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Abstract 

This two-part paper presents the development of an improved airport risk assessment 

methodology aimed at assessing risks related to aircraft accidents at and in the vicinity 

of airports and managing Airport Safety Areas (ASAs) as a risk mitigation measure.   

The improved methodology is more quantitative, risk-sensitive, flexible and 

transparent than standard risk assessment approaches.   As such, it contributes to the 

implementation of Safety Management Systems at airports, as stipulated by the 

International Civil Aviation Organisation. 

 

The first part of the paper presents the methodological advances made in the 

development of accident frequency models; namely the building of a single 

comprehensive database of all relevant accident types, the collection and use of 

normal operations data in quantifying the criticality of a series of risk factors, and 

modelling accident frequency using multivariate logistic regression.   The resulting 

models have better goodness-of-fit, sensitivity and specificity than standard risk 

assessment methodologies.    

 

1. Introduction 

International as well as local aviation authorities have developed airport safety areas  

(ASA) at and around airports to protect passengers as well as nearby communities 

from accidents that occur during the take-off and landing phases of flight.   ASAs 

could be grouped into two families – aerodrome design ASAs and land-use planning 

ASAs. 
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In terms of aerodrome design ASAs, there is an internationally agreed framework on 

airport design set out in Annex 14 to the Convention on International Civil Aviation 

(ICAO 1999).   National aviation authorities, however, may deviate from Annex 14 or 

develop different standards.   For instance, the FAA’s Advisory Circular 150/5300-13 

on Airport Design is a parallel framework to Annex 14 (FAA 2004), as is the UK’s 

CAP 168.   The notion of ASAs, therefore, tends to differ from country to country.  

Under ICAO Annex 14, safety areas relevant to take-off and landing accidents include 

the Runway End Safety Area and Runway Strip.   The concepts of the Runway Strip 

and the RESA are combined under FAA rules, which define the Runway Safety Area.   

The FAA also specifies a Runway Protection Zone, which has no equivalent in ICAO 

Annex 14. 

 

Land-use planning ASAs result from regulations and guidelines that govern the way 

land is used around runways.   There are relatively few national regulations on land-

use near airports, let alone an international framework.   The most notable 

jurisdictions that have instituted land-use planning ASA include the Netherlands, the 

United Kingdom and certain states in the US such as California.   The regulations 

concerned are often formed from the concept of risk contours and prohibiting 

development within. 

 

Wong (2007) highlighted a number of fundamental deficiencies concerning Airport 

Safety Area (ASA) regulations.   These include the number of risk factors considered 

in the formulation of ASA policies; their rigid, prescriptive and compartmentalised 

nature; opacity in rule-making and the lack of review mechanisms; a piecemeal and 

reactive approach; a fragmented oversight regime; a “tick the box” compliance 

mentality on behalf of the regulated parties; and the overall regulatory rationale.   

Above all, current ASA requirements stipulate average levels of safety across vastly 

different airports, contributing to a significant mismatch between actual risk exposure 

and safety margin provision.   The need for a more risk-sensitive, flexible and 

effective strategy of using and regulating ASAs is clear.   As the first of a two-part 

paper, this paper presents the development of an accident frequency model that would 

be central to the improved utilisation and requirements of ASAs.   The frequency 

model in an ASA-related risk assessment considers the probability of an accident 
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occurring in the vicinity of an airport.   This follows established practice of risk 

assessment in the field (Piers 1996, DfT 1997, Hale 2002).  

 

The following section puts forward the methodological advances made in this paper, 

namely an integrated approach, the building of a single comprehensive accident 

database, the expanded use of Normal Operations Data (NOD) and the inclusion of 

new risk factors.   The first two advances guided the way the accident database was 

developed (described in Section 3) and the use of new sources of NOD (described in 

Section 4) allowed the inclusion of the additional risk factors.  

 

2. Advances in Methodology  

The model developed offers a new approach to accident frequency modelling 

addressing some key deficiencies of current risk mitigation measures and risk 

assessment methodologies as described in Part I of this paper.   These advances were 

made possible by expanding the traditional scope of airport risk assessment studies, 

building comprehensive and compatible accident and normal operations databases and 

developing multi-dimensional quantitative models that explicitly take into a account 

previously neglected risk factors.  These are detailed below. 

2.1 Integrated approach 

This research takes an integrated approach to airport risk assessment rather than 

focusing on a single stakeholder or element of the aviation system.   The study crosses 

existing regulatory boundaries and considers aircraft crash risk on both sides of the 

airport fence, reflecting the geographically continuous nature of accident risk.   This 

facilitates complementary policies in aerodrome design, land-use planning and 

operational parameters to be developed in lieu of the current fragmented and 

compartmentalised risk control measures.   It has never been done before and avoids 

the difficulties of drawing from studies with different objectives and assumptions.   

