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Abstract 

We consider the problem of identifying a central subgraph of a given simple 

connected graph.  The case where the subgraph comprises a discrete set of vertices is 

well known.  However, the concept of eccentricity can be extended to connected 

subgraphs such as: paths, trees and cycles.  Methods have been reported which deal 

with the requirement that the subgraph is a path or a constrained tree.  We extend this 

work to the case where the subgraph is required to be a cycle.  We report on 

computational experience with integer programming models of the problems of 

identifying cycle centres, cycle medians and cycle centroids, and also on a heuristic 

based on the first model.  The problems have applications in facilities location, 

particularly the location of emergency facilities, and service facilities. 

 

Keywords: cycle centre, cycle centroid, cycle median, graph, heuristic, integer 

programming, location. 
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Introduction   

 

The problem of finding a circular route through a series of locations such that the 

distance of any point not on the route to its nearest point on the route is kept to a 

minimum occurs in a number of practical instances.   An early operational research 

approach to a related problem appears in Hakimi (1964).  Such problem instances we 

have just discussed are well known in the theory of facilities location, which is 

concerned with the location of one or more facilities that are to be sited so as to 

service a number of clients at given locations.  We confine our attention in this paper 

to facilities on graphs or networks, rather than in the plane. 

 

Here we extend the concept of what is to be located from a discrete set of facilities to 

a circular structure.  In network terms the classic problems involve identifying a 

discrete set of network nodes, representing optimal facility locations.  Our extension 

involves identifying an optimal cycle in the network.  

 

The first problem that we wish to discuss is termed the cycle centre problem.  It can 

be formulated in graph theoretic terms as follows.   

The Cycle Centre problem 

Given a connected simple graph G = (V,E) with vertex set V and edge set E, identify a 

cycle C in G which minimises the maximum of the shortest distances between any 

vertex not a member of C to some vertex of C, such that C is of minimal length 

among all such cycles.  

For the relevant graph theoretic notation and terminology see Foulds (1998). 

The distance between any two vertices in G is defined as the least number of edges 

that need to be traversed, in any path in G between the two vertices.  The resulting 

cycle C is termed a cycle centre of G.  The problem is clearly a bi-criterion problem 

as the distance to non-cycle vertices from the cycle vertices and the actual length of 

the cycle are both criteria.  The first of these dominates the second.  A similar 

problem of identifying paths rather than cycles has been studied by Slater 

(1981,1982).  
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The most common applications of the cycle centre problem are with the location of 

emergency facilities, such as: health clinics, police stations, or fire stations.  The 

objective is to minimise the greatest distance between any of the facilities and any of 

the clients.  The classic problems from location theory with this objective are 

concerned with the identification of the optimal location of a single facility or a 

discrete set of facilities. 

 

In addition to the work to be presented in this paper, related work on this problem was 

reported by Foulds and Yamaguchi (1998).  In their paper a Tabu Search heuristic is 

described for the problem.  The method starts by constructing a spanning tree to 

which a chord is added to create a cycle.  The method iterates between different 

spanning trees and cycles, and records and updates the least cost cycle found so far. 

Schobel et al. (1999) have provided characterisations of the central cycle, for the 

special case where G is a grid graph. 

 

A similar problem has been considered by Labbe '  and Laporte (1986) who describe 

an integer programming model for the location of central post boxes in zones of a 

city.  They divide the possible locations into n zones, allocate each of n boxes to a 

different zone, and then tour all zones.  More recently, Current and Schilling (1994) 

have developed an integer programming model and heuristics for the median tour and 

maximal covering tour problems.  Their problems have similar constraints to ours, but 

a different objective, namely minimising the total demand weighted travel distance 

between nodes on the tour that must be traversed in succession.  Other related 

problems are described in a review by Mesa and Boffey (1996), who note the lack of 

consideration given to problems involving the location of cyclic structures.  A further 

review of related problems can be found in Labbe '   et al. (1998). 

