

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288386871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Modelling and Solving
Central Cycle
Problems with Integer
Programming

by L R Foulds, J M Wilson
and T Yamaguchi

Business School

Research Series
Paper 2000:6
ISBN 1 85901 167 5

Modelling and Solving Central Cycle Problems
with Integer Programming

by

L R Foulds, J M Wilson and T Yamaguchi

Business School Research Series
Paper 2000:6

ISBN 1 85901 167 5

October 2000

THIS PAPER IS CIRCULATED FOR DISCUSSION PURPOSES AND ITS CONTENTS SHOULD BE
CONSIDERED PRELIMINARY AND CONFIDENTIAL. NO REFERENCE TO MATERIAL CONTAINED

HEREIN MAY BE MADE WITHOUT THE CONSENT OF THE AUTHORS.

 Modelling and Solving Central Cycle Problems with Integer

Programming

L R Foulds

Waikato Management School, University of Waikato, Private Bag 3105,

Hamilton, New Zealand

J M Wilson*

Business School, Loughborough University, Loughborough LE11 3NL,

United Kingdom

T Yamaguchi

Mathematical Science Division, Muroran Institute of Technology, Muroran, Japan

Abstract

We consider the problem of identifying a central subgraph of a given simple

connected graph. The case where the subgraph comprises a discrete set of vertices is

well known. However, the concept of eccentricity can be extended to connected

subgraphs such as: paths, trees and cycles. Methods have been reported which deal

with the requirement that the subgraph is a path or a constrained tree. We extend this

work to the case where the subgraph is required to be a cycle. We report on

computational experience with integer programming models of the problems of

identifying cycle centres, cycle medians and cycle centroids, and also on a heuristic

based on the first model. The problems have applications in facilities location,

particularly the location of emergency facilities, and service facilities.

Keywords: cycle centre, cycle centroid, cycle median, graph, heuristic, integer

programming, location.

* Corresponding author

circuit 3

Introduction

The problem of finding a circular route through a series of locations such that the

distance of any point not on the route to its nearest point on the route is kept to a

minimum occurs in a number of practical instances. An early operational research

approach to a related problem appears in Hakimi (1964). Such problem instances we

have just discussed are well known in the theory of facilities location, which is

concerned with the location of one or more facilities that are to be sited so as to

service a number of clients at given locations. We confine our attention in this paper

to facilities on graphs or networks, rather than in the plane.

Here we extend the concept of what is to be located from a discrete set of facilities to

a circular structure. In network terms the classic problems involve identifying a

discrete set of network nodes, representing optimal facility locations. Our extension

involves identifying an optimal cycle in the network.

The first problem that we wish to discuss is termed the cycle centre problem. It can

be formulated in graph theoretic terms as follows.

The Cycle Centre problem

Given a connected simple graph G = (V,E) with vertex set V and edge set E, identify a

cycle C in G which minimises the maximum of the shortest distances between any

vertex not a member of C to some vertex of C, such that C is of minimal length

among all such cycles.

For the relevant graph theoretic notation and terminology see Foulds (1998).

The distance between any two vertices in G is defined as the least number of edges

that need to be traversed, in any path in G between the two vertices. The resulting

cycle C is termed a cycle centre of G. The problem is clearly a bi-criterion problem

as the distance to non-cycle vertices from the cycle vertices and the actual length of

the cycle are both criteria. The first of these dominates the second. A similar

problem of identifying paths rather than cycles has been studied by Slater

(1981,1982).

circuit 4

The most common applications of the cycle centre problem are with the location of

emergency facilities, such as: health clinics, police stations, or fire stations. The

objective is to minimise the greatest distance between any of the facilities and any of

the clients. The classic problems from location theory with this objective are

concerned with the identification of the optimal location of a single facility or a

discrete set of facilities.

In addition to the work to be presented in this paper, related work on this problem was

reported by Foulds and Yamaguchi (1998). In their paper a Tabu Search heuristic is

described for the problem. The method starts by constructing a spanning tree to

which a chord is added to create a cycle. The method iterates between different

spanning trees and cycles, and records and updates the least cost cycle found so far.

Schobel et al. (1999) have provided characterisations of the central cycle, for the

special case where G is a grid graph.

