calculated
for specific wheel-rail combinations by a Newton-Raphson
iterative process, Wickens (2003), and are function of the
relative displacement of the wheelset to the railhead, (y−
d). Example profiles for a P8 wheel profile and a 113A



rail head are shown in Figure 3. This shows the extreme
discontinuous nature of the relationships and is one of
the key elements in making their estimation especially
complex. It should also be noted that these equations
are partially linearised by using Kalker coefficients for
the friction values, Kalker (1967), but in reality this is
not the case and presents another significant source of
nonlinearity.
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Fig. 3. Wheel-rail contact geometries

Modelling in previous studies have neglected the influence
of gauge width variation in the model, where this was
assumed to be a negligible effect, Charles et al. (2008c).
Investigation has shown this is a significant dynamic
component. This has been coupled with using track inputs
and gauge width variations from real recorded data instead
of using filtered white noise sources, as the latter can
lead to poor correlation between models and reality due
to frequency biasing, Evans and Berg (2009). Therefore
using inputs from a track recording car on the Paddington
to Bristol line, with magnitudes corresponding to track
alignment regulations defined in RSSB (2007), Figure 4
shows collected data of the rolling radii sums (rL+rR) and
how this is not a singular valued function of the relative
lateral displacement, but is instead distributed over a
bounded uncertain region. Also due to the asymmetry
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Fig. 4. Gauge width uncertainty effect

in the left and right geometry, the gauge width variation

can laterally excite the system, though this is a secondary
effect.

It is also assumed that ideal inertial sensors are present
in the axleboxes that can measure the lateral acceleration,
yaw acceleration and roll acceleration of the wheelset. The
suspended mass is assumed to be fitted with a lateral
accelerometer. It is noted that inertial sensors will require
a degree of filtering due to the presence of noise and
will also drift from their offset in time, so the quality of
information gathered in simulation can not be expected in
reality, Weston et al. (2006). An assumption is also made
that the lateral alignment and the gauge width variation
of the track is known. These later points mean that the
current algorithm remains to be proved in practice.

4. PIECEWISE LINEAR IDENTIFICATION

Previous approaches to this problem, as highlighted earlier
used: an RBPF to estimate a linearised conicity value;
augmented state EKBF to estimate a nonlinear conicity
function; and system identification to identify a nonlinear
conicity function. These were applied to simplified models
and the conicity was a smooth generic shape combining a
S1002 wheel tread and UIC60 railhead. When applied to a
nonlinear model with discontinuous nonlinear geometries
and richer dynamics, they failed to produce satisfactory
results. Therefore it was deemed appropriate to perform a
number of linear identifications around small regions of the
wheel-rail displacement, building a table of values rather
than a single nonlinear function. This also makes use of
recursive ‘grey box’ weighted least squares algorithm so
that the process can be used more efficiently in real time.
However there still remains the issue of a measurement of
the track alignment being required.

This section therefore introduces: the recursive ‘grey box’
least squares identification scheme and how this is applied
to the geometry estimation problem; the method of data
re-ordering to perform discrete range estimations; and the
basic block algorithm of how these concepts are assimi-
lated to produce an estimation of the nonlinear wheel-rail
contact geometry

4.1 ‘Grey box’ weighted recursive least squares

A standard regressor or state model can be defined as

ŷ = XT θ (6)

where y is the measured output of the system, X is
a matrix of measured state values and θ is the matrix
of unknown parameters. The estimation of the unknown
parameters can be defined by the standard ‘black box’
ordinary least squares (OLS) equation, Hsia (1977), Ljung
(1999), Söderström and Stoica (1994) as

θ = (XTX)−1XT y (7)

If there is some knowledge of the system generated through
modelling or simulation and there are some known param-
eters, a new regressor or state equation can be defined as

ŷ = XT θ + Ω (8)

where Ω is the known combinations of the parameters
and regressor or state output vectors. The ‘grey box’OLS
algorithm becomes

θ̂ = (XTX)−1(XT y −XTΩ) (9)



