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Abstract

A novel state-space form for studying transverse vibrations of double-

beam systems, made of two outer elastic beams continuously joined by an

inner viscoelastic layer, is presented and numerically validated. As apposite

to other methods available in the literature, the proposed technique enables

one to considerer i) inhomogeneous systems, ii) any boundary conditions and

iii) rate-dependent constitutive law for the inner layer. The formulation is

developed by means of Galerkin-type approximations for the fields of trans-

verse displacements in the system. Numerical examples demonstrate that

the proposed approach is accurate and versatile, and lends itself to be used

for both frequency- and time-domain analyses.
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1. Introduction

Beams are fundamental components in most of the structural systems

conceived, designed and constructed in civil, mechanical and aerospace en-

gineering. Hence, free and forced vibrations of single Euler–Bernoulli and

Timoshenko beams are covered in hundreds of scientific and technical con-

tributions. On the other hand, relatively few papers have been published on

the dynamics of double-beam systems, made of two parallel slender beams

continuously connected by a Winkler-type viscoelastic layer.

Despite analytical and numerical difficulties arising in the solution of the

coupled partial differential equations governing the motion, this dynamic

system is certainly worth of investigation. As an example, a double-beam

model can be effective in approximating the dynamic behaviour of sandwich

beams, largely used in many engineering situations [1, 2]. Motivated by the

recent development of the nano-opto-mechanical systems (NOMS) [3, 4, 5],

Murmu and Adhikari [6, 7, 8] have considered the dynamics and instability

of nanoscale double-beam systems using scale-dependent non-local theory. A

continuous dynamic vibration absorber (CDVA) is another important case

of double-beam system, where secondary beam and inner layer are designed

in order to mitigate the vibration experienced by the primary beam [9]. The

double-beam model is also able to capture the dynamic response of floating-

slab railway tracks, widely used to control vibration due to underground

trains [10].

Several interesting analytical works have been developed in recent years

which demonstrate an emerging attention to this subject. Vu et al. [11]

formulated a closed-form solution for the vibration of a viscously damped
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double-beam system subjected to harmonic excitations. Two restrictions,

however, limit the practical applicability of this solution: i) outer beams

must be homogenous and identical; ii) boundary conditions on the same side

of the system must be the same. Oniszczuk [12, 13] presented some ana-

lytical expressions for the undamped free and forced vibrations of a simply-

supported double-beam system. In his formulation the outer beams can be

different from each other, but they must be homogeneous and pinned at

the ends; moreover, the damping is totally neglected. Abu-Hilal [14], under

the same assumptions as in Ref. [11], studied the dynamic response of a

double-beam system traversed by a moving force.

Several authors have considered distributed parameter systems with vis-

coelastic damping. In one of the earliest work Banks and Inman [15] have

considered viscoelastically damped beam. They have taken four different

models of damping: viscous air damping, Kelvin-Voigt damping, time hys-

teresis damping and spatial hysteresis damping, and used a spline inverse

procedure to form a least-square fit to the experimental data. Cortes and

Elejabarrieta [16, 17] considered free and forced vibration analysis of axially

vibrating rod with viscoelastic damping. Chen [18] considered bending vi-

bration of axially loaded Timoshenko beams with locally distributed Kelvin-

Voigt type of damping. Yadav [19] considered the dynamics of a four-layer

beam with alternate elastic layer and viscoelastic layer.

The effects of a viscoelastic inner layer on the dynamics of double-beam

systems have been addressed by Palmeri and Muscolino [20] by using a

component-mode synthesis (CMS) approach, whose practical applicability

is limited by the need to solve a fourth-order differential equation for each
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assumed mode; moreover, the effects of inner transverse vibrations within the

viscoelastic core is neglected. In this paper, aimed at overcoming the severe

limitations highlighted above, a novel Galerkin-type state-space model for

the vibration analysis of double-beam systems is formulated and numerically

validated. Based on a convenient choice of assumed modes for the compo-

nents, the proposed technique allows us to considerer inhomogeneous beams

and any boundary conditions. Furthermore, since in many engineering ap-

plications an elastomeric material is used in the inner layer, the latter is

described through the so-called Standard Linear Solid (SLS) model, which is

one of the simplest rheological models able to represent the rate-dependent

behaviour of viscoelastic solids [21]. The effects of the viscoelastic damp-

ing on the double-beam system is represented by generalizing the concept of

modal relaxation function, recently suggested by Palmeri and his associates

[22, 23].