A similar problem has been considered by Labbe ' and Laporte (1986) who describe

an integer programming model for the location of central post boxes in zones of a

city. They divide the possible locations into n zones, allocate each of n boxes to a

different zone, and then tour all zones. More recently, Current and Schilling (1994)

have developed an integer programming model and heuristics for the median tour and

maximal covering tour problems. Their problems have similar constraints to ours, but

a different objective, namely minimising the total demand weighted travel distance

between nodes on the tour that must be traversed in succession. Other related

problems are described in a review by Mesa and Boffey (1996), who note the lack of

consideration given to problems involving the location of cyclic structures. A further

review of related problems can be found in Labbe ' et al. (1998).

The Cycle Median problem

The second problem that we wish to discuss is termed the cycle median problem. It

can be formulated in graph theoretic terms in a similar fashion to the previous

problem, by replacing the word “maximum” by the word “sum”. That is,

given a connected simple graph G = (V, E), with vertex set V and edge set E, identify

a cycle C of G which minimises the sum of the shortest distances between all vertices

circuit 5

not members of C to any vertex of C, such that C is of minimum length among all

such cycles. The resulting cycle is termed a cycle median of G.

Applications of this objective include: the creation of express ring roads in urban

environments, urban bus and rail routes, circular communication systems in

organisational structures, and collection and distribution systems for public utilities

such as special inorganic garbage collection, or parcel delivery.

The Cycle Centroid problem

The third problem we wish to describe is termed the cycle centroid problem. It can be

formulated in graph theoretic terms as follows:

given a connected simple graph G = (V, E), with vertex set V and edge set E, identify

a cycle C of G which maximises the sum taken over all vertices v not in C of the

differences between the number of vertices in V \C which are closer to at least one

vertex in C than to vertex v and the number of vertices in V \C which are closer to

vertex v than any vertex in C, such that C is of minimum length among all such

cycles. The resulting cycle is termed a cycle centroid of G.

Applications of this objective include the location of special facilities, for example

freeways, distribution networks, or communication networks with the aim of

minimizing the distance from each client to each of the facilities.

The purpose of this paper is to discuss integer programming models of the three

problems, to solve them exactly and to develop heuristic solution methods based on

the models. The paper is laid out as follows. In the next three sections the problems

are formulated as integer programming models. In the following section there is a

discussion of the solution approaches based on the models. The final section presents

some conclusions.

circuit 6

2. An integer programming formulation of the cycle centre problem

First we introduce some necessary notation, in the form of data that must be identified

for any given graph G representing a numerical instance of the problem.

Let |V| = n .

Let c = shortest distance from vertex i to vertex j, i < j, i, j ij ε V .

Let e = 1 if there is an edge from vertex i to vertex j (denoted by (i,j)), i < j, i, j ij ε V

 = 0 otherwise.

Note that { e }ij nxn represents the adjacency matrix of G.

Let k be a lower limit on the number of vertices in the cycle centre C. l

Some variables are now introduced.

Let = 1 if vertex i is a member of C, i iy ε V ,

 = 0 otherwise.

Let d = shortest distance from vertex i, not a member of C, to any vertex in C . i

Let = 1 if vertex j in C is the nearest vertex to vertex i not in C, iijp j≠ ; i, j ε V ,

 = 0 otherwise.

Let = 1 if C includes edge (i,j), i < j; i, j ijx ε V ,

 = 0 otherwise.

Note that = 0 ⇒ ; i, j ije 0=ijx ε V.

Let z = maximum of all values , i id ε V .

Let M be a relatively large constant. Typically M = O(10n).

Note: It might seem arduous to obtain the data. However, if, as is likely in

practical applications, it is required that the maximum of the shortest distances of all

vertices not in C to some vertex in C is smaller than some constant k, say, then it will

be sufficient to find exact vertex distances only if these are less than or equal to k.