The need for such an approach is evidenced in the responses to the New Zealand Civil 

Aviation Authority’s consultation on its Runway End Safety Area (RESA) policy 

where respondents suggested that more aerodrome physical requirements be assessed 

along with the RESA in a single coherent study (Watson 2005).     
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2.2 Single comprehensive database 

Another advance made by this study is the comprehensive accident database 

developed.   Unlike previous studies that focused on a specific type of accident, such 

as approach-and-landing accidents (Enders et al. 1996, Khatwa & Helmreich 1998), 

third-party accidents (DfT 1997) or overruns (CAA 1998), all accident types that are 

implicated by ASAs are included in this study – take-off and landing overruns, 

undershoots, veer-offs as well as crashes after take-off.     This facilitates the 

assessment of all accident types in a coherent manner, rather than being based on 

multiple databases with different inclusion criteria.   All accident types are sampled 

from the same period and for the same parameters using a set of standardised rules.   

More definitive conclusions on ASA policies could therefore be drawn.   For example, 

Kirkland’s work (Kirkland et al. 2003) considered overruns but not undershoots or 

crashes after take-off.   Having included the latter two types of accidents for 

modelling, the current study provides the complete analysis of RESA and (Public 

Safety Zone) PSZ needs.    

2.3 Normal operation risk exposure 

Another methodological advance is the use of normal operations (i.e. non-accident 

flight) data for risk modelling, specifically data related to flight operations and 

meteorological conditions.   Various studies have already identified the lack of normal 

operations data (NOD) as a major obstacle to the development of quantitative risk 

models (DOT 1979, Piers et al. 1993, Khatwa et al. 1996, Khatwa & Helmreich 1998, 

Eddowes et al. 2001, Li et al. 2001).   For example, a NLR study on the impact of 

crosswind on aircraft operations noted that “the significance of [risk] factors can only 

be established when the number of non-accident flights, under identical circumstances 

is known” (Van Es et al. 2001).     Enders et al.  (1996) stated that the unavailability of 

NOD hampered the calculation of accident occurrence rates and the ICAO concurs 

that the absence of NOD “compromises the utility of safety analysis” (ICAO 2006).   

Indeed, in the absence of information on risk exposure, even though the occurrence of 

a factor, e.g. contaminated runway, could be identified as a contributor to many 

accidents, it is impossible to know how critical the factor is since many other flights 

may have also experienced the factor without incident.   With NOD, the number of 

operations that experience the factor singly and in combination with other factors 

could be calculated, so risk ratios could be generated and the importance of risk 
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factors quantified.   This would allow the allocation of resources for safety 

improvement to be prioritised (Enders et al. 1996).  

 

This paper represents a step forward in the field of airport risk assessment in 

collecting a large and representative sample of disaggregate NOD covering a range of 

operational and meteorological risk factors, allowing their criticality to be quantified.   

Incorporating this risk exposure information into the accident frequency model 

enhances its predictive power and provides the basis for formulating more risk-

sensitive and responsive ASA policies.   Accident frequency models need no longer 

rely on simple crash rates based on just aircraft, engine or operation type.   As 

discussed below, factors previously ignored by airport risk assessments and ASA 

regulations are accounted for using the models developed in this study.   Moreover, 

this normal operations database is not only valuable for the current project but can 

also be used for future studies.    

2.4 Factors considered 

In addition to airline Flight Operational Quality Assurance (FOQA) or Flight Data 

Recorder (FDR) data through which airlines use to monitor aircraft performance, only 

in human factor and crew resource management analysis is the use of NOD relatively 

established.   Khatwa and Helmreich (1998) used Line Operations Safety Audits 

(LOSA) to analyse crew errors during non-accident flights.   Work at the University 

of Texas at Austin (Helmreich et al. 1999, Klinect et al. 1999) also used LOSAs to 

build conceptual models that represent the operating environment.   Beyond human 

error analysis, the use of NOD in risk assessment is limited, especially for airport-

related risks.   Enders et al. (1996) and Roelen et al. (2000) used aggregate NOD to 

establish risk ratios for various risk factors such as the availability of Terminal Area 

Radar and other airport navigational aids.    Many attempts to incorporate NOD in risk 

assessment failed because the available risk exposure data does not allow subdivision 

in movements based on the risk factors of interest (Piers 1994, 1998).   Kirkland et al 

(2003) broke new ground in the use of disaggregate NOD for assessing aircraft 

overrun risk.   Using a limited sample of NOD, three overrun risk models were built.    

Two of them assessed overrun risk based on aircraft weight as a percentage of the 

maximum take-off and landing weight respectively and the third model considered 

landing overrun risk based on the distance of excess runway available.   Although 
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some insightful conclusions were drawn, the number of risk factors that could be 

modelled remained small.    

 

One notable gap in research is the quantification and modelling of the criticality of 

meteorological risk factors to accident occurrence.   The lack of data on flights’ 

exposure to meteorological conditions meant traditional risk assessment had to rely on 

qualitative judgements (Eddowes et al. 2001) or simply ignore meteorological 

conditions as risk factors, as do most ASA policies.    Although Enders et al. (1996) 

acknowledged that adverse weather conditions is one of the most regularly cited 

factors in accident reports, they were unable to include the terms in their analysis.    