 

The Cycle Median problem 

The second problem that we wish to discuss is termed the cycle median problem.  It 

can be formulated in graph theoretic terms in a similar fashion to the previous 

problem, by replacing the word “maximum” by the word “sum”.  That is, 

given a connected simple graph G = (V, E), with vertex set V and edge set E, identify 

a cycle C of G which minimises the sum of the shortest distances between all vertices 
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not members of C to any vertex of C, such that C is of minimum length among all 

such cycles.  The resulting cycle is termed a cycle median of G. 

 

Applications of this objective include: the creation of express ring roads in urban 

environments, urban bus and rail routes, circular communication systems in 

organisational structures, and collection and distribution systems for public utilities 

such as special inorganic garbage collection, or parcel delivery. 

 

The Cycle Centroid problem  

The third problem we wish to describe is termed the cycle centroid problem.  It can be 

formulated in graph theoretic terms as follows: 

given a connected simple graph G = (V, E), with vertex set V and edge set E, identify 

a cycle C of G which maximises the sum taken over all vertices v not in C of the 

differences between the number of vertices in V \C which are closer to at least one 

vertex in C than to vertex v and the number of vertices in V \C which are closer to 

vertex v than any vertex in C, such that C is of minimum length among all such 

cycles.  The resulting cycle is termed a cycle centroid of G. 

 

Applications of this objective include the location of special facilities, for example 

freeways, distribution networks, or communication networks with the aim of 

minimizing the distance from each client to each of the facilities. 

 

The purpose of this paper is to discuss integer programming models of the three 

problems, to solve them exactly and to develop heuristic solution methods based on 

the models.  The paper is laid out as follows.  In the next three sections the problems 

are formulated as integer programming models.  In the following section there is a 

discussion of the solution approaches based on the models. The final section presents 

some conclusions. 
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2. An integer programming formulation of the cycle centre problem 

 

First we introduce some necessary notation, in the form of data that must be identified 

for any given graph G representing a numerical instance of the problem. 

 

Let |V| = n . 

Let c  = shortest distance from vertex i to vertex j, i < j,  i, j ij ε  V . 

Let e  = 1 if there is an edge from vertex i to vertex j (denoted by (i,j)), i < j,  i, j ij ε  V  

 = 0 otherwise. 

Note that { e }ij nxn represents the adjacency matrix of G. 

Let k  be a lower limit on the number of vertices in the cycle centre C. l

 

Some variables are now introduced. 

Let  = 1 if vertex i is a member of C, i iy ε  V , 

 = 0 otherwise. 

Let d  = shortest distance from vertex i, not a member of C, to any vertex in C . i

Let  = 1 if vertex j in C is the nearest vertex to vertex i not in C, iijp j≠ ; i, j ε  V , 

 = 0 otherwise. 

Let  = 1 if C includes edge (i,j), i < j; i,  j ijx ε  V , 

 = 0 otherwise. 

Note that  = 0 ⇒ ; i,  j ije 0=ijx ε  V. 

Let z = maximum of all values , i id ε  V . 

Let M be a relatively large constant.  Typically M = O(10n). 

 

Note:  It might seem arduous to obtain the  data.  However, if, as is likely in 

practical applications, it is required that the maximum of the shortest distances of all 

vertices not in C  to some vertex in C  is smaller than some constant k, say, then it will 

be sufficient to find exact vertex distances only if these are less than or equal to k.  

Distances known to be larger then k can be set to M.  Thus when computing shortest 

distances to any vertex, it will be sufficient to consider only vertices within a distance 

ijc
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of k from that vertex.  The cycle centre problem can now be stated formally as the 

following integer programming problem: 

 

Objective 

 Minimise Z = Mz + ∑  yi
i

n

=1

 

Constraints 

  , i =1,2, … ,n.     (2.1) p yij i
j

n

+ =
=
∑ 1

1

 , j =1,2, … ,n.     (2.2) ∑
=

−≤
n

j
jlij yknp

1
)(

  , i =1,2, … ,n.     (2.3) i

n

j
ijij dpc =∑
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iij yx ≤   i < j,  i =1,2, … ,n, j =1,2, … ,n.  (2.6) 

jij yx ≤   i < j,  i =1,2, … ,n, j =1,2, … ,n.  (2.7) 