Distances known to be larger then k can be set to M. Thus when computing shortest

distances to any vertex, it will be sufficient to consider only vertices within a distance

ijc

circuit 7

of k from that vertex. The cycle centre problem can now be stated formally as the

following integer programming problem:

Objective

 Minimise Z = Mz + ∑ yi
i

n

=1

Constraints

 , i =1,2, … ,n. (2.1) p yij i
j

n

+ =
=
∑ 1

1

 , j =1,2, … ,n. (2.2) ∑
=

−≤
n

j
jlij yknp

1
)(

 , i =1,2, … ,n. (2.3) i

n

j
ijij dpc =∑

=1

 , i =1,2, … ,n. (2.4) z di≥

 , i =1, … ,n. (2.5) ∑ ∑
> <

=+
n

ij
i

n

ij
jiij yxx 2

iij yx ≤ i < j, i =1,2, … ,n, j =1,2, … ,n. (2.6)

jij yx ≤ i < j, i =1,2, … ,n, j =1,2, … ,n. (2.7)

 Sxijε i < j, i =1,2, … ,n, j =1,2, … ,n. (2.8)

 i < j, i =1,2, … ,n, j =1,2, … ,n. (2.9) ijij ex ≤

 (2.10)

=≥

≠===

<===
==

.,...,2,10
;,...,1;,...,2,11,0

;,...,2;,...,2,11,0
,...,2,11,0

nid
jinjnip

jinjnix
niy

i

ij

ij

i

Constraint (2.1) ensures that a ‘nearest’ vertex on the path is selected only if a vertex

is not on the cycle. Constraint (2.2) ensures that the vertex deemed ‘nearest’ to an

off-cycle vertex is a member of C. Constraint (2.3) determines the distance between

an off-cycle vertex and its ‘nearest’ neighbour in C. Constraint (2.4) ensures that z is

the largest distance of any off-cycle vertex to its ‘nearest’ vertex in C. Constraints

(2.5) ensure that all vertices of C are of degree 2. Constraints (2.6) and (2.7) are cuts

circuit 8

which are useful to add to the formulation since they strengthen (2.5). Constraints

(2.8) are sub-tour elimination constraints (to be discussed in below). Constraint (2.9)

ensures that C comprises only edges that are actually present in G and finally

constraints (2.10) are the usual zero-one and non-negativity conditions.

2.1. Sub-tour elimination

The constraints used in (2.6) deserve further consideration. Because it will not be

known in advance how many vertices will form the cycle, it is not possible to use

either of the two common sub-tour elimination approaches from the Travelling

Salesman Problem (TSP) (see for instance Lawler et al., 1985 and Orman and

Williams, 1999). These approaches would introduce constraints of form,

 , ijji kruu ≤−

where ui and uj are the sequence numbers of the vertices visited in the cycle,

or constraints that partition the set of vertices into subsets to avoid sub-tours. In the

former approach , is itself a variable quantity.)(
1
∑
=

=
n

i
iyk

However, the latter approach may be adapted for the cycle centre problem and

constraints of the following form may be adjoined to the formulation or used as cuts.

Let and be the vertex sets of two disjoint connected subgraphs of G = (V,E)

such that

1J 2J

1J U 2J = {1,2, … ,n}. Suppose and both contain at least one edge

which has both its end points in that set. Then it follows that if

1J 2J

either or ∑∑ =
11, Ji

i
Jji

ij yx
εε

∑∑ =
22, Ji

i
Jji

ij yx
εε

 , a sub-tour is present.

Constraints to eliminate such sub-tours may be constructed as follows.

We introduce binary variables
1Jδ ,

2Jδ ,
21JJδ such that:

 , ∑ ≤≤
1

121
Ji

JiJJ My
ε

δδ ∑ ≤≤
2

221
Ji

JiJJ My
ε

δδ and
2121

1 JJJJ δδδ +≤+ .

Then to avoid sub-tours we require

 ∑∑ =+
11

21
, Ji

i
Jji

ijJJ yx
εε

δ

and ∑∑ =+
22

21
, Ji

i
Jji

ijJJ yx
εε

δ

circuit 9

to hold. Note that these constraints will have considerable power in the linear

relaxation of the problem because typically the number of non-zero vertices in each

partition of the vertex set will be small. Thus the binary variable may well be tightly

bounded and hence will cause restriction within the two equations when two discrete,

but fractional, sub-tours are present.

Because the cycle will typically pass through only a small proportion of the vertices

in the graph, it was found that generalisations for the cycle centre problem of the type

of constraints described in Bauer (1997) (e.g. comb inequality) have little power in

that problem. Accordingly they have not been used in the formulation or in any

branch and cut format.

It is straightforward to show that provides an upper bound on Z, the objective

function value.

ijji
c

,
max

We now illustrate what we have discussed by using the above model to solve the

following numerical example.

Example

Let V = {1,2, ... , 12}.

