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Abstract

Monitoring and measuring various metrics of high data
rate and high capacity networks produces a vast amount of
information over a long period of time. Characteristics such
as throughput and delay are derived from packet level infor-
mation and can be represented as time series signals. This
paper looks at the Embedded Zero Tree algorithm, proposed
by Shapiro, in order to compress computer network delay
and throughput measurements while preserving the quality
of interesting features and controlling the level of quality
of the compressed signal. The quality characteristics that
are examined are the preservation of the mean square error
(MSE), the standard deviation, the general visual quality
(the PSNR) and the scaling behavior. Experimental results
are obtained to evaluate the behaviour of the algorithm on
delay and data rate signals. Finally, a comparison of com-
pression performance is presented against the lossless tool
bzip2.

1 Introduction

Monitoring and measuring various metrics of high speed
and high capacity networks produces a vast amount of in-
formation over a long period of time. These metrics de-
scribe the status and performance of the network in terms
of utilization, congestion, packets lost, etc, and provide im-
portant information regarding the operation of the network
over time. The storage of the produced measurements is
practically inefficient, as they require a very large volume
of data. This itself significantly increases the cost for mea-
suring high-speed networks. For this reason, there is a need
to derive an efficient method of data analysis and reduction
in order to archive and store the enormous amount of mea-
surements describing the monitored traffic.

Satisfying this need is useful for researchers and network
administrators particularly if they run experimental proto-

cols on a monitored network. The researchers would like to
know how their algorithms affect the network’s characteris-
tics in terms of utilization, delay, data rate, etc. Such charac-
teristics are derived from packet level information and many
can be represented as time series signals. Such signals can
be analyzed and compressed using a signal analysis tech-
nique.

By using a threshold to choose a few wavelet domain co-
efficients, wavelets can represent an approximation of the
analyzed signal in a compact form. This makes wavelets
an appropriate choice for compression applications [3].
Wavelets have the ability to detect characteristics of non-
stationary signals due to their finite nature that describes
local features better than say sinusoids. Non-stationary
signals are stochastic signals whose statistical properties
change with time [1]. Such signals are met in many areas of
research including computer network measurements.

To date, wavelets have been generally used to detect net-
work performance problems. They have been applied to
traffic rate signals in order to infer the time scale associated
with the dominant round trip time (RTT) through the exam-
ination of the energy function of the detail coefficients [6].
They have also been used for de-noising one-way delay sig-
nals in order to detect shared congestion between different
flows [8]. [5] shows that wavelet filters are quite effective
at exposing the details and characteristics of ambient and
anomalous traffic. [10] presents an off-line technique that
is complimentary to sampling approaches for reduction of
pre-captured data traffic packets while accurately preserv-
ing mean and standard deviation. This technique is useful
for accurately modeling network traffic.

Previous work by the authors [9] has implemented
wavelet coefficient thresholding for performing lossy com-
pression while maintaining the quality of interesting fea-
tures of the signals. The thresholding method applied in
that work was proposed by Gupta and Kaur (GK), and gave
a good balance between compression ratio (C.R.) and Peak
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Signal to Noise Ratio (PSNR) results.
The GK threshold selection calculated statistics from the

absolute value of the non-zero coefficients and used these to
select a threshold. However, in some cases, some important
coefficients were “hidden” by their statistical insignificance
and thus were discarded. This had a negative effect on the
level of quality in the reconstructed form of some signals.
An extension to this work would therefore be a method of
controlling the quality of the decompressed signal.

In this paper Shapiro’s proposed Embedded Zero-tree
Wavelet (EZW) algorithm [11] is used in order to develop
a method for compressing various computer network mea-
surements while having control over the reconstructed sig-
nal’s quality. Embedded encoding or progressive encoding
is a method of compressing with increasing accuracy, i.e.
the produced bits are generated in order of importance. For
a specific bit rate encoding, all encodings of the same sig-
nal at lower bit rates are included in the beginning of the bit
stream.

The rest of the paper is structured as follows. In sec-
tion 2, the goals of our compression technique are described
along with what characteristics need to be preserved and
what they mean. In section 3 the methodology followed for
producing the off-line results is presented and the results are
given in section 4. Finally, conclusions and ideas for future
work are given in section 5.