 Sxijε    i < j, i =1,2, … ,n, j =1,2, … ,n.  (2.8) 

   i < j,  i =1,2, … ,n, j =1,2, … ,n.  (2.9) ijij ex ≤

     (2.10) 
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Constraint (2.1) ensures that a ‘nearest’ vertex on the path is selected only if a vertex 

is not on the cycle.  Constraint (2.2) ensures that the vertex deemed ‘nearest’ to an 

off-cycle vertex is a member of C.  Constraint (2.3) determines the distance between 

an off-cycle vertex and its ‘nearest’ neighbour in C.  Constraint (2.4) ensures that z is 

the largest distance of any off-cycle vertex to its ‘nearest’ vertex in C. Constraints 

(2.5) ensure that all vertices of C are of degree 2.  Constraints (2.6) and (2.7) are cuts 
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which are useful to add to the formulation since they strengthen (2.5).  Constraints 

(2.8) are sub-tour elimination constraints (to be discussed in below).  Constraint (2.9) 

ensures that C comprises only edges that are actually present in G and finally 

constraints (2.10) are the usual zero-one and non-negativity conditions.   

 

2.1.  Sub-tour elimination 
 
The constraints used in (2.6) deserve further consideration. Because it will not be 

known in advance how many vertices will form the cycle, it is not possible to use 

either of the two common sub-tour elimination approaches from the Travelling 

Salesman Problem  (TSP) (see for instance Lawler et al., 1985 and Orman and 

Williams, 1999).  These approaches would introduce constraints of form,    

  ,        ijji kruu ≤−

where ui and uj are the sequence numbers of the vertices visited in the cycle,  

or constraints that partition the set of vertices into subsets to avoid sub-tours.  In the 

former approach , is itself a variable quantity. )(
1
∑
=

=
n

i
iyk

However, the latter approach may be adapted for the cycle centre problem and 

constraints of the following form may be adjoined to the formulation or used as cuts. 

Let  and  be the vertex sets of two disjoint connected subgraphs of G = (V,E) 

such that 

1J 2J

1J  U  2J  = {1,2, … ,n}.  Suppose  and both contain at least one edge 

which has both its end points in that set.  Then it follows that if  

1J 2J

either  or ∑∑ =
11, Ji

i
Jji

ij yx
εε

∑∑ =
22, Ji

i
Jji

ij yx
εε

 , a sub-tour is present. 

Constraints to eliminate such sub-tours may be constructed as follows. 

We introduce binary variables 
1Jδ , 

2Jδ ,
21JJδ   such that: 

  , ∑ ≤≤
1

121
Ji

JiJJ My
ε

δδ ∑ ≤≤
2

221
Ji

JiJJ My
ε

δδ  and 
2121

1 JJJJ δδδ +≤+ . 

Then to avoid sub-tours we require 

  ∑∑ =+
11

21
, Ji

i
Jji

ijJJ yx
εε

δ

and  ∑∑ =+
22

21
, Ji

i
Jji

ijJJ yx
εε

δ
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to hold.  Note that these constraints will have considerable power in the linear 

relaxation of the problem because typically the number of non-zero vertices in each 

partition of the vertex set will be small.  Thus the binary variable may well be tightly 

bounded and hence will cause restriction within the two equations when two discrete, 

but fractional, sub-tours are present.  

 

Because the cycle will typically pass through only a small proportion of the vertices 

in the graph, it was found that generalisations for the cycle centre problem of the type 

of constraints described in Bauer (1997)  (e.g. comb inequality) have little power in 

that problem.  Accordingly they have not been used in the formulation or in any 

branch and cut format.  