This format is a ‘block’ identification, where all of the data
collected is used to determine the unknown parameters. In
this application data from the system will be collected in
real time and as such an updating process is needed that
will adapt with time as new data is collected. The ‘black
box’ and ‘grey box’ OLS algorithms can be applied in such
as manner, Aström (1989). A weighting factor can also be
added to ‘forget’ previous measurements, thus being more
or less receptive to new data. Initial conditions for the
‘grey box’ recursive least squares version of the algorithm
are set as
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where X(0) is the matrix of state values up to the start
of the identification process, y(0) is the initial output
vector and θ(0) is the initial least squares estimation. The
estimation loop is then performed recursively as data is
added to the X matrix as
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where 0 < W ≤ 1 is the updating weighting factor and
i is the number of the iteration. This format also saves
computational expense as only the latest added values are
acted upon rather than the entire data set.

In this application each estimation is performed using two
multiple-input-single-output identifications. The first is a
re-arrangement of the lateral wheelset dynamics (Equation
1) to make the lateral acceleration ÿ the subject, from this
the known parameter equation becomes
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and the X matrix becomes

X1 =
[
ψ, φ̇, 1

]
(16)

The second estimation uses the wheelset yaw dynamics
(Equation 2) in the form of the yaw acceleration ψ̈, from
which the known parameter equation becomes
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and the corresponding X matrix is

X2 =
[
ψ, φ̇, 1

]
(18)

Estimates of the corresponding parameters can then be
manipulated to determine the parameter combinations
(rL + rR), (rL − rR), (δL + δR) and (δL − δR).

4.2 Data splitting

The recursive least squares estimation of the previous
section is applied to discrete sections of data relative to the
wheel-rail displacement. Therefore this data first requires

ordering from the main data stream. This separation is
performed relative to the displacement (y−d), therefore if
the data is of the length n, the range of the data is defined
as

a = max(y − d) −min(y − d) (19)

where b is the user defined division size, the number of
sections that the data is separated becomes

n =
a

b
(20)

The data is then partitioned into one of the n bins. If the
number of bins is defined as j = 1 : n and the time interval
is defined as i, the current collected piece of data (y − d)i
is checked to see if

aj > (y − d)i > a(j − 1) (21)

If this statement is true the data is stored in bin j.
Correspondingly the data for all the other states at time
i are stored in bins numbered j. This process occurs
recursively so that as new data is collected it is checked
for relative position and stored in the corresponding bin.

This separation of data works here due to the very stiff
nature of the system. Meaning that there is very little
time delay present and therefore the states of the system
match up as the data transitions in and out of the division
sections, though inevitably some correlation will be lost.

4.3 Algorithm

The following is a step by step algorithm for the wheel-rail
profile detection procedure

(1) Begin collecting data
(2) Separate data into bins relative to the wheel-rail

displacement (y − d)
• Process is continuous as new data is added

(3) When a data bin has reached a threshold level number
of data points, begin estimation with data in that bin

(4) Recursively identify unknown parameters using ‘grey
box’ least squares algorithm
• Recursively update the estimation as new data is

added to the separation bins

this is also shown in Figure 5.

Fig. 5. Algorithm flow chart



5. EXAMPLE APPLICATION

The above algorithm was applied to the single wheelset
system and suspended mass in two configurations, the first
with no gauge width variation as the second with gauge
width variation. Values of the parameters used for the
simulation are also shown in Table A.1 where applicable.

Simulations were run with P8 shaped wheelsets in a
medium state of wear having covered 117,000 miles on a
class 43 power car and a 113A railhead in a new state. The
system was excited by lateral misalignment of the railhead
with a standard deviation (STD) of approximately 2mm,
and with a gauge width variation also with an STD of
approximately 2mm. Both misalignments were recored on
the Paddington to Bristol line using a track recording car.