Kirkland also cited the lack of meteorological NOD as a major shortcoming of his 

work (Kirkland 2001).   The current study was able to collect exposure data on a 

range of meteorological parameters and include them in accident frequency modelling 

– ceiling height, visibility, crosswind, temperature, fog, precipitation, electric storm, 

snow, frozen precipitation and icing conditions.   Other factors not commonly 

modelled were also taken into account, e.g. airport hub size, terrain surrounding the 

airport, dawn and dusk conditions as well as foreign or domestic operation.   This is in 

addition to the more traditional parameters of aircraft, engine and operation type.   

The current paper is thus able to provide a far more comprehensive analysis of risk 

factors relevant to airport risk assessment and develop state-of-the-art frequency 

models of accident occurrence covering an unprecedented spectrum of risk factors. 

 

3. Accident Database 

The low accident rate of aviation means that no particular airport has sufficient 

accident occurrences in the recent past to support an accident frequency model with 

reasonable statistical confidence (Piers et al. 1993, Piers 1994, Hale 2001).   

Therefore, a robust risk assessment must draw from a large database of relevant 

accident cases.    

 

Accident types commonly associated with the safety areas include overruns, veer-offs, 

undershoots, crashes after take-off and third party accidents.   However, these 

accident classifications are based more on consequence than cause.   For example, 

third party accidents may simply be undershoots or crashes after take-off if no third 

parties were present.   Similarly, an aircraft overrunning the runway end and another 
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veering off the side of the runway are often just different manifestations of the same 

root problem, differing only in crash kinematics and airfield conditions.   The 

database classes take-off and landing related accidents under four categories – landing 

overruns (LDOR), landing undershoots (LDUS), take-off overruns (TOOR) and 

crashes after take-off (TOC).   This classification essentially separates landing and 

take-off accidents then ground-based and airborne accidents.   This facilitates their 

analysis by cause rather than consequence, which is especially appropriate for 

developing the accident frequency model.   Incorporating third party accidents within 

these four accident types instead of considering them in isolation reflects the 

geographically continuous nature of accident risk.   Keeping the number of accident 

categories to a small number also helps to increase the statistical significance of 

subsequent analyses and models.   Only cases in which at least one ASA was directly 

challenged, or impacting ground or an obstacle within 10km of the landing or take-off 

threshold were included in the database.   Directly challenging the ASA means that 

the aircraft has exited from the ‘normal’ areas of operation on the airfield, e.g. veering 

off the runway or hitting obstacles on landing or take-off.   Subsequent location 

analysis confirms that the 10km cut-off has captured the great majority of relevant 

landing and take-off occurrences. 

 

The feasibility of including relevant incidents not resulting in hull loss was also 

explored.   However, the quantity and quality of data available on these occurrences 

of lesser consequence are by far inferior to that collected for accidents.   Including 

them would result in a database with a vast number of missing fields.   They were 

therefore not included in the final database.  

 

The US represents the largest national aviation system in the world in terms of air 

traffic, aircraft and airfields.   The US NTSB is also the largest aviation accident 

investigator with an established database of accidents that have been investigated in a 

relatively systematic and consistent manner.   The preference for studying US aviation 

safety data has been echoed by other studies such as Button & Drexler (2006).   The 

database therefore consists of all relevant cases that took place in the US between 

1982 and 2002.  
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The data fields of the accident database covered a multitude of parameters including 

aircraft, flight and airport characteristics, weather conditions, wreckage location and 

injury levels.   The NTSB online accident database alone is not sufficient for the 

purpose of the current research.   Therefore, as with Kirkland (2001), it was necessary 

to obtain individual accident reports and docket files from the NTSB, even though the 

amount of information contained in each docket varies greatly.   From these sources 

all available relevant information was extracted.   Certain variables required 

additional calculation based on available data.   For instance, crosswind strength was 

computed from data on wind direction, wind velocity and true runway orientation.    

 

Other than directly challenging at least one ASA or impacting ground or obstacles 

within 10km of the landing or take-off runway threshold, a number of other criteria 

were used to filter the NTSB accident database to identify the accidents of interest.   

These filters, in essence, eliminate cases that involve airports outside the US, 

irrelevant aircraft types2 and operations as well as accidents with minimal 

consequences.    They were developed considering data availability and quality, 

compatibility with the normal operations data, the need for statistical significance, 

relevance to large and small airports as well as the criteria used by previous airport 

risk assessment studies.   The final database totalled 440 cases, of which 199 are 

landing overruns, 122 are landing undershoots, 52 are take-off overruns and 67 are 

crashes after take-off.    

 

4. Normal Operations Database 

The challenges of obtaining appropriate NOD for risk assessment are well 

documented (Piers 1994, DfT 1997, Roelen et al. 2002).   Unavailability, 

incompleteness and difficult access are only some of the hurdles that must be 

overcome.   A number of sources of NOD were considered for use in the current 

study.   A satisfactory solution was found in the data provided by the FAA’s Aviation 

Policy and Plans Office (APO).   The Enhanced Traffic Management System Counts 

(ETMSC) database provides hourly traffic counts for over 450 airports as well as the 

relevant traffic characteristics for individual flights, including aircraft, engine and 
                                                 
2 These include non-fixed wing aircraft, aircraft with certified maximum gross weight under 6,000lbs, 
single engine aircraft, piston engine aircraft and FAR Part 91 entries with certified maximum gross 
weight under 12,500lbs.   These aircraft types were removed because they were deemed out of the 
current research’s scope and/or the quality of data available for these entries are poor. 
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operation type.   One of the key advantages of the ETMSC database is that, unlike 

specific airport or airline FOQA or FDR data, it encompasses a wide variety of airport 

sizes and includes commercial, air taxi, freight as well as general aviation flights.   