 

It is straightforward to show that  provides an upper bound on Z, the objective 

function value. 

ijji
c

,
max

 

We now illustrate what we have discussed by using the above model to solve the 

following numerical example. 

Example 

Let V = {1,2, ... , 12}. 

Values of e  ij

i/j 1 2 3 4 5 6 7 8 9 10 11 12
1 0 1 0 0 0 1 0 0 0 0 0 0
2 0 1 0 0 1 0 0 0 0 0 0
3 0 1 0 0 1 0 0 0 0 0
4 0 1 0 1 0 0 0 0 1
5 0 0 0 0 0 0 0 0
6 0 1 1 0 0 0 0
7 0 0 1 0 0 0
8 0 1 1 0 0
9 0 0 1 1
10 0 1 0
11 0 1
12 0
Table 1.  The Upper Triangle of an Adjacency Matrix 

 

circuit 10



Values of cij 

i/j 1 2 3 4 5 6 7 8 9 10 11 12
1 0 1 2 3 4 1 2 2 3 2 4 4
2 0 1 2 3 1 2 2 3 3 4 4
3 0 1 2 2 1 2 2 4 3 3
4 0 1 2 1 3 2 4 3 1
5 0 3 2 4 3 5 4 2
6 0 1 1 2 2 3 3
7 0 2 1 3 2 2
8 0 1 1 2 2
9 0 2 1 1
10 0 1 2
11 0 1
12 0
Table 2.  Distances Between Vertices 

 

1  2       3   4  5 
                    

 

      6         7 

 

        8        9   12 

 

  10      11 

 

Figure 1  The cycle centre for the example problem 

 

The cycle centre is <6,7,4,12,9,8,6> with z = 1, and is shown in Figure 1.  If M = 100, 

then Z = 100(1) + 6 = 106. 

 

Note:  If the solution to any problem is such that  z = 0 then a Hamiltonian cycle has 

been found.  In general, it will not be expected that such a cycle exists in G.  We now 

go on to modify the previous model so as to create a model for the cycle median 

problem. 
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3. A formulation of the cycle median problem 

 

If constraint (2.4) is replaced by the constraint 

∑
=

=
n

i
idz

1
        (3.1) 

 

then the problem becomes that of finding the cycle median of the graph G.  Recall that 

the cycle median is the cycle C of minimum length that minimises the total of shortest 

distances of all vertices which are not members of C to some vertex in C .  

 

The cycle median of the graph in Figure 1 is <1,2,3,7,4,12,9,11,10,8,6,1> and z = 1.  

This is shown in Figure 2.  If M = 100, then Z = 100(1) + 11 = 111. 

1  2       3   4  5 
                             

 

      6         7 

 

        8        9   12 

 

  10      11 

 

Figure 2  The cycle median for the example problem 

 

 

4. A formulation of the cycle centroid problem 

 

The variable z of section 2 is not used in the formulation of the cycle centroid 

problem, but all other variables defined in that section are used. We also introduce 

additional variables as follows. 

Let v  = 1 if vertex i is not further, as measured by , from the cycle than from 

vertex j, as measured by  ( i

ij id

ijc j≠ ;  i, j ε  V) 

 = 0 otherwise. 
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Let u  = 1 if vertex i is not further, as measured by , from vertex j than from the 

cycle, as measured by  ( i

ij ijc

id j≠ ;  i, j ε  V) 

 = 0 otherwise. 

Three further variables 

 , and  (j jf jg jh ε  V) 

are introduced to be defined by constraints (4.10) – (4.12). 

 

The cycle centroid problem can now be stated formally as the following integer 

programming problem. 