The estimation was first performed with no gauge width
variation present. As expected this produces a good esti-
mation of the model parameters, this is shown in Figure 6
for the rolling radii sums, (rL + rR). Though not shown,
the remaining three geometric combinations also give good
correlation.
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Fig. 6. Estimation with no gauge width variation

The second estimation is performed with gauge width
variation in the simulation. This does not produce as good
an estimation due to there now being uncertainty in the
parameters. Figure 7 shows the estimation again for the
rolling radii sums. The estimation points now occupy an
estimation space within the boundaries set by the gauge
width variation. Although not shown the contact angle
sum fails to converge completely. This may be due to
the parameter being highly dependent upon knowing the
gauge width exactly.

6. FUTURE WORK AND POSSIBLE APPROACHES

The main issue with the algorithm highlighted in this
paper is the need to know the input irregularity and
the gauge width variation. This would be difficult and
expensive to practically measure in real time for each
wheelset using a vision or laser based system. It is possible
that track recording data might be exploited but precise
synchronisation means that this is not straight forward.
Another possible solution is to estimate the disturbance
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Fig. 7. Estimation with gauge width variation

signal with an assumed geometric formation, then feed
this estimate into the identification. This would become
a looped process with the disturbance estimation running
at a faster rate than the geometric estimation, a schematic
of which is shown in Figure 8. However this estimation will

Fig. 8. Looped estimator

also be a highly complex nonlinear algorithm.

To negate the need to have the exact disturbance signal,
solutions could rely on a statistical analysis. Initial work
has begun to look at the frequency content of raw mea-
sured signals for various conditions of wheelsets along the
same section of track. This has shown some difference and
could therefore be used to build a library that could be
referenced against signals collected in operation, therefore
giving an indication of the wear state. However this would
require a great deal more user input. Similar possibilities
are to analyse the force estimation that is proposed for low
adhesion estimation, Charles et al. (2008c).

7. CONCLUSION

This paper discussed a potential algorithm for the real
time estimation of the wheel-rail contact geometry in rail
vehicle systems. This interaction is important due to it
governing the straight line running stability and cornering
performance of rail vehicles. The recursive least squares
algorithm proposed uses a series of piecewise linear es-
timations due to the strongly discontinuous nature of the
contact geometry, where the dynamic data is sectioned rel-
ative to the wheel-rail displacement. With no gauge width
variation this gives excellent correlation with the inputted
geometry, but begins to decorrelate when uncertainty in
the gauge width is added to the system. The technique
also relies upon a knowledge of the track disturbance
to perform the estimation that might not be practicably
feasible.



Further proposals were made to negate the problems
of track alignment measurement, such as; estimation of
the track disturbance using a known geometry; using
statistical analysis of measured signals from the wheelset
that correspond to specific wear states along a section of
track; or using statistical information from the estimation
of creep forces in the contact area.
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Appendix A. PARAMETERS AND STATES OF THE
WHEELSET MODEL

Parameter Description Value Units

f11 longitudinal creep coefficient 7.44e6 N

f22 lateral creep coefficient 6.79e6 N

f23 lateral/spin creep coefficient 13.7e3 Nm

f33 spin creep coefficient 0 Nm2

fy lateral damper coefficient 50e3 Ns/m

fψ yaw damper coefficient 0 Nms

I wheelset yaw inertia 700 kgm2

Iwy wheelset roll inertia 200 kgm2

l half wheelset width 0.7452 m

m wheelset mass 1250 kg

mm suspended mass 8000 kg

ky lateral suspension stiffness 0.23e6 N/m

kψ yaw suspension stiffness 2.5e6 Nm

V velocity 20 m/s

W wheelset weight 12263 N

r0 nominal rolling radius 0.45 m

rL left rolling radius - m

rR right rolling radius - m

ÿ lateral acceleration - m/s2

ẏ lateral rate - m/s

y lateral displacement - m

δL left contact angle - rad

δR right contact angle - rad

φ̇ wheelset roll rate - rad/s

φ wheelset roll angle - rad

ψ̈ wheelset yaw acceleration - rad/s2

ψ̇ wheelset yaw rate - rad/s

ψ wheelset yaw angle - rad

Table A.1. Constants and States for the wheel-
rail profile estimation