However, ETMSC does not provide the associated weather and runway orientation 

information3   Supplementary sources must therefore be used to cover these data gaps. 

4.1 NOD Sampling strategy 

As it is impractical to sample every non-incident flight during the study period, a 

sampling strategy must be developed for collecting the appropriate sample of NOD.   

The prime concern is to gather a sample that is representative of the risk exposure of 

the overall normal flight population of interest.   Extensive effort was spent on 

sampling appropriately such that the final sample is representative of the non-incident 

flight population.    Random sampling of the ETMSC database would not be 

appropriate as it may bias against airports of certain risk profiles and misrepresent the 

genuine risk exposure of normal flights.   A stratified sampling strategy was hence 

developed to select airports from which normal flights were then sampled.    

 

The first stratification factor is airport size (hub and non-hub).   This accounts for the 

difference in risk exposure of flights related to large and small airports including 

aircraft size, operation type, navigational aid availability, airport infrastructure etc 

(Piers 1994).    The second factor is FAA region, which represents a reasonable 

division of the key geographical regions of the US.     As such, it is a useful 

stratification factor to account for the broad differences in regional weather patterns 

and hence normal flights’ exposure to various meteorological conditions.   The third 

stratification factor is the presence of significant terrain near the airport as the latter is 

expected to influence accident risk, especially for landing undershoots.   The NOD 

sample ought to reflect the proportion of flights that are exposed to more challenging 

topographic environments.   An airport is considered to be situated near significant 

terrain if the terrain within the Instrument Approach Procedure planview exceeds 

4,000 feet above the airport elevation, or if the terrain within a 6.0 nautical mile radius 

of the Airport Reference Point rises to at least 2,000 feet above the airport elevation.   

Detailed terrain is depicted in the Instrument Approach Procedures of these airports 

                                                 
3  Another APO database, Aviation System Performance Metrics (ASPM), provides meteorological and 
runway information related to specific flights but its coverage is limited to the relatively large airports. 
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according to this definition in the FAA US Terminal Procedures Publication (FAA 

2007).   The two airport classes, nine FAA regions and two terrain categories 

theoretically lead to 36 strata from which the NOD sample should be drawn. 

 

Table 1 NOD sampling stratification factors 

No. Stratification Factor Definition 

1. Airport size (Hub/Non-Hub) Hub airports include all large, medium 

and small hub airports as classified by 

the FAA in 2001 

2. FAA Region (9 regions) See Figure 1 

3. Presence of significant 

terrain near the airport 

(Significant Terrain/ 

Non-Significant Terrain) 

Significant if the terrain within the 

Instrument Approach Procedure 

planview exceeds 4,000 feet above the 

airport elevation, or if the terrain 

within a 6.0 nautical mile radius of the 

Airport Reference Point rises to at 

least 2,000 feet above the airport 

elevation.    

 

Figure 1. FAA regions 
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However, seven of these never featured among the airports of any FAA Terminal 

Area Forecasts (TAF) from 2000 to 2005, which comprehensively includes FAA 

towered airports, federally contracted towered airports, non-federal towered airports 

as well as non-towered airports.   It is therefore reasonable to assume that no airport 

exists under these strata.   An example would be a large hub in the central region in 

significant terrain.   Eliminating these non-existent hypothetical strata resulted in 29 

strata with actual airport traffic.   The 125 ETMSC airports suitable for NOD 

sampling were therefore split according to the 29 strata.   However, no airport fell 

under seven of them.   The impact of the empty strata was considered before the 

described sampling strategy was accepted.   From TAFs, it was calculated that all 

airports nationwide belonging to the seven empty strata which cannot be sampled 

collectively account for 4.2 percent of the total relevant traffic from 2000 to 2005.   

This figure is considered sufficiently small as to not affect the overall representation 

of risk exposure of the great majority of relevant normal operations.   There remained, 

then, 22 strata with airports to sample from.   If there were five or fewer airports in a 

particular stratum, all of them were sampled.   For strata with more than five 

candidate airports, five were sampled from each.   The five were selected such that 

airports of different traffic levels are represented.   For example, if there were ten 

airports in the stratum, every other airport would be sampled in the order of 

descending traffic level.   This ensures that the sampled airports correctly reflect the 

traffic characteristics of the overall normal flight population.   This resulted in a total 

of 78 selected airports.   These sampled airports account for 48,924,040 operations 

from 2000 to 2005 inclusive, i.e. 25.5 percent of all relevant traffic during that period.  

Clearly, it is impractical and unnecessary to use all operations from these sampled 

airports for analysis.   Therefore only flights on the first day of February, May, 

August and November of 2002, 2003 and 2004 were sampled to constitute the final 

NOD sample for risk assessment.   The selection of the four months allows seasonal 

variations in weather exposure to be captured to a degree. 