 Maximise = MZ  ∑∑
==

−
n

i
i

n

j
j yf

11

Subject to constraints (2.1) – (2.3), (2.5) – (2.10) as before, and 

1≤+ jij yv   i = 1,2, … ,n ; j = 1,2, … ,n ;  i j≠ .  (4.1) 

1≤+ iij yv   i = 1,2, … ,n ; j = 1,2, … ,n ;  i j≠ .  (4.2) 

1≤+ jij yu   i = 1,2, … ,n ; j = 1,2, … ,n ;  i j≠ .  (4.3) 

1≤+ iij yu   i = 1,2, … ,n ; j = 1,2, … ,n ;  i j≠ .  (4.4) 

1+≥+++ ijijiij cdMyMyMv  

 i = 1,2, … ,n ; j = 1,2, … ,n ;  i j≠ . (4.5) 

McdMyMyMv ijijiij +≤+−−  

 i = 1,2, … ,n ; j = 1,2, … ,n ; i j≠ .   (4.6) 

ijijiij cdMyMyMu −≥−++ 1  

 i = 1,2, … ,n ; j = 1,2, … ,n ;  i j≠ . (4.7) 

ijijiij cMdMyMyMu −≤−−−  

 i = 1,2, … ,n ; j = 1,2, … ,n ; i j≠ .   (4.8) 

McMyd ijij +≤+   i = 1,2, … ,n ; j = 1,2, … ,n ;  i j≠ .   (4.9) 

∑
=

=
n

i
ijj vg

1
 j = 1,2, … ,n      (4.10) 

∑
=

=
n

i
ijj uh

1
 j = 1,2, … ,n      (4.11) 

jjj hgf −=  j = 1,2, … ,n      (4.12) 
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njf
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   (4.13) 

   

Constraints (4.1) and (4.2) ensure that if = 1 or   = 1 then v   = 0 (i = 1,2, … ,n ; 

j = 1,2, … ,n ; i

iy jy ij

j≠

ij

).  Constraints (4.3) and (4.4) perform the role analogous to (4.1) 

and (4.2)  for u . 

Constraint (4.5) ensures that if = 0 ,  = 0 and iy jy iji cd ≤  then v   = 1 (i = 1,2, … ,n 

; j = 1,2, … ,n ; i

ij

j≠ ).  

Constraint (4.6) ensures that that if = 0 ,  = 0 and iy jy 1+≥ iji cd  then v   = 0 (i = 

1,2, … ,n ; j = 1,2, … ,n ; i

ij

j≠ ). Constraints (4.7) and (4.8) perform the role 

analogous to (4.5) and (4.6) for u . ij

Constraint (4.9) ensures that that if = 1 then diy ijj c≤  (i = 1,2, … ,n ; j = 1,2, … ,n ; 

i j≠ ). 

Constraint (4.10) defines  as the sum of vertices nearer the cycle than to vertex j. jg

Constraint (4.11) defines  as the sum of vertices nearer vertex j than to the cycle. jh

Constraint (4.12) defines  as the difference between  and  . jf jg jh

Finally, (4.13) gives the usual zero-one and non-negativity conditions defines  as a 

free (unconstrained) variable. 

jf

 

Using the formulation given above and the data of Section 2, the cycle centroid is 

given by the cycle <6, 7, 8, 9, 6>, as shown in Figure 3. 
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Figure 3  The cycle centroid for the example problem 
 

 

5. Results using the IP model  
 

To explore the models further, a set of test problems was generated as follows.  A set 

of n vertices is chosen in the form of a rectangular grid with vertices evenly spaced.  

Vertices are numbered consecutively in vertical order, starting from the left. Each 

vertex is considered in turn, starting with the lowest numbered, and then three edges 

are introduced, each with probability equal to 0.33, to the vertex to its immediate 

right, to the vertex immediately below it, and to the vertex diagonally below it to the 

right.  An appropriate adjustment is made at the perimeter of the grid.  Grids that are 

not connected are rejected.  The formulation given by (2.1)-2.10) for the cycle centre 

problem was then used and solved with the mathematical programming software 

XPRESS-MP (Dash Associates, Blisworth, Northamptonshire, England).  Because of 

the structure of the grids, the constraints described in section 2.1 are straightforward 

to construct and are limited in number relative to the number of vertices. 
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Vertices  Nodes   CPU 

secs 

 

 min mean max min mean max 

16 10 53 79 0 0 0* 

36 53 236 641 4 17 29 

64 378 2316 32417 141 370 1674 

100 850 4304 23794 1310 4595 7477 

Table 3 Results for the cycle centre problem (averaged over 20 datasets) 
 * = too small to be recordable 
 