It is worth noting that, being based on the introduction of a set of ad-

ditional internal variables, the extension of the proposed technique to more

refined rheological models, such as the generalized Maxwell’s model or the

Laguerre polynomial approximation [24], is quite straightforward. It is also

worth mentioning that several works exist in the frequency [25, 26, 27, 28, 29]

and also in the time domain [30, 31, 32, 33] for the generalized Maxwell’s

model in the context of discrete systems, while the proposed approach is

specifically tailored to continuous structures, which have received less atten-

tion in the past [23, 34].
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2. Statement of the problem

2.1. Basic assumptions

(a)

(b)

Figure 1: Double-beam dynamic system (a); Standard Linear Solid (SLS) rheological

model (b)

The dynamic system under investigation is made of two parallel elastic

beams of the same length L, subjected to arbitrary time-dependent transverse

forces and continuously joined by an inner layer of Winkler-type viscoelastic

sprigs (Fig. 1a). Both outer beams are assumed to be slender, and therefore
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the classical Euler–Bernoulli beam theory is adopted in deriving the equations

of motion, i.e. the effects of both rotational inertia and shear strain are

neglected in this study.

In general, the two outer beams have different mechanical properties and

are inhomogeneous: thus, they are fully characterized by modulus of elas-

ticity Er, mass density ρr, cross-sectional area Ar(z) and second moment

Ir(z), where the subscript r = 1, 2 denotes first (top) and second (bottom)

beam, respectively, while the variable z ∈ [0, L] is the abscissa along the

beams. Moreover, the inherent damping of the outer beams is described by

the frequency-independent viscous damping ratios ζr.

The inner layer too is allowed to be inhomogeneous: therefore, it is fully

characterized by mass per unit length, µinn(z), which depends on the spatial

coordinate z only, and complex-valued stiffness per unit length, κinn(ω, z),

which depends also on the vibration frequency ω. In the following, these

functions are conveniently expressed as µinn(z) = m̄inn αM(z) and κinn(ω, z) =

k̄inn(ω)αK(z), respectively, where m̄inn and k̄inn(ω) are the corresponding

reference quantities, e.g. at the position where z = 0 or z = L/2, while

αM(z) and αK(z) are two dimensionless functions of the abscissa z.

2.2. Viscoelastic model of the inner layer

For the sake of simplicity, the dynamic behaviour of the viscoelastic in-

ner layer is described in our formulation by the Standard Linear Solid (SLS)

model (Fig. 1b), which is made of a primary elastic spring (equilibrium mod-

ulus), K0 ≡ k̄inn(0), in parallel with a Maxwell’s element, given by a sec-

ondary elastic spring, K1, in series with a viscous dashpot, C1 = K1 τ1, τ1

being the so-called relaxation time of the viscoelastic material. The reference
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complex-valued stiffness k̄inn(ω), thus, takes the expression:

k̄inn(ω) = K0 +K1
ı τ1 ω

1 + ı τ1 ω
, (1)

where ı =
√
−1 is the imaginary unit. In a mixed time-frequency domain,

the reaction force, F (t), experienced by the SLS model can be related to the

pertinent displacement, δ(t), as:

F (t) = k̄inn(ω) δ(t). (2)

Although not formally rigorous, Eq. (2) has the merit to highlight the de-

pendence on the vibration frequency of the reaction force. As an alternative,

the force-displacement relationship can be rigorously expressed in the time

domain as [21, 24]:

F (t) = φ̄inn(t) ∗ δ̇(t) =
∫ t

−∞
φ̄inn(t− s) δ̇(s) ds, (3)

where the asterisk ∗ stands for the convolution operator, the over-dot means

derivative with respect to time t, so that δ̇(t) is the pertinent velocity, while

φ̄inn(t) is the relaxation function of the SLS model, given by:

φ̄inn(t) = F−1

⟨
1

ı ω
k̄inn(ω)

⟩
=

(
K0 +K1 e

−t/τ1
)
U(t) , (4)

in which F−1 is the inverse Fourier transform operator, while U is the Heav-

iside unit step function continuous from the right, i.e. U(t) = 0 when t < 0,

and U(t) = 1 when t ≥ 0. In Ref. [24] it is demonstrated that the reaction

force F (t) can be also expressed as:

F (t) = K0 δ(t) +K1 λ1(t) , (5)
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where K0 δ(t) is the mere elastic part in the viscoelastic constitutive law,

while K1 λ1(t) is the contribution of the Maxwell’s element, λ1(t) being an

additional internal variable, which in turn measures the elongation of the

spring K1 and is ruled by:

λ̇1(t) = δ̇(t)− λ1(t)

τ1
. (6)

3. Undamped vibrations

Let us considerer initially a double-beam system which does not possess

any damping mechanism, i.e. the limiting situation where both the viscous

damping ratios ζ1 and ζ2 of the outer beams are assumed to be zero and the

viscous coefficient C1 of the inner viscoelastic layer goes to zero too. It is

worth noting that in this case the core becomes purely elastic, as considered

in Refs. [12, 13]; in contrast with these studies, however, in our formulation

the outer beams can be inhomogeneous and with any boundary conditions.

3.1. Assumed modes

For the rth beam, individually considered, a convenient array of shape

functions (or assumed modes) can be defined by taking the first n buckling

modes of the homogenized beam, ϕr(z) = {ϕr,1(z) · · · ϕr,n(z)}T, the super-

scripted symbol T denoting the transpose operator. These shape functions,

thus, are solution of the classical eigenproblem:

ϕ′′′′
r,j(z) + α2

r,j ϕ
′′
r,j(z) = 0 , (7)

where the prime denotes derivative with respect to the spatial coordinate z,

while {ϕr,j(z), αr,j} is the jth pair of eigenfunction and eigenvalue for the
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Table 1: Assumed modes for the outer beams (see e.g. Ref. [35])

Boundary Eigenfunctions Eigenvalue

conditions ϕr,j(z) equation

P–P sin(αr,j z) αr,j =
j π
L

C–F 1− cos(αr,j z) αr,j =
(2j−1)π

2L

C-P cos(αr,j z)− sin(αr,j z)

αr,j L
+ z−L

L
tan(αr,j L) = αr,j L

C–C cos(αr,j z)− 1 αr,j =
2j π
L

rth beam. The non-trivial solutions satisfying Eq. (7) are offered in Tab. 1

for different boundary conditions of the rth beam at z = 0 and z = L, e.g.

Pinned–Pinned (P–P), Clamped–Free (C–F), Clamped–Pinned (C–P) and

Clamped–Clamped (C–C).

If the rth beam is kinematically unstable when considered individually

(i.e. when the restraining due to the other beam is neglected), e.g. if the

boundary conditions for the rth beam are Pinned–Free (P–F) or Free–Free

(F–F), the shape functions ϕr,j(z) assumed in our study are those of the P–P

beam, complemented by one (P–F) or two (F–F) rigid-body functions, as

shown in Tab. 2.

Once the arrays ϕr(z) are defined for top (r = 1) and bottom (r = 2)

beams, the time-varying field vr(z, t) of transverse displacements in the rth

outer beam can be expressed as:

vr(z, t) = ϕ
T
r (z) · qr(t) =

n∑
j=1

ϕr,j(z) qr,j(t) , (8)

in which the dot · denotes matrix product, while the n-dimensional array
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Table 2: Additional rigid-body modes for kinematically unstable beams

Boundary Further

conditions assumed modes

P–F ϕi,n(z) = z/L

F–F ϕi,n−1(z) = 1 ; ϕi,n(z) = (2z − L)/L

qr(t) = {qr,1(t) · · · qr,n(t)}T collects the Lagrangian coordinates associated

with the assumed modes for the rth beam.