 

The sampled normal operations data was then filtered as with the accident database to 

ensure that the two are compatible, i.e. the sampled NOD traffic does not contain 
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traffic types outside the scope of the accident database.   Having eliminated the 

irrelevant traffic, the final NOD sample consisted of 242,420 flights.    Before the 

sampled NOD could be considered as representative of the overall population of 

normal operations of interest, the differences in sampling fraction between the 22 

strata must be resolved.   Sampling every stratum as described above led to certain 

strata being over-sampled and others under-sampled when compared to the actual 

composition of the overall normal flight population, since the proportion of available 

airports for sampling varies stratum to stratum.   Proportionate allocation was 

therefore applied via the use of weights.   A specific stratum’s weight was derived by 

dividing the stratum’s fraction of traffic in the overall population by the stratum’s 

fraction of traffic in the sampled population.   This is similar to inversing the sampling 

fraction of each stratum but avoids inflating the total number of sampled flights. Inter-

strata sampling imbalances were addressed by applying the weights, which calibrated 

the final NOD sample to reflect the overall normal flight population. 

4.2 Supplementary NOD 

The ETMSC database provides landing and take-off counts of hourly segments at 

specific airports broken down by aircraft, engine and operation type.   For other risk 

exposure parameters, additional sources of NOD were found to supplement ETMSC’s 

traffic data.    

 

The National Oceanic and Atmospheric Administration’s Integrated Surface Hourly 

(TD3505) database was selected to measure the sampled ETMSC flights’ exposure to 

a range of meteorological factors.   Having collated the appropriate TD3505 data to 

the relevant ETMSC time segments, it was possible to quantify the normal flights’ 

exposure to a large number of weather parameters.   These include visibility, ceiling 

height, temperature, precipitation, snow, fog, icing condition, electric storm and a host 

of other weather measures.    

 

Whereas most meteorological conditions were readily identified in TD3505, others 

required further calculation.   TD3505 data on wind direction and velocity was 

coupled with the true runway orientation of flight operations to compute the 
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crosswind factor4.   Another parameter that required further computation was light 

condition.   The accident database recorded whether each incident occurred in 

daylight, night, dawn or dusk.   For normal operations, dawn was defined as the hour 

before official sunset time and dusk the hour after official sunset.   2002 civil twilight 

times were used to determine sunrise and sunset hours at locations across the US.   

According to these designated hours, then, sampled flights that took-off or landed in 

dawn and dusk were identified.   Hours after dusk were identified as night-time and 

the rest daylight.   It is acknowledged that the definitions and methodology used to 

identify light conditions are somewhat crude and may have overstated the duration of 

dawn and dusk hours.   However, given the hourly time segments of ETMSC, more 

precise definitions were not possible.    

 

5. Multivariate Modelling 

Multivariate statistical models were developed for the prediction of accident 

occurrence in the context of airport risk assessment.   The models take into account 

the factors captured by both the accident and normal operations databases.    

 

Logistic regression was the preferred statistical procedure for this study for a number 

of reasons.   Firstly the technique is suited to models with a dichotomous outcome 

(accident and non-accident) with multiple predictor variables that include a mixture of 

continuous and categorical parameters.   Logistic regression is also especially 

appropriate for case-control studies because it allows the use of samples with different 

sampling fractions depending on the outcome variable without giving biased results.   

In this study, it allows the sampling fractions of accident flights and that of normal 

flights to be different.   This property is not shared by most other types of regression 

analysis (Nagelkerke et al. 2005).  

 

It was ensured that all assumptions for the statistical technique were met.   Visibility 

was entered into the model as a five-level categorical variable in order to meet the 

logit linearity assumption.   Collinearity among the predictor variables was also 

assessed by conducting linear regression analyses to obtain the relevant tolerance and 
                                                 
4 The crosswind factor was calculated by considering the direction of the landing/take-off operation 
(runway orientation), and the wind direction and velocity at the time of the operation as provided by 
TD3505.   This involved coupling each sampled flight from ETMSC with the relevant reading from 
TD3505.  
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variance inflation factor (VIF) values.   None of the tolerance values were smaller 

than one and no VIF value was greater than ten, suggesting that collinearity among 

the variables is not serious (Myers 1990, Menard 2001).   Kendall’s tau was also used 

to assess potential correlations between predictor variables that are likely to be 

related.    Three pairs of variables had Kendall’s tau correlation coefficient between 

0.5 and 0.65, indicating moderate correlation.   They were equipment class with user 

class, equipment class with airport hub size, and icing conditions with frozen 

precipitation.   Since none of the correlations were serious, all variables were kept in 

the multivariate model and caution was applied in interpreting the results.   This is 

preferred to the alternative solution of removing variables, which would lead to model 

misspecification.       

 

Backward stepwise logistic regression was used to calibrate the risk models because 

of the predictive nature of the research.   The selected technique is able to identify 

relationships missed by forward stepwise logistic regression (Hosmer & Lemeshow 

2000, Menard 2001).   The predictor variables were entered by blocks, each consisting 

of related factors, as shown in Table 2, such that the change in the model’s substantive 

significance could be observed as the variables were included.    Statistical software 

SPSS begins by conducting backward stepwise logistic regression on Block 1 

variables, removing non-significant variables of that block before conducting 

backward stepwise logistic regression on the remaining variables from Block 1 and 

the additional variables from Block 2.   This continues until Block 9 variables are 

included for backward stepwise logistic regression. 