Table 3 shows the number of branch and bound nodes required to solve the problems, 

and CPU time taken on an HP9000/800.  As can be seen, the larger problems are 

slower to solve using the formulation, but the largest problems are still being solved 

to optimality comfortably.  The authors plan to develop branch and cut methods to 

solve the problems with sub-tours being eliminated as and when required, rather than 

by the use of constraints (2.8).  

 

Table 4 presents results for the cycle median problem.  As the formulation of this 

problem is very similar to the cycle centre problem, it was not tested extensively.  As 

can be seen from Table 4 the results are very similar to Table 3. 

 

Vertices  Nodes   CPU 

secs 

 

 Min mean max min mean max 

36 101 226 324 7 16 20 

Table 4 Results for the cycle median problem (averaged over 20 datasets) 

 

Table 5 presents results for the cycle centroid problem.  This is a much more difficult 

problem to solve than the cycle centre problem.  The formulation given by (2.1) - 

(2.3), (2.5) - (2.10), (4.1) - (4.13) was used and solved with XPRESS-MP analogously 

with the results in Table 3.  As can be seen from Table 5, even for fairly small 
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numbers of vertices the problems are slow to solve and both computational times and 

numbers of nodes generated grow rapidly as problem size increases. 

 

Vertices  Nodes   CPU 

secs 

 

 Min mean max min mean max 

16 661 7452 43778 8 105 568 

20 2283 20584 95400 46 637 2186 

25 11515 45885 269900 568 2786 10099 

Table 5 Results for the cycle centroid problem (averaged over 20 datasets) 

 

 

7. Conclusions   
 
We have introduced three bi-criterion undirected routing and location problems and 

developed integer programming models, and exact solution procedures for solving 

sizeable instances of them.  This approach meets with considerable success for the 

cycle centre and cycle median problems, but with less success for the cycle centroid 

problem.  Given the intractability of the problems it is unlikely that any exact method 

could be developed to solve very large instances of them in reasonable computational 

time.  Thus the search for an efficient heuristic, particularly one incorporating bounds, 

is an important area for further research.  
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Older material not being used 
7. A branch and bound algorithm for finding the cycle centre 

 

In this section a branch and bound algorithm for finding the cycle centre of a graph G 

will be given.  This algorithm provides a systematic procedure for obtaining the cycle 

centre and provides an alternative to the integer programming approach. 

 

In order to describe the algorithm, a Hamiltonian Walk will first be defined. 

Definition A Hamiltonian Walk in a graph G = (V, E) is a closed sequence of 

edges ( ) passing through every vertex v of G at least 

once. 

kiii eee ,...,,
21

For example, for the graph G given in Figure 3, a Hamiltonian walk W is 

<1,2,3,4,5,4,2,1>. 

 

 

    3 

 

       5 

 1         2 

         4 

 

Figure 3 

 

Note that as G is non-Hamiltonian, the walk contains repeated vertices. 

 

Property Every vertex in the cycle centre C induces all vertices in the original  

graph G to have degree 2 or 0 with respect to C.   

For example, in Figure 4 vertices 2,3,4 have degree 2 with respect to C and vertices 

1,5 have degree 0 with respect to C. 

 

The Algorithm 
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1. General step at each node N in the decision tree: 

Create a Hamiltonian walk W in the graph associated with N.  If W is a cycle, 

without vertex repeats, it is a feasible solution to the original problem and N is 

fathomed by calculating z as defined in section 2.  Otherwise: 

2. Partitioning 

Ban part of the current walk W.  Select a vertex v of smallest degree with 

respect to the walk.  Select all edges of W incident with v.  Ban each edge in 

an independent child node of N. 