Values of e ij

i/j 1 2 3 4 5 6 7 8 9 10 11 12
1 0 1 0 0 0 1 0 0 0 0 0 0
2 0 1 0 0 1 0 0 0 0 0 0
3 0 1 0 0 1 0 0 0 0 0
4 0 1 0 1 0 0 0 0 1
5 0 0 0 0 0 0 0 0
6 0 1 1 0 0 0 0
7 0 0 1 0 0 0
8 0 1 1 0 0
9 0 0 1 1
10 0 1 0
11 0 1
12 0
Table 1. The Upper Triangle of an Adjacency Matrix

circuit 10

Values of cij

i/j 1 2 3 4 5 6 7 8 9 10 11 12
1 0 1 2 3 4 1 2 2 3 2 4 4
2 0 1 2 3 1 2 2 3 3 4 4
3 0 1 2 2 1 2 2 4 3 3
4 0 1 2 1 3 2 4 3 1
5 0 3 2 4 3 5 4 2
6 0 1 1 2 2 3 3
7 0 2 1 3 2 2
8 0 1 1 2 2
9 0 2 1 1
10 0 1 2
11 0 1
12 0
Table 2. Distances Between Vertices

1 2 3 4 5

 6 7

 8 9 12

 10 11

Figure 1 The cycle centre for the example problem

The cycle centre is <6,7,4,12,9,8,6> with z = 1, and is shown in Figure 1. If M = 100,

then Z = 100(1) + 6 = 106.

Note: If the solution to any problem is such that z = 0 then a Hamiltonian cycle has

been found. In general, it will not be expected that such a cycle exists in G. We now

go on to modify the previous model so as to create a model for the cycle median

problem.

circuit 11

3. A formulation of the cycle median problem

If constraint (2.4) is replaced by the constraint

∑
=

=
n

i
idz

1
 (3.1)

then the problem becomes that of finding the cycle median of the graph G. Recall that

the cycle median is the cycle C of minimum length that minimises the total of shortest

distances of all vertices which are not members of C to some vertex in C .

The cycle median of the graph in Figure 1 is <1,2,3,7,4,12,9,11,10,8,6,1> and z = 1.

This is shown in Figure 2. If M = 100, then Z = 100(1) + 11 = 111.

1 2 3 4 5

 6 7

 8 9 12

 10 11

Figure 2 The cycle median for the example problem

4. A formulation of the cycle centroid problem

The variable z of section 2 is not used in the formulation of the cycle centroid

problem, but all other variables defined in that section are used. We also introduce

additional variables as follows.

Let v = 1 if vertex i is not further, as measured by , from the cycle than from

vertex j, as measured by (i

ij id

ijc j≠ ; i, j ε V)

 = 0 otherwise.

circuit 12

Let u = 1 if vertex i is not further, as measured by , from vertex j than from the

cycle, as measured by (i

ij ijc

id j≠ ; i, j ε V)

 = 0 otherwise.

Three further variables

 , and (j jf jg jh ε V)

are introduced to be defined by constraints (4.10) – (4.12).

The cycle centroid problem can now be stated formally as the following integer

programming problem.

 Maximise = MZ ∑∑
==

−
n

i
i

n

j
j yf

11

Subject to constraints (2.1) – (2.3), (2.5) – (2.10) as before, and

1≤+ jij yv i = 1,2, … ,n ; j = 1,2, … ,n ; i j≠ . (4.1)

1≤+ iij yv i = 1,2, … ,n ; j = 1,2, … ,n ; i j≠ . (4.2)

1≤+ jij yu i = 1,2, … ,n ; j = 1,2, … ,n ; i j≠ . (4.3)

1≤+ iij yu i = 1,2, … ,n ; j = 1,2, … ,n ; i j≠ . (4.4)

1+≥+++ ijijiij cdMyMyMv

 i = 1,2, … ,n ; j = 1,2, … ,n ; i j≠ . (4.5)

McdMyMyMv ijijiij +≤+−−

 i = 1,2, … ,n ; j = 1,2, … ,n ; i j≠ . (4.6)

ijijiij cdMyMyMu −≥−++ 1

 i = 1,2, … ,n ; j = 1,2, … ,n ; i j≠ . (4.7)

ijijiij cMdMyMyMu −≤−−−

 i = 1,2, … ,n ; j = 1,2, … ,n ; i j≠ . (4.8)