Analogously, the time-varying field of transverse displacements at the

intermediate position of the inner layer can be represented as:

v3(z, t) = ϕ
T
3 (z) · q3(t) =

n∑
j=1

ϕ3,j(z) q3,j(t) , (9)

in which the n-dimensional array ϕ3(z) collects the assumed modes for F-

F boundary conditions, while q3(t) is the associated array of Lagrangian

coordinates. This additional field v3(z, t) enables us to take into account

the transverse vibrations of the inner layer, whose mass can be conveniently

lumped at top (r = 1), bottom (r = 2) and central (r = 3) positions of the

core (see Fig. 1a). The representation of transverse displacements within the

inner layer can be further improved by discretising the core with more internal

points and introducing more internal fields v4(z, t), v5(z, t), · · · (this could be

useful, for instance, to study the propagation of elastic waves orthogonally

to the axes of the outer beams). This refinement is outside of the scope

of present investigations. It is worth noting that, as an alternative [20],

inner displacements’ field can be expressed as v3(z, t) =
1
2
[v1(z, t) + v2(z, t)],
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which reduces the computational order (i.e. the size of the matrices M

and K introduced below becomes smaller), but does not provide accurate

information about the high-frequency dynamics of the inner layer.

According to Eqs. (8) and (9), which fully define the approximate kine-

matics of the double-beam system under analysis, total kinetic energy, T (t),

and total potential energy, V (t), can be now evaluated as the sum of three

terms:

T (t) = T1(t) + T2(t) + T3(t) ; (10a)

V (t) = V1(t) + V2(t) + V3(t) . (10b)

For the outer beams (r = 1, 2), the expressions of kinetic energy and

potential energy are given by:

Tr(t) =
1

2

∫ L

0

µr(z) [v̇r(z, t)]
2 dz ; (11a)

Vr(t) =
1

2
Er

∫ L

0

Ir(z) [vr
′′(z, t)]

2
dz , (11b)

while the contributions of the inner layer take the form:

T3(t) =
1

4
m̄inn

∫ L

0

αM(z) [v̇3(z, t)]
2 dz ; (12a)

V3(t) = K0

∫ L

0

αK(z)
{
[v1(z, t)− v3(z, t)]

2

+ [v2(z, t)− v3(z, t)]
2} dz . (12b)

In the expressions above, µr(z) = ρr Ar(z) +
1
4
µinn(z), with r = 1, 2, is the

mass per unit length associated with the rth outer beam, which includes the

pertinent contribution of the inner layer, i.e. 1/4 of the intermediate mass,

11



while the residual mass not attached to the outer beams, µ3(z) =
1
2
µinn(z),

is assumed to be lumped at halfway position of the inner layer.

Substituting Eqs. (8) and (9) into Eqs. (11) to (12) leads to the follow-

ing expressions of kinetic energy and potential energy for the outer Euler–

Bernoulli beams (r = 1, 2):

Tr(t) =
1

2

n∑
j=1

n∑
k=1

M
(r,r)
j,k q̇r,j(t) q̇r,k(t) ; (13a)

Vr(t) =
1

2

n∑
j=1

n∑
k=1

K
(r,r)
j,k qr,j(t) qr,k(t) , (13b)

and for the inner Winkler-type layer (r = 3):

T3(t) =
1

2

n∑
j=1

n∑
k=1

M
(3,3)
j,k q̇3,j(t) q̇3,k(t) ; (14a)

V3(t) =
1

2

n∑
j=1

n∑
k=1

[
K

(3,3)
j,k q3,j(t) q3,k(t)

+ ∆K
(1,1)
j,k q1,j(t) q1,k(t) + ∆K

(2,2)
j,k q2,j(t) q2,k(t)