2 Goals of Compression

The algorithm should maintain the characteristics and
interesting features of the original examined signal. Ex-
perimental results were obtained to examine how the ap-
plied method behaves in terms of C.R. Furthermore, apart
from high compression ratios and good reconstruction sig-
nal quality, the following factors of the compressed signal
were investigated in order to determine the effect of com-
pression on them: 1.High compression ratios, 2. Quality
characteristics ( Preserve sudden changes: peaks and dips,
High PSNR), 3. Statistical characteristics (Preserve Mean
and standard deviation, Energy and Scaling Behavior).

2.1 Spikes and overall quality

When times of very high network usage occur, spikes
in the data traces are reported. On a public network, such
spikes would be of considerable importance as they indi-
cate periods of changing load and their further investigation
may indicate if changes to the network are required. On
a research network such as JANET Lightpath [4], analysis
of the spikes may indicate what impact a particular experi-
ment has had on a given network path. Preservation of these
spikes for later analysis is therefore of great importance.

2.2 Energy and Scaling Behavior

The energy function plot [2] was used in order to exam-
ine the preservation of the scaling behavior after compres-
sion. A statistic known as the energy function Ej indicates
the average energy of the arrival process contained at scale
j and is defined by [2]:

Ej =
1

Nj

∑
k

|dj,k|2, j = 1, 2, ..., n (1)

where Nj is the number of wavelet (“detail”) coefficients
at scale j.

The energy plot can be generated by plotting log(Ej)
against the scale j from finer to coarser scales. Intuitively,
this plot illustrates the scaling behaviour of the underly-
ing time series (such as a traffic arrival process) at different
time-scales.

3 Methodology

For the purpose of examining the behaviour of the EZW
technique, 30 delay and 30 data rate measurement signals
were used as inputs to the algorithm. The data rate signals
were taken from a real commercial network and the delay
signals were generated in a test bed. Each signal had 1024
measurement points and was decomposed using the Haar
wavelet at level 9 because the EZW algorithm requires 2
approximation coefficients after the analysis.

The Haar wavelet is the simplest wavelet algorithm that
can give perfect reconstruction and has the following advan-
tages [9]: It is conceptually simple, fast, memory efficient
and exactly reversible without producing edge effects. Be-
cause of the above advantages and the best reconstruction
results observed from experiments [9], the Haar wavelet
was chosen for the off-line experiments.

The methodology flow chart is presented in Fig. 1 and
incorporates the EZW procedure described in [11]. After
the wavelet decomposition, the EZW encoder attempts to
encode the wavelet coefficients by sequentially dividing the
threshold by two. In each run, after decoding the symbols,
the inverse wavelet transform is applied and the PSNR of
the reconstructed signal is calculated to estimate the recon-
struction quality. However, high visual quality does not
guarantee preservation of the energy scale and thus the en-
ergy of the reconstructed signal in all scales needs to be
calculated.

If the PSNR value is not higher than a predetermined
desired value (X in Fig. 1) and if the energy difference
in any scale is higher than a desired threshold (Y = 1dB
in Fig. 1), then the EZW encoder continues to halve the
threshold and encodes more detail coefficients. Otherwise,
the outputs from the dominant and subordinate passes are
passed through the arithmetic encoder.
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Figure 1. Methodology algorithm. X is the de-
sired target PSNR value

To reconstruct the signal, the stored arithmetic coded
output is passed through the arithmetic decoder, the EZW
decoder and lastly through the inverse wavelet algorithm.

The individual C.R. results are calculated from the ratio
of the original file size over the sum of file sizes of the en-
coded dominant and sub-ordinate file sizes. The following
PSNR and C.R. values in section 4 refer to the average over
the 30 signals (delay or data rate) unless stated otherwise. In
addition to the quantitative measurement of the reconstruc-
tion quality, we also include figures presenting the original
signal, the reconstructed signal after compression and the
error between them.

4 Results

Table 1 and Table 2 show the average, minimum and
maximum PSNR and average C.R. results over 30 experi-
ments for delay and data rate signals respectively. Empir-
ically, for both delay and data rate signals, PSNR values
more than 44 dB give very good visual results (signal indis-
tinguishable from reconstruction), PSNR values less than

Table 1. Target, average, min. and max. PSNR
values from 30 runs and C.R. values for delay
signals.