McMyd ijij +≤+ i = 1,2, … ,n ; j = 1,2, … ,n ; i j≠ . (4.9)

∑
=

=
n

i
ijj vg

1
 j = 1,2, … ,n (4.10)

∑
=

=
n

i
ijj uh

1
 j = 1,2, … ,n (4.11)

jjj hgf −= j = 1,2, … ,n (4.12)

circuit 13

=≥

=

===

===

 .,...,2,10,

,...,2,1 variablefree a is

 ,...,2,1;,...,2,11,0

 ,...,2,1;,...,2,11,0

njhg

njf

njniu

njniv

jj

j

ij

ij

 (4.13)

Constraints (4.1) and (4.2) ensure that if = 1 or = 1 then v = 0 (i = 1,2, … ,n ;

j = 1,2, … ,n ; i

iy jy ij

j≠

ij

). Constraints (4.3) and (4.4) perform the role analogous to (4.1)

and (4.2) for u .

Constraint (4.5) ensures that if = 0 , = 0 and iy jy iji cd ≤ then v = 1 (i = 1,2, … ,n

; j = 1,2, … ,n ; i

ij

j≠).

Constraint (4.6) ensures that that if = 0 , = 0 and iy jy 1+≥ iji cd then v = 0 (i =

1,2, … ,n ; j = 1,2, … ,n ; i

ij

j≠). Constraints (4.7) and (4.8) perform the role

analogous to (4.5) and (4.6) for u . ij

Constraint (4.9) ensures that that if = 1 then diy ijj c≤ (i = 1,2, … ,n ; j = 1,2, … ,n ;

i j≠).

Constraint (4.10) defines as the sum of vertices nearer the cycle than to vertex j. jg

Constraint (4.11) defines as the sum of vertices nearer vertex j than to the cycle. jh

Constraint (4.12) defines as the difference between and . jf jg jh

Finally, (4.13) gives the usual zero-one and non-negativity conditions defines as a

free (unconstrained) variable.

jf

Using the formulation given above and the data of Section 2, the cycle centroid is

given by the cycle <6, 7, 8, 9, 6>, as shown in Figure 3.

circuit 14

1 2 3 4 5

 6 7

 8 9 12

 10 11

Figure 3 The cycle centroid for the example problem

5. Results using the IP model

To explore the models further, a set of test problems was generated as follows. A set

of n vertices is chosen in the form of a rectangular grid with vertices evenly spaced.

Vertices are numbered consecutively in vertical order, starting from the left. Each

vertex is considered in turn, starting with the lowest numbered, and then three edges

are introduced, each with probability equal to 0.33, to the vertex to its immediate

right, to the vertex immediately below it, and to the vertex diagonally below it to the

right. An appropriate adjustment is made at the perimeter of the grid. Grids that are

not connected are rejected. The formulation given by (2.1)-2.10) for the cycle centre

problem was then used and solved with the mathematical programming software

XPRESS-MP (Dash Associates, Blisworth, Northamptonshire, England). Because of

the structure of the grids, the constraints described in section 2.1 are straightforward

to construct and are limited in number relative to the number of vertices.

circuit 15

Vertices Nodes CPU

secs

 min mean max min mean max

16 10 53 79 0 0 0*

36 53 236 641 4 17 29

64 378 2316 32417 141 370 1674

100 850 4304 23794 1310 4595 7477

Table 3 Results for the cycle centre problem (averaged over 20 datasets)
 * = too small to be recordable

Table 3 shows the number of branch and bound nodes required to solve the problems,

and CPU time taken on an HP9000/800. As can be seen, the larger problems are

slower to solve using the formulation, but the largest problems are still being solved

to optimality comfortably. The authors plan to develop branch and cut methods to

solve the problems with sub-tours being eliminated as and when required, rather than

by the use of constraints (2.8).

Table 4 presents results for the cycle median problem. As the formulation of this

problem is very similar to the cycle centre problem, it was not tested extensively. As

can be seen from Table 4 the results are very similar to Table 3.

Vertices Nodes CPU

secs

 Min mean max min mean max

36 101 226 324 7 16 20

Table 4 Results for the cycle median problem (averaged over 20 datasets)

Table 5 presents results for the cycle centroid problem. This is a much more difficult

problem to solve than the cycle centre problem. The formulation given by (2.1) -

(2.3), (2.5) - (2.10), (4.1) - (4.13) was used and solved with XPRESS-MP analogously

with the results in Table 3. As can be seen from Table 5, even for fairly small

circuit 16

numbers of vertices the problems are slow to solve and both computational times and

numbers of nodes generated grow rapidly as problem size increases.