+ K
(1,3)
j,k q1,j(t) q3,k(t) +K

(2,3)
j,k q2,j(t) q3,k(t)

]
(14b)

Coefficients M
(r,r)
j,k , K

(r,s)
j,k and ∆K

(r,r)
j,k in Eqs. (13) and (14) are mass and

stiffness coefficients coupling the jth assumed mode of the rth subsystem

with the kth assumed mode of rth (M and ∆K) or sth (K) subsystem. The

expressions of these coefficients are provided in Appendix A. It is worth

emphasising here that the only coupling between the three subsystems (outer

beams and inner layer) is due to the stiffness coefficients K
(1,3)
j,k and K

(2,3)
j,k ,

appearing in the right-hand side of Eq. (14b).
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The generalised force Qr,j(t) associated with the Lagrangian coordinate

qr,j(t) can be obtained by projecting the external dynamic loads fr(z, t),

acting on the rth layer, onto the jth assumed mode for such subsystem:

Qr,j(t) =

∫ L

0

fr(z, t)
∂

∂qr,j(t)
vr(z, t) dz

=

∫ L

0

fr(z, t)ϕr,j(z) dz . (15)

Analogously to the array of Lagrangian coordinates qr(t) for the rth sub-

system, the new n-dimensional forcing array Qr(t) = {Qr,1(t) · · · Qr,n(t)}T

can be introduced.

3.2. Lagrangian equations of motion

Once all the sources of kinetic and potential energies are expressed as

functions of generalized displacements and velocities (Eqs. (13) and (14)),

and once the generalized forces are defined (Eq. (15)), the Lagrange’s equa-

tions ruling the undamped vibrations of the coupled dynamic system can be

formally written as (for r = 1, 2, 3 and j = 1, · · · , n):
d

dt

[
∂

∂q̇r,j(t)
L(t)

]
− ∂

∂qr,j(t)
L(t) = Qr,j(t) , (16)

where L(t) = T (t)−V (t) is the so-called Lagrangian function of the system,

T (t) and V (t) being those of Eqs. (10).

After some algebra, Eqs. (16) can be reduced to the more compact matrix

form:

M · ü(t) +K · u(t) = F(t) , (17)

where the arrays u(t) and F(t), of size 3n, collects Lagrangian coordinates

and generalised forces for the three subsystems, respectively:

u(t) =
{
qT
1 (t) qT

2 (t) qT
3 (t)

}T

; (18a)
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F(t) =
{
QT

1 (t) QT
2 (t) QT

3 (t)
}T

, (18b)

whileM andK are the generalized mass and stiffness matrices, of dimensions

3n× 3n:

M =

M(1,1) ◦ ◦
◦ M(2,2) ◦
◦ ◦ M(3,3)

 ; (19a)

K =

K(1,1) +∆K(1,1) ◦ K(1,3)

◦ K(2,2) +∆K(2,2) K(2,3)[
K(1,3)

]T [
K(2,3)

]T
K(3,3)

 , (19b)

in which the symbol ◦ stands for a zero block in the mass and stiffness

assemblies. It is worth emphasising here that matrix assembly procedures

are not required in this case, as the mass and stiffness coefficients can be

directly allocated.

Since M and K constitute a pair of real-valued symmetric matrices, they

can be simultaneously diagonalised through the classical eigenproblem:

ω̃2
j M · x̃j = K · x̃j ; x̃T

j ·M · x̃k = δj,k , (20)

where δj,k is the Kronecker’s delta symbol, so that δj,k = 1 when j = k and

δi,k = 0 when j ̸= k, and where ω̃j is the approximate jth natural circular

frequency of the undamped double-beam system, while the corresponding

approximate modal shape is given by the three-dimensional vector:

ṽj(z) =
{

ṽ1,j(z) ṽ2,j(z) ṽ3,j(z)
}T

= Γ(z) · x̃j , (21)

Γ(z) being the 3× (3n) transformation matrix so defined:

Γ(z) =

ϕ
T
1 (z) ◦ ◦
◦ ϕT

2 (z) ◦
◦ ◦ ϕT

3 (z)