 

Table 2 Blocks of variables 
Block Variables Entered 

Block 1 Equipment class, Equipment type  

Block 2 User class, Foreign origin/destination 

Block 3 Ceiling height 

Block 4 Visibility, Fog, Dawn/dusk 

Block 5 Crosswind 

Block 6 Rain, Electric storm 

Block 7 Temperature, Icing conditions, Frozen precipitation, Snow 

Block 8 Airport hub size 

Block 9 Significant terrain 
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Table 3 below explains how each variable is measured or categorised for input into 

the logistic regression.   Where entered as categorical variables, the reference category 

is highlighted in bold. 

 

Table 3 Model Variables Units & Categories  
Variable Variable Type Categorical Groupings/Measuring Unit 

Equipment Class Categorical Heavy aircraft – Maximum Take-Off Weight (MTOW)> 

255,000lbs 

Large jets – MTOW between 41,000lbs and 255,000lbs, 

e.g. Boeing 737, A320  

Large commuter aircraft – MTOW between 41,000lbs and 

255,000lbs but smaller than large jets, e.g. regional jets 

Medium aircraft – MTOW between 12,500lbs and 

41,000lbs 

Small aircraft – MTOW under 12,500lbs 

Equipment Type Categorical Turboprops 

Jets 

User Class Categorical Commercial operation 

Freight operation 

General aviation operation 

Foreign 

Origin/Destination 

Categorical Domestic  

Foreign 

Ceiling Height Continuous 100ft 

Visibility Categorical5 <2.00 statute miles (SM) 

2.01- 4.00SM 

4.01- 6.00SM 

6.01- 8.00SM 

>8.00SM 

Fog Categorical No Fog 

Fog 

Dawn/Dusk Categorical Non dawn/dusk conditions 

Daen/dusk 

Crosswind Continuous Knots 

Rain Categorical No rain 

Rain 

                                                 
5 Visibility was transformed from a continuous variable to a categorical one to meet the logit linearity 
assumption of logistic regression after Box-Tidwell transformation tests were carried out to ensure that 
all variables meet this assumption..    
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Electric Storm Categorical No electric storm 

Electric strom 

Temperature Continuous 10°C 

Icing Conditions Categorical No icing conditions 

Icing conditions 

Frozen Precipitation Categorical No frozen precipitation 

Frozen precipitation 

Snow Categorical No snow 

Snow 

Airport Hub Size Categorical FAA hub (Large/Medium/Small) 

FAA non-hub  

Significant Terrain Categorical No significant terrain  

Significant terrain6 

 

Cases with missing data were replaced by their respective series means.   This only 

concerned the parameters of ceiling height (47 accidents), crosswind (14 accidents) 

and temperature (21 accidents).   The most severely affected case was ceiling height 

for take-off overruns, for which 15.4% of accidents had no data and were replaced by 

the series mean. 

 

With the model coefficients, the probability formula for accident occurrence could be 

obtained.    

For each accident model, 

                 

 

where  

 

 

where b0 is the constant and b1 to bn are the corresponding parameter coefficients.    

 

Due to the case-control set-up of the study, the constant (intercept) term b0 of the final 

formula must be adjusted to account for the different sampling fractions between the 

                                                 
6 Defined the same way as in the NOD sampling stratification process 



 17

0010 )/ln(* bttb +=

00
4

0010 864.7)10843.3/1ln()/ln(* bbxbttb +=+=+= −

cases and the controls7.   The following formula was used for this purpose (Hosmer & 

Lemeshow 2000): 

 

 

where b*0 is the original intercept, t1 is the sampling fraction of cases, t0 is the 

sampling fraction of controls and b0 is the adjusted intercept. 

 

t1 is one since all relevant accidents have been sampled.   From the NOD sampling 

exercise, it was calculated that the total number of relevant normal operations from 

2000 to 2005 inclusive is 191,902,290 operations.   That is 44.78 percent of the 

period’s total itinerant operations excluding military operations.   From the TAFs, the 

total number of itinerant operations from 1982 to 2002 inclusive (the accident 

sampling period) excluding military operations was computed to be 1,408,495,828 

movements.   44.78 percent of the latter equates 630,792,133 movements.   Since the 

total sampled normal operation population is 242,420 flights,  

t0 = 242420/630792133 

= 3.843 x 10-4  

 

With t1 and t0, the adjusted intercepts of each of the risk model formula could be 

calculated:   

 

 

 

Table 4 shows the original and adjusted intercepts. 