Vertices Nodes CPU

secs

 Min mean max min mean max

16 661 7452 43778 8 105 568

20 2283 20584 95400 46 637 2186

25 11515 45885 269900 568 2786 10099

Table 5 Results for the cycle centroid problem (averaged over 20 datasets)

7. Conclusions

We have introduced three bi-criterion undirected routing and location problems and

developed integer programming models, and exact solution procedures for solving

sizeable instances of them. This approach meets with considerable success for the

cycle centre and cycle median problems, but with less success for the cycle centroid

problem. Given the intractability of the problems it is unlikely that any exact method

could be developed to solve very large instances of them in reasonable computational

time. Thus the search for an efficient heuristic, particularly one incorporating bounds,

is an important area for further research.

References

P Bauer (1997) The circuit polytope: facets. Mathematics of Operations Research
22, 110-145.

J R Current and D A Schilling (1994) The median tour and maximal covering tour
problems: Formulations and heuristics. European Journal of Operational Research
73, 114-126.

L R Foulds (1998) Graph Theory Applications, 3rd printing, 404 pages, Springer-
Verlag, New York.

L R Foulds and T Yamaguchi (1998) Cycle centres, medians and centroids in graphs.
Memoirs Research Paper Series, Muroran Institute of Technology, Japan.

circuit 17

S L Hakimi (1964) Optimum location of switching centers and the absolute centers
and medians of a graph. Operations Research 12, 450-459.

M Labbe ' , G Laporte and I Rodri ' guez – Martin (1998) Path, tree and cycle location.
In T G Crainic and G Laporte (eds) Fleet Management and Logistics, Kluwer
Academic Press, London.

M Labbe’ and G Laporte (1986) Maximizing user convenience and postal service
efficiency in post box location. Belgian Journal of Operations Research, Statistics
and Computer Science 26, 21-35.

E L Lawler, J K Lenstra, A H G Rinnnooy Kan, D B Shmoys (Eds) (1985) The
Traveling Salesman Problem, John Wiley and Sons, Chichester.

J A Mesa and T B Boffey (1996) A review of extensive facility location in networks.
European Journal of Operational Research 95, 592 – 603.

A Orman and H P Williams (1999) A survey of formulations of the travelling
salesman problem, Research Paper 101, Faculty of Mathematical Studies, University
of Southampton, Southampton, UK.

A Schobel, H Hamacher and L R Foulds (1999) On central cycles in grid graphs,
Research Report in Management Mathematics, University of Kaiserlautern, Germany.

P J Slater (1981) On locating a facility to service areas within a network. Operations
Research 29, 523-531.

P J Slater (1982) Locating central paths in a graph. Transportation Science 16, 1-18.

circuit 18

Older material not being used
7. A branch and bound algorithm for finding the cycle centre

In this section a branch and bound algorithm for finding the cycle centre of a graph G

will be given. This algorithm provides a systematic procedure for obtaining the cycle

centre and provides an alternative to the integer programming approach.

In order to describe the algorithm, a Hamiltonian Walk will first be defined.

Definition A Hamiltonian Walk in a graph G = (V, E) is a closed sequence of

edges () passing through every vertex v of G at least

once.

kiii eee ,...,,
21

For example, for the graph G given in Figure 3, a Hamiltonian walk W is

<1,2,3,4,5,4,2,1>.

 3

 5

 1 2

 4

Figure 3

Note that as G is non-Hamiltonian, the walk contains repeated vertices.

Property Every vertex in the cycle centre C induces all vertices in the original

graph G to have degree 2 or 0 with respect to C.

For example, in Figure 4 vertices 2,3,4 have degree 2 with respect to C and vertices

1,5 have degree 0 with respect to C.

The Algorithm

circuit 19

1. General step at each node N in the decision tree:

Create a Hamiltonian walk W in the graph associated with N. If W is a cycle,

without vertex repeats, it is a feasible solution to the original problem and N is

fathomed by calculating z as defined in section 2. Otherwise:

2. Partitioning

Ban part of the current walk W. Select a vertex v of smallest degree with

respect to the walk. Select all edges of W incident with v. Ban each edge in

an independent child node of N.