 . (22)
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Eqs. (17) can be therefore reduced to the following modal form:

θ̈(t) +Ω2 · θ(t) = XT · F(t) , (23)

where θ(t) = {θ1(t) · · · θm(t)}T is the array listing the first m modal co-

ordinates of the double-beam system under investigation, with m ≤ 3n,

Ω = diag {ω̃1, · · · , ω̃m} is the associated m × m diagonal spectral matrix,

while X =
[
x̃1 · · · x̃m

]
, is the n ×m corresponding modal matrix, whose

jth column is the jth eigenvector x̃j satisfying Eqs. (20).

4. Damped vibrations

With the aim of including energy dissipation into the equations of mo-

tions, let us generalize Eq. (17) in a convenient mixed time-frequency domain,

where pure viscous damping in the outer beams and rate-dependent part of

the viscoelastic constitutive law of the inner layer can be easily introduced:

M · ü(t) +C · u̇(t) +
[
K+

(
k̄inn(ω)−K0

)
Linn

]
· u(t) = F(t) , (24)

where C is the viscous damping matrix associated with energy dissipation in

the outer beams, while Linn is the influence matrix of the inner layer, given

by:

Linn =
1

K0

 ∆K(1,1) ◦ K(1,3)

◦ ∆K(2,2) K(2,3)[
K(1,3)

]T [
K(2,3)

]T
K(3,3)

 . (25)

For the viscous damping matrix C, the following expression is suggested:

C =

C(1,1) ◦ ◦
◦ C(2,2) ◦
◦ ◦ ◦

 , (26)
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where the n× n block C(r,r) is the viscous damping matrix of the rth beam

individually considered (r = 1, 2). If the Rayleigh’s model is adopted [36, 37],

these blocks can be computed as:

C(r,r) = 2 ζr
[
aMM(r,r) + aK K(r,r)

]
, (27)

in which the coefficients aM and aK are given by:

aM =
Ω1 Ω2

Ω1 + Ω2

; aK =
1

Ω1 + Ω2

, (28)

where the non-zero values of the circular frequencies Ω1 and Ω2 have to be

properly selected. For instance, Ω1 can be taken as the fundamental circular

frequency of the double-beam system, i.e. Ω1 = ω̃1, while Ω2 > Ω1 can be set

among the higher circular frequencies which provide a significant contribution

to the dynamic response, e.g. Ω2 = ω̃m.

By using the same modal transformation of variables as in the previous

subsection, u(t) = X · θ(t), Eq. (23) reduces to:

θ̈(t) +Ξ · θ̇(t) +Ω2 · θ(t) +Binn ·
{(

k̄inn(ω)−K0

)
θ(t)

}
= XT · F(t) , (29)

once the m×m modal matrices of viscous damping, Ξ = XT ·Cinn ·X, and

rigidity influence of the inner layer on the modal subspace,Binn = XT · Linn ·X,

have been introduced.

When compared to the modal equations of motion of the undamped sys-

tem (Eq. (23)), the most striking difference in Eq. (29) is the presence of the

mixed time-frequency term Binn ·
{(

k̄inn(ω)−K0

)
θ(t)

}
which is related to

the rate-dependent part of the reaction forces experienced by the viscoelas-

tic inner layer. Looking now at Eqs. (2) to (5), the mixed time-frequency
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product into curly brackets turns out to be equivalent to:(
k̄inn(ω)−K0

)
θ(t) = (φ̄inn(t)−K0) ∗ θ(t) = K1 λ1(t) (30)

where λ1(t) = {λ1,1(t) · · ·λ1,m(t)}T is the array of additional time-varying in-

ternal variables, each one associated with a modal coordinate. Furthermore,

according to Eq. (6), the time evolution of this new array λ1(t) is ruled by:

λ̇1(t) = θ̇(t)−
1

τ1
λ1(t) , (31)

in which τ1 is still the relaxation time of the Maxwell’s element used in

modelling the viscoelastic inner layer.