3. Branch from the lowest unfathomed node and set this as node N.  Go to  

Step 1. 

 

In the example of Figure 3, using the given walk, Step 2 will select vertex 2.  Edges in 

W incident with v are <1, 2>, <2, 3>, <2, 4>.  We then partition the feasible solutions 

in N as shown in Figure 4. 

 

      N 

 

    

 

 

 

 

   x12 = 0     x24 = 0 

             x23 = 0 

Figure 4 

 

The above will provide a systematic procedure for obtaining the cycle centre of a 

graph.  However, it is likely to be slow to solve sizeable problems.  It has the 

advantage over the integer programming approach that the search may be terminated 

prematurely once (at least) one feasible solution has been obtained. 

 

It is clear that it will not be practical to solve the models for numerical instances 

significantly larger than that shown in the table by either integer programming or the 
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branch and bound method, and hence there is a need for an efficient heuristic method 

to solve the problems.  We now proceed to develop a heuristic method which is more 

effective than that given in Foulds and Yamagouchi (1998). 

 

 

8. A heuristic approach 

 

It is clear that the model given by (2.1) – (2.8) can be solved, but only for modest 

values of n.  For larger values of n, a heuristic approach was developed, but its 

accuracy could at least be checked for smaller values of n where optimal solutions to 

the model were known. 

 

The heuristic was developed from the observation that a vertex is likely to be in the 

optimal cycle if the variance of  taken over j = 1,2, … ,n is relatively low.  For the 

dataset described in the previous two sections the variances are as shown in Table 4 

below. 

ijc

 

Table 4 Calculated Variances 

Vertex Variance Rank (Largest variance=1) 
  1 1.21   4 
  2 1.21   4 
  3 0.81   8 
  4* 1.00   7 
  5 1.44   2 
  6* 0.64 10 
  7* 0.36 12 
  8* 0.81   8 
  9* 0.64 10 
10 1.69   1 
11 1.44   2 
12* 1.21   4 
(* = vertex in cycle) 
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The steps of the heuristic are: 

1. Calculate V(i) =  ∑ ∑
= =

−
n

j

n

j
ijij cnc

1 1

22 )()(

2. Order the vertices i in increasing value of V(i) . 

3. Select vertex i1  lowest in order of previous step, which has not already been 

chosen. 

4. Select vertex i  not previously chosen such that e( i , i ) = 1 and i  next 

lowest in order of Step 2. 

2 1 2 2

5. Progressively form a cycle by repeating Step 4 and backtracking where 

necessary, including Step 3. 

6. Let cycle be , , … ,1i 2i ki  .  Calculate z (as defined in Section 2). 

7. (Build) For any pair of vertices  in the cycle such that e( ) =1 if 

there exists vertex i  not on the cycle such that e( i , i ) = e( )  = 1 and  

for the augmented cycle is such that  

jj ii ,1−

z

jj ii ,1−

'i , ji'
1−j

' 'z

' ≤  z then add i  to the cycle. '

8. (Build) For any triple of vertices  in the cycle such that e( i , i ) = 

e( i , i )  = 1 and where there exists vertex i  not on the cycle and e( i , i ) 

= e( i , i ) = 1 then temporarily replace i  by i  and  recalculate  for the 

revised cycle.  If  < z replace i  by i  and z by .  

11 ,, +− jjj iii

j

j
'

1−j

−j

j

1j 1+j

'
+j

' '

1
' 'z

'z 'z

9. Repeat steps 7 and 8 until no further changes are made. 

10. (Drop) For any triple of vertices i  in the cycle such that e( i , i ) = 

e( i , i )  = 1 if e( , ) = 1 and where  for the cycle formed by 

dropping i  is such that   

11 ,, +− jjj ii 1−j j

j 1+j 1−ji 1+ji

'z

'z

j ≤  z then drop  from the cycle and replace z by 

. 

ji

'z

11.       Repeat step 10 until no further changes are made. 

End 

 