3. Branch from the lowest unfathomed node and set this as node N. Go to

Step 1.

In the example of Figure 3, using the given walk, Step 2 will select vertex 2. Edges in

W incident with v are <1, 2>, <2, 3>, <2, 4>. We then partition the feasible solutions

in N as shown in Figure 4.

 N

 x12 = 0 x24 = 0

 x23 = 0

Figure 4

The above will provide a systematic procedure for obtaining the cycle centre of a

graph. However, it is likely to be slow to solve sizeable problems. It has the

advantage over the integer programming approach that the search may be terminated

prematurely once (at least) one feasible solution has been obtained.

It is clear that it will not be practical to solve the models for numerical instances

significantly larger than that shown in the table by either integer programming or the

circuit 20

branch and bound method, and hence there is a need for an efficient heuristic method

to solve the problems. We now proceed to develop a heuristic method which is more

effective than that given in Foulds and Yamagouchi (1998).

8. A heuristic approach

It is clear that the model given by (2.1) – (2.8) can be solved, but only for modest

values of n. For larger values of n, a heuristic approach was developed, but its

accuracy could at least be checked for smaller values of n where optimal solutions to

the model were known.

The heuristic was developed from the observation that a vertex is likely to be in the

optimal cycle if the variance of taken over j = 1,2, … ,n is relatively low. For the

dataset described in the previous two sections the variances are as shown in Table 4

below.

ijc

Table 4 Calculated Variances

Vertex Variance Rank (Largest variance=1)
 1 1.21 4
 2 1.21 4
 3 0.81 8
 4* 1.00 7
 5 1.44 2
 6* 0.64 10
 7* 0.36 12
 8* 0.81 8
 9* 0.64 10
10 1.69 1
11 1.44 2
12* 1.21 4
(* = vertex in cycle)

circuit 21

The steps of the heuristic are:

1. Calculate V(i) = ∑ ∑
= =

−
n

j

n

j
ijij cnc

1 1

22)()(

2. Order the vertices i in increasing value of V(i) .

3. Select vertex i1 lowest in order of previous step, which has not already been

chosen.

4. Select vertex i not previously chosen such that e(i , i) = 1 and i next

lowest in order of Step 2.

2 1 2 2

5. Progressively form a cycle by repeating Step 4 and backtracking where

necessary, including Step 3.

6. Let cycle be , , … ,1i 2i ki . Calculate z (as defined in Section 2).

7. (Build) For any pair of vertices in the cycle such that e() =1 if

there exists vertex i not on the cycle such that e(i , i) = e() = 1 and

for the augmented cycle is such that

jj ii ,1−

z

jj ii ,1−

'i , ji'
1−j

' 'z

' ≤ z then add i to the cycle. '

8. (Build) For any triple of vertices in the cycle such that e(i , i) =

e(i , i) = 1 and where there exists vertex i not on the cycle and e(i , i)

= e(i , i) = 1 then temporarily replace i by i and recalculate for the

revised cycle. If < z replace i by i and z by .

11 ,, +− jjj iii

j

j
'

1−j

−j

j

1j 1+j

'
+j

' '

1
' 'z

'z 'z

9. Repeat steps 7 and 8 until no further changes are made.

10. (Drop) For any triple of vertices i in the cycle such that e(i , i) =

e(i , i) = 1 if e(,) = 1 and where for the cycle formed by

dropping i is such that

11 ,, +− jjj ii 1−j j

j 1+j 1−ji 1+ji

'z

'z

j ≤ z then drop from the cycle and replace z by

.

ji

'z

11. Repeat step 10 until no further changes are made.

End

The whole procedure is now repeated n times, by varying the starting point of

Step 3 and then a further n times with each choice in step 3 being subject to a

probabilistic decision i.e. a simple form of Tabu search. The data used in Tables 1

and 2, with sets of 20 problems, is reconsidered in Table 5.

circuit 22

vertices optimal z too large
∑
=

n

i
iy

1
too large

16 19 0 1 (1.0)

25 10 3 (1.0) 7 (1.4)

(mean deviation shown in parenthesis)

Table 5 Computational results for the heuristic for small problems

The second column of Table 5 shows the number of occasions when the heuristic

solution was optimal, the third column shows the number of occasions when the

heuristic solution produced a larger than optimal value for z and the final column

shows the number of occasions when the heuristic produced a larger than optimal

value for ∑ . As can be seen, the heuristic is very accurate on the 16-vertex

problems. For the 25-vertex problems fewer optimal solutions are obtained but in a

total of 17 problems the z value is correct. Accuracy of the z value will be a more

important criterion than accuracy of the value.