 

Table 4 Original & adjusted risk model equation intercepts  
Model Original intercept Adjusted intercept 

LDOR -8.431 -16.295 

LDUS -8.911 -16.775 

TOOR -9.281 -17.145 

TOC -9.540 -17.404 

                                                 
7 If left unadjusted, the intercept of the risk model formula would suggest that the sampling fraction of 
cases and controls are identical and so yield unrealistically high accident propabailities given actual 
difference in sampling factions.  
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With the adjusted intercept term, the z for the landing overrun probability formula is: 
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The z for the landing undershoot probability formula is: 
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The z for the take-odd overruns probability formula is: 
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 The z for the crashes after take-off probability formula is: 
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Using the formulae above and the measurement details from Table 3, the accident 

probability of specific flights can be assessed.   For categorical variables, only 

multiply the relevant coefficient by 1 and multiply the irrelevant categories by 0.  

 

It can be seen that the four formulae do not contain identical parameters.   The 

stepwise regression procedure has eliminated parameters that are not significant for 

the particular risk models.   All remaining parameters are significant at the 95 percent 
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confidence interval.  For example, foreign origin/destination only features in the 

formula for landing overruns and take-off overruns.Moreover, their signs are also 

different.   Foreign operation is negative in the landing overrun formulae and positive 

in the take-off overrun one.   This indicates that the factor contributes to accident risk 

for take-off overruns but has the opposite effect on landing overruns.   Indeed, only 

1.0 percent of landing overruns involve a foreign origin or destination whereas 11.5 

percent of take-off overruns do.   For landing undershoots and crashes after take-off, 

the variable was removed by the stepwise regression as a significant variable even 

before the next variable was entered.   This is likely to be related to the strong 

explanatory power of preceding variables (equipment class, type and user class).   The 

great majority of factors, however, bear the same sign for all accident types.      The 

size of the factors’ coefficients also differs between the four formulae.   The 

coefficients for fog, for instance, vary from 1.738 (landing undershoot) to 2.437 

(landing overrun).   This reflects the degree to which the factor increases accident 

risk.    

 

6. Model Goodness-of-Fit 

To assess the models’ goodness-of-fit, the Nagelkerke R2 measures of the respective 

models were calculated and shown in Table 58. 

 

Table 5 Model Nagelkerke R2 
Model Nagelkerke R2 

Landing Overrun 0.269 

Landing Undershoot 0.316 

Take-off Overrun 0.157 

Crash after Take-off 0.227 

 

The model for landing undershoot occurrence is the most potent, explaining twice as 

much data variation than the model for take-off overruns, the worse-performing 

model.   Relatively low R2 values are the norm in logistic regression (Ash & Schwartz 

1999) and they should not be compared with the R2 of linear regressions (Hosmer & 

                                                 
8 Nagelkerke R2 is a pseudo measure of model substantive significance similar to R2 in linear 
regression, varying between zero and one.   Nagelkerke R2 of 0.3 suggests that the model explains 
roughly 30 percent of the variance in the data. 
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Lemeshow 2000).   Figure 2 shows how Nagelkerke R2 increased as variables were 

added to the model.    

   

 

 

 

 

Figure 2 Multivariate model accumulative Nagelkerke R2 
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In order to assess how successful the models are in classifying flights correctly as 

“accident” or “normal” and to find the appropriate cut-off points for the logistic 

regression models, Receiver Operating Characteristics (ROC) Curves were used.   The 

cut-off point is the critical probability above which the model will class an event as an 

accident.   The ROC curve plots all potential cut-off points according to their 

respective True Positive Rates (percentage of accidents correctly classed as accidents) 

and False Positive Rates (percentage of normal flights incorrectly classed as 
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accidents). The best cut-off point would have a optimally high TPR and low FPR.   

Figures 3 to 6 display the four models’ ROC curves.   TPR is labelled Sensitivity and 

FPR 1-Specificity. 

 

 

 

 

Figure 3 Landing overrun model ROC curve   
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The ROC curve graphically presents the trade-off between TPR and FPR for all 

possible cut-off points, the best of which is likely to be the point closest to the top-left 

corner of the graph.   The trade-off between TPR and FPR can be seen in Figure 11.2.   

As the TPR (sensitivity) rises, the FPR (1-specificity) also increases.   The larger the 

area under the curve, the better the model is at identifying accidents from normal 

flights.   Figures 4 to 6 are interpreted in the same way.   It is clear that the landing 

accident models produced better results than the take-off models. 
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Figure 4 Landing undershoot model ROC curve   
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Figure 5 Take-off overrun model ROC curve   
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Figure 6 Crash after take-off model ROC curve   
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The area under the ROC curve is quantified by the c statistic, which measures the 

discriminative power of the accident frequency models.   The statistic varies between 

0.5 (indicating that the model’s predictions are no better than chance) and 1 

(indicating a perfect classification model with 100 percent TPR and 0 percent FPR).       

Table 6 shows the c statistics for the four models.    
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Table 6 Model c statistics 
Model c statistic 

Landing Overrun 0.897 

Landing Undershoot 0.908 

Take-off Overrun 0.858 

Crash after Take-off 0.868 

 

c statistics of over 0.9 suggest excellent classification accuracy and ones above 0.8 are 

considered good (Tape 2007).   Therefore, all models have at least good classification 

accuracy.    As expected, the order of the c statistic findings reflects those of the 

Nagelkerke R2 in Table 2.   The models’ performance seem significantly better when 

measured by c statistics than Nagelkerke R2 because the former is not dependent on 

the frequency of the outcome, whereas R2 is smaller when the outcome is infrequent, 

which is true for accident occurrence (Ash & Schwartz 1999). 