The whole procedure is now repeated n  times, by varying the starting point of  

Step 3 and then a further n  times with each choice in step 3 being subject to a 

probabilistic decision i.e. a simple form of Tabu search.  The data used in Tables 1 

and 2, with sets of 20 problems, is reconsidered in Table 5. 
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vertices optimal z too large 
∑
=

n

i
iy

1
too large 

16 19 0 1 (1.0) 

25 10 3 (1.0) 7 (1.4) 

(mean deviation shown in parenthesis) 

 

Table 5  Computational results for the heuristic for small problems 

 

The second column of Table 5 shows the number of occasions when the heuristic 

solution was optimal, the third column shows the number of occasions when the 

heuristic solution produced a larger than optimal value for z and the final column 

shows the number of occasions when the heuristic produced a larger than optimal 

value for ∑ .  As can be seen, the heuristic is very accurate on the 16-vertex 

problems.  For the 25-vertex problems fewer optimal solutions are obtained but in a 

total of 17 problems the z value is correct.  Accuracy of the z value will be a more 

important criterion than accuracy of the  value. 

=

n

i
iy

1

∑
=

n

i
iy

1

The heuristic was run on a set of 100-vertex problems, where optimal solutions are 

not known.  Results for a set of 20 problems are given in Table 6. 

 
 
Vertices  CPU secs   z/ub  

 min max mean min max mean 

100 1.9 7.4 4.0 0.17 0.39 0.28 

            

Table 6   Computational results for the heuristic on larger problems 

 

From Table 6 it is apparent that the heuristic is rapid and is producing solutions in 

line with the quality of the solutions (as measured by z/(upper bound)) on the smaller 

sized datasets.  The heuristic is capable of producing results in reasonable time for 
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larger sized datasets.  Problems with 200-500 vertices were solved in CPU times of 

between 50-100 secs. 

 

For the cycle median problem, the heuristic developed earlier can be modified for use.  

Steps 1-6 are unchanged, Step 7 is modified and Steps 10 and 11 are dropped.  The 

modified version of Step 7 is: 

 

Step 7’ (Build) (a) For any pair of vertices i  in the cycle such that e( i ) =1 if 

there exists vertex i  not on the cycle such that e( i , i ) = e( )  = 1 then 

add i  to the cycle. 

jj i,1− jj i,1−

'
1−j

' 'i , ji

'

(b) For any vertex i in the cycle if there exists vertices i , i  not on the cycle 

such that e(i, ) = e( ) =e( i ,i) = 1 then add i , i  to the cycle. 

' "

'i 'i , "i " ' "

(c) For any pair of vertices i  in the cycle such that e( ijj i,1− 1−j

'

, i '

"

) =1 if there 

exist vertices i , i  not on the cycle such that e( i , i ) = e( i , i ) = e( i , i ) = 

1 then add i , i  to the cycle. 

'

'

"
1−j

' "
j

"

 

Using the example of Figure 1, Steps 1-6 build the cycle <7,6,8,9,7> with z = 9; Step 

7 adds vertices 2,3 to vertices 6,7; vertices 4,12 to vertices 7,9; and vertices 10,11 to 

vertices 8,9.  Vertex 1 is also added to vertices 2,6.  The cycle is now 

<1,2,3,7,4,12,9,11,10,8,6,1> and z = 1.  No further improvement is possible. This 

cycle is optimal and is shown in Figure 2. 

 

For the cycle centroid problem an analogous modification can be made to the 

heuristic. 

 

The heuristic for the cycle centre problem was also tested on problems where  

(given  = 1) can take a value other than 1.  A set of problems in the style of the 16-

vetex problems of Table 3 was generated such that  (given e  = 1) is given a value 

chosen at random from 1, 2 and 3, such that each value has equal probability.  For this 

set of problems the performance of the heuristic was more erratic.  However, as the 

heuristic was specifically designed for problems where c  = 1 this behaviour is not 

ijc

ije

ijc ij

ij
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unexpected and further research would be required to develop a more suitable 

heuristic for other variations. 
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