=

n

i
iy

1

∑
=

n

i
iy

1

The heuristic was run on a set of 100-vertex problems, where optimal solutions are

not known. Results for a set of 20 problems are given in Table 6.

Vertices CPU secs z/ub

 min max mean min max mean

100 1.9 7.4 4.0 0.17 0.39 0.28

Table 6 Computational results for the heuristic on larger problems

From Table 6 it is apparent that the heuristic is rapid and is producing solutions in

line with the quality of the solutions (as measured by z/(upper bound)) on the smaller

sized datasets. The heuristic is capable of producing results in reasonable time for

circuit 23

larger sized datasets. Problems with 200-500 vertices were solved in CPU times of

between 50-100 secs.

For the cycle median problem, the heuristic developed earlier can be modified for use.

Steps 1-6 are unchanged, Step 7 is modified and Steps 10 and 11 are dropped. The

modified version of Step 7 is:

Step 7’ (Build) (a) For any pair of vertices i in the cycle such that e(i) =1 if

there exists vertex i not on the cycle such that e(i , i) = e() = 1 then

add i to the cycle.

jj i,1− jj i,1−

'
1−j

' 'i , ji

'

(b) For any vertex i in the cycle if there exists vertices i , i not on the cycle

such that e(i,) = e() =e(i ,i) = 1 then add i , i to the cycle.

' "

'i 'i , "i " ' "

(c) For any pair of vertices i in the cycle such that e(ijj i,1− 1−j

'

, i '

"

) =1 if there

exist vertices i , i not on the cycle such that e(i , i) = e(i , i) = e(i , i) =

1 then add i , i to the cycle.

'

'

"
1−j

' "
j

"

Using the example of Figure 1, Steps 1-6 build the cycle <7,6,8,9,7> with z = 9; Step

7 adds vertices 2,3 to vertices 6,7; vertices 4,12 to vertices 7,9; and vertices 10,11 to

vertices 8,9. Vertex 1 is also added to vertices 2,6. The cycle is now

<1,2,3,7,4,12,9,11,10,8,6,1> and z = 1. No further improvement is possible. This

cycle is optimal and is shown in Figure 2.

For the cycle centroid problem an analogous modification can be made to the

heuristic.

The heuristic for the cycle centre problem was also tested on problems where

(given = 1) can take a value other than 1. A set of problems in the style of the 16-

vetex problems of Table 3 was generated such that (given e = 1) is given a value

chosen at random from 1, 2 and 3, such that each value has equal probability. For this

set of problems the performance of the heuristic was more erratic. However, as the

heuristic was specifically designed for problems where c = 1 this behaviour is not

ijc

ije

ijc ij

ij

circuit 24

circuit 25

unexpected and further research would be required to develop a more suitable

heuristic for other variations.

	Waikato Management School, University of Waikato, Private Bag 3105,
	Hamilton, New Zealand
	The Cycle Centre problem
	2.An integer programming formulation of the cycle centre problem
	Constraints

	2.1. Sub-tour elimination
	Figure 2 The cycle median for the example problem
	A formulation of the cycle centroid problem
	The variable z of section 2 is not used in the formulation of the cycle centroid problem, but all other variables defined in that section are used. We also introduce additional variables as follows.
	Let � = 1 if vertex i is not further, as measured by �, from the cycle than from vertex j, as measured by � (�; i, j � V)
	Let � = 1 if vertex i is not further, as measured by �, from vertex j than from the cycle, as measured by � (�; i, j � V)

	5.Results using the IP model
	To explore the models further, a set of test problems was generated as follows. A set of n vertices is chosen in the form of a rectangular grid with vertices evenly spaced. Vertices are numbered consecutively in vertical order, starting from the left.

	7.Conclusions
	We have introduced three bi-criterion undirected routing and location problems and developed integer programming models, and exact solution procedures for solving sizeable instances of them. This approach meets with considerable success for the cycle ce
	References

	8.A heuristic approach