 

Table 7 further compares the TPR and FPR of the four models at selected cut-off 

points.    

 

Table 7 True positive rate & false positive rate comparison 
Model Cut-off point TPR FPR 

Landing Overrun 0.00000052127 0.849 0.221 

Landing Undershoot 0.00000024800 0.844 0.237 

Take-off Overrun 0.00000010955 0.846 0.330 

Crash after Take-off 0.00000009420 0.851 0.290 

 

For the landing overrun model, then, a cut-off point of 0.00000052127 yields 84.9 

percent of accidents being correctly classed as such and 22.1 percent of normal flights 

falsely classified as accidents.   The latter could in fact be interpreted as high risk but 

incident-free operations.   Depending on the objective of the risk assessment exercise, 

a relatively conservative or risk-tolerant cut-off point could be chosen. 

 

7. Comparison with Standard Risk Assessment Models 

Most standard risk assessments for airport safety areas rely on simple crash rates 

according to general groupings of aircraft type when considering accident frequency.    



 26

It is evident from Figure 1 that the final models’ substantive significance as measured 

by Nagelkerke R2 are considerable improvements upon models based only on Block 1 

parameters (aircraft size and type).   The results also compare favourably with 

Kirkland’s landing overrun model based on excess runway distance, which only 

explained 11 percent of risk determinants (Kirkland 2001).    

 

Figure 7 shows the difference in terms of c statistics between standard models and the 

improved ones.   The former are defined as models that only consider aircraft size and 

engine type.   Gains in goodness-of-fit and predictive power were observed for 

models of all accident types. 

 

Figure 7 c statistic comparison 
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Table 8 then contrasts the models’ predictive accuracy by comparing their respective 

false positive rates at cut-off points with similar true positive rates. 
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Table 8 False positive rate comparison 
Model Standard 

Model TPR 

Improved 

Model TPR 

Standard 

Model FPR 

Improved 

Model FPR 

Landing Overrun 0.844 0.849 0.395 0.221 

Landing Undershoot 0.852 0.844 0.299 0.237 

Take-off Overrun 0.846 0.846 0.405 0.330 

Crash after Take-off 0.821 0.851 0.405 0.290 

 

At similar TPRs, the FPR of the improved models are significantly lower than that of 

the standard models for all accident types.   For example, at a true positive rate of 84.6 

percent, the model of take-off overruns using the conventional predictor variables 

incorrectly classed 40.5 percent of normal operations as accidents.   In contrast, the 

equivalent for the model developed in the present study is 33.0 percent.   The models’ 

increased ability in discriminating between safe and accident flights are important 

steps towards better airport risk assessment.   While there is certainly still room for 

improvement, from the various measures, it is nonetheless clear that important gains 

have been made in improving the accident frequency models’ fit and predictive power 

for better airport risk assessment.   The model could additionally be used for other 

related purposes, such as a risk assessment tool for pilots before take-off and landings 

as well as for designing approach procedures adapted to different landing conditions.      

 

8. Conclusion 

Using a single comprehensive database of relevant accidents, multidimensional NOD 

and multivariate modelling, improved accident frequency models were developed, 

addressing many of the fundamental deficiencies of standard airport risk assessment 

methodologies.   The current study has taken an integrated approach in assessing all 

accident types related to airport safety areas and has built a single comprehensive 

accident database accordingly.   A large Normal Operations database was also 

developed such that risk exposure data could be incorporated into the modelling 

exercise to quantify the criticality of risk factors, hence contributing to a more 

sensitive risk assessment technique.   The scope of the accident and Normal 

Operations databases allow an unprecedented number of risk factors to be included in 

the risk models, encompassing aircraft, operational and notably a series of 

meteorological factors.    
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Using multivariate logistic regression, frequency models for the four relevant accident 

types were calibrated.    Where normal operations data was used before (Enders et al. 

1996, Kirkland 2001), it was one-dimensional in nature, which limits modelling 

capability and fails to account for joint influences between variables.   In contrast, the 

multidimensional model developed adjusts for the joint influences between risk 

factors and provides a single risk formula for the combined effects of multiple risk 

factors.   It is able to offer risk estimates for individual flights as well as assess the 

risk profile of an airport with specific traffic and environmental characteristics.   The 

increased modelling capability and flexibility add much value to the models as risk 

assessment tools.    

 

Multivariate modelling using the range of risk factors available improved predictive 

power compared to previous methodologies, including Kirkland et al. (2003), and 

standard methods that only considered aircraft and engine types.   Nagelkerke R2 and 

the c statistic were used to assess the goodness-of-fit and predictive ability of the 

models.   On average, the models developed in this study explained 14 percentage 

points more data variation than conventional models.   Standard techniques that only 

included aircraft and engine type had an average c statistic of 0.81 across the accident 

types, whereas the improved models averaged 0.88.   Improvements in model 

sensitivity and specificity were also observed.   The final part of this two-part paper 

demonstrates the use of the improved models through case studies of two airports. 
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