Target PSNR Avg. Min. Max. C.R.
50 dB 52.52 50.12 56.75 7.54
48 dB 50.97 48.28 54.81 8.47
46 dB 46.16 49.14 51.59 9.66
44 dB 46.82 44.06 50.73 11.4
42 dB 44.68 42.06 48.00 13.06
40 dB 42.15 40.06 46.16 16.09
38 dB 40.45 38.08 44.06 18.76
36 dB 38.23 36.50 41.44 22.7

Table 2. Target, average, min. and max. PSNR
values from 30 runs and C.R. values for data
rate signals.

Target PSNR Avg. Min. Max. C.R.
44 dB 48.39 44.03 51.03 11.16
42 dB 44.17 42.27 49.12 13.46
40 dB 43.70 41.74 46.87 13.76
38 dB 43.22 38.02 44.75 14.21
36 dB 37.69 36.11 43.29 20.69

35 dB loose some of the important signal characteristics
while PSNR values less than 30 dB are not acceptable for
such signals. The target PSNR is set from 36 dB up to a
PSNR value at which the energy is preserved in all scales
(as discussed in section 3). For the examined delay signals
this is 50 dB but for data rate signals the energy can be pre-
served with much lower PSNR as will be explained later.

As expected the higher the target PSNR, the lower the
achievable C.R. Data rate signals are compressed less than
delay signals because they include more fluctuation, which
amounts to high frequency components that need to be pre-
served in order for the quality to reach the required PSNR
value.

By lowering the threshold more detail is encoded by the
EZW algorithm in order to increase the quality of the re-
constructed signal and reach a specified target PSNR value.
That value, however, indicates a lower limit that the quality
should have and the average PSNR is usually higher than
that. This happens because by lowering the threshold, the
PSNR increases by fractions of dBs up to several dBs, de-
pending on the signal. This is why in Tables 1 and Table 2
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the average PSNR produced is higher than the target PSNR.

Figure 2. Delay signal 10 with PSNR=40 dB
and C.R.=6.5

Figure 3. Delay signal 24 with PSNR=40.27 dB
and C.R.=16.97

For a target PSNR of 40 dB Fig. 2 and 3 show two delay
signals before and after the compression. The error is also
given for easy judgement of the reconstruction quality. For
delay signals the achieved average PSNR is 42.15 dB. The
overall compression is 16 times.

Signal 10 (Fig. 2) differed from the other delay signals
used in the experiments because it is very bursty. The high
burtsiness of the signal makes it difficult to compress as it
requires a lot of high frequency components to be preserved.
This is why in that case C.R. is 6.5.

Figure 4. Data rate signal 20 with PSNR=44.5
dB and C.R.=13.67

Similarly for the same target quality Fig. 4 and 5 show
two data rate signals. For data rate signals the achieved av-
erage PSNR is 43.70 dB. The overall compression is more
than 13 times.

Tables 3 and 4 show the average percentage relative er-
ror for standard deviation and mean for all 30 delay and
data rate signals. The third column for both tables shows
the maximum difference in the energy between the recon-
structed and original signals in decibels. In the case of tar-
get PSNR = 48 dB there is only one delay signal that fails
to preserve the energy in the last decomposition level (level
9). Fig. 6 shows the energy scaling behavior for the original
and the reconstructed signals for all 9 levels of decomposi-
tion.

In order to achieve higher PSNR value the EZW al-
gorithm reduces the threshold so that more coefficients in
higher decomposition levels are preserved and encoded. If
the specified PSNR value can be satisfied without preserv-
ing the coefficients in high decomposition levels then the
energy in these levels will be significantly distorted. The
reason that Table 3 reaches 50 dB is because that is the tar-
get PSNR value for delay signals where the energy is pre-
served without significant distortion.

The EZW algorithm does not affect the energy of Data
rate signals in the same way. This is because data rate sig-
nals are much more complex and require preservation of
higher frequency components in comparison to the delay
signals. For this reason coefficients in higher levels are pre-
served even in low target PSNR values. The quality how-
ever is increased with higher target PSNR values as the
threshold decreases and the population of preserved coef-
ficients in all levels of decomposition increases.
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Figure 5. Data rate signal 16 with PSNR=46.86
dB and C.R.=12.97

It is interesting to examine the results from the EZW al-
gorithm against a non-transform technique. Bzip2 is con-
sidered to be an excellent tool for lossless data compression.
Fig. 7 and 8 compare the sizes of the results from the EZW
algorithm against the results of bzip2 applied on the orig-
inal signals. The target PSNR for data rate signals chosen
for comparison against bzip2 was 40dB. This was chosen
as it is a balance between the quality metrics and the com-
pression performance. For delay signals the target rate has
to be 50 dB in order to preserve the energy in all scales. On
average for delay signals EZW compresses 2.8 times more
than bzip2 and for data rate signals 5.8 times.