Finally, Eqs. (29), (30) and (31) can be arranged in a more effective

state-space form:

ẏ(t) = D · y(t) +G · F(t) , (32)

where y(t) =
{
θ(t)T θ̇(t)T λ1(y)

T

}T

, is the enlarged state array, while

dynamic matrix D and load influence matrix G are so defined:

D =

Om×m Im Om×m

−Ω2 −Ξ −K1Binn

Om×m Im − 1
τ1
Im

 ; G =

Om×m

XT

Om×m

 (33)

in which Is is the identity matrix of size s and Or×s stands for a zero matrix

with r rows and s columns.

From a mathematical point of view, Eq. (32) constitutes a set of inhomo-

geneous linear differential equations with constant coefficients, whose solution

can be sought with any standard technique. This mathematical form, very

convenient from a computational point of view, is possible in our formulation

because the viscoelastic properties of the inner layer are factored into a fre-

quency factor, k̄inn(ω), and a coordinate factor αK(z). Interestingly, Eqs. (29)
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and (31) are coupled just by the modal matrices Ξ and Binn. When these

matrices are diagonal, or when their out-of-diagonal terms are negligible, the

dynamic system becomes classically damped, in the sense that the modes of

vibration are decoupled. Moreover, as pointed out in previous works dealing

with tall buildings [22] and railway tracks [23], modal stiffness and damping

in this case are characterized by modal relaxation functions, which can be

easily defined starting from the knowledge of the relaxation function of the

viscoelastic components.

5. Numerical applications

5.1. Modal shapes and modal frequencies

For the purposes of numerical validation, the proposed procedure is ini-

tially applied to evaluate natural frequencies and modal shapes of three un-

damped double-beam systems, with different mechanical parameters and all

having ζ1 = ζ2 = 0 and K1 = 0.

In a first stage, the variant V1 considered by Oniszczuk in Ref. [12] is

studied. In this example, both outer beams are homogeneous and simply

supported at their ends. The length is L = 10 m, the core is assumed

to be massless, i.e. µinn(z) = 0, while the mechanical parameters of the

top beam are: ρ1 = 2, 000 kg/m3, E1 = 10 GPa, A1(z) = 500 cm2 and

I1(z) = 40, 000 cm4. Mass per unit length and flexural stiffness of the bottom

beam are µ2(z) = µ1(z)/2 = 50 kg/m and κ2(z) = κ1(z)/2 = 2, 000 kN/m2,

respectively: i.e. the bottom beam is lighter and more flexible. The stiffness

of the elastic inner layer is K0 = 200 kN/m2.

Fig. 2 shows the first six modal shapes (m = 6) ṽj(z), given by Eq. (21),
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Figure 2: First six modal shapes and natural circular frequencies evaluated for variant V1

of the double-beam system considered in Ref. [12]

along with the corresponding natural circular frequencies ω̃j. These results

are obtained with six assumed modes for each layer (n = 6). It is worth noting

that the natural circular frequencies so computed are in perfect agreement

with the exact values reported in Ref. [12], as in this example the sinusoidal

assumed modes the three layers match perfectly with the exact modes of

vibration of the combined system. Furthermore, as analytically predicted

therein, first, second and fifth modal shapes are characterised by synchronous

vibrations of the outer beams, so that the inner layer is not deformed: as a

consequence, ω̃1, ω̃2 and ω̃5 do not depend on the stiffness K0.

In a second stage, variant V2 of double-beam systems reported in Ref.

[12] is considered. In this case, the top beam is the same as in variant

V1 previously examined, while the bottom beam has same mass per unit

length, µ2(z) = µ1(z) = 100 kg/m and double the flexural rigidity of the top
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Figure 3: First six modal shapes and natural circular frequencies evaluated for variant V2

of the double-beam system considered in Ref. [12]

beam, κ2(z) = 2κ1(z) = 8, 000 kN/m2. The stiffness of the inner layer is

K0 = 400 kN/m2.

Fig. 3 shows the first six modal shapes and the