5 Conclusions

This paper implements the embedded zero-tree algo-
rithm, initially proposed by Shapiro, in order to perform
lossy compression on computer network measurements.
The algorithm initially encodes the important signal char-
acteristics and then encodes layers of detail until it reaches
a user specified quality metric.

EZW can achieve high compression ratios by predict-
ing insignificant wavelet coefficients across different scales
while preserving detail in significant signal features and
smoothing out the detail information in non-significant
parts.

Due to the algorithms feature of controlling the quality
of the reconstructed signal, the results are consistent among
different signals. The EZW algorithm provides a solution
to a problem with statistical based wavelet thresholding al-
gorithms that discarded statistically ”hidden” coefficients.
Off-line experiments were run using real data rate and de-

Table 3. Average Percentage Relative Error
for Standard Deviation, Mean and Maximum
Energy difference in Decibel for all 30 delay
signals

Target Std. Err. Mean Err. Max. Energy Diff.
50 dB 0.07 % 0.07 % 0.36 dB
48 dB 0.11 % 0.13 % 25.27 dB
46 dB 0.16 % 0.13 % 29.2 dB
44 dB 0.25 % 0.18 % 29.2 dB
42 dB 0.37 % 0.27 % 32.4 dB
40 dB 0.67 % 0.43 % 34.1 dB
38 dB 1.04 % 0.54 % 34.1 dB
36 dB 1.47 % 0.67 % 40.3 dB

Table 4. Average Percentage Relative Error
for Standard Deviation, Mean and Maximum
Energy difference in Decibel for all 30 data
rate signals

Target Std. Err. Mean Err. Max. Energy Diff.
44 dB 0.25 % 0.01 % 0.15 dB
42 dB 0.24 % 0.016 % 0.15 dB
40 dB 0.24 % 0.016 % 0.15 dB
38 dB 0.25 % 0.017 % 0.15 dB
36 dB 0.17 % 0.035 % 0.33 dB

lay measurements.
For an average PSNR value of 42 dB, delay signals are

compressed on average 16 times, that is 6 times more than
bzip2 could achieve. For an average PSNR value of 43.7
dB, data rate signals achieve a compression of more than
13 times, that is 5.8 times more than bzip2. Given a spe-
cific PSNR value, EZW offers a lower compression ratio
for data rate signals, as those signals include much more
high frequency components and thus require more detail.

In contrast to data rate signals the EZW algorithm needs
to reach much higher PSNR values in order to preserve the
energy in all scales. This happens because in the case of de-
lay signals the target PSNR value is reached without need-
ing to include coefficients at higher decomposition levels.
In other words the distortion is concentrated in higher lev-
els. On the other hand, for data rate signals due to their
bursty nature coefficients need to be preserved from all
scales in order to satisfy the target PSNR. So more coef-
ficients in higher levels are preserved and the distortion is

192

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on June 26, 2009 at 11:36 from IEEE Xplore.  Restrictions apply.



1 2 3 4 5 6 7 8 9
−5

0

5

10

15

20

25

30

Scale j

lo
g2

 E
ne

rg
y(

j)

Orignal
Reconstructed

Figure 6. Scaling behavior for delay signal 17
with target PSNR = 48dB. The difference in
the last level is 25.27dB.

0 

500 

1000 

1500 

2000 

2500 

3000 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Fi
le

 S
iz

e
 (

b
yt

e
s)

 

Signal 

bzip2 EZW 

Figure 7. Compression performance of EZT
at 50 dB against bzip2 for delay signals.

spread over all scales.
As for future work, the algorithm could be imple-

mented in a real-time computer network-monitoring tool. A
promising candidate seems to be CoMo, a passive monitor-
ing platform developed for the purpose of measuring per-
formance metrics of high speed links and replying to real
time queries [7].

A possible additional benefit of the wavelet analysis that
is going to be investigated is an anomaly detection scheme
for time series processes. Changes in time series processes
reveal themselves in various frequency bands in the wavelet
domain. By looking at the wavelet coefficients at various
scales those changes can be detected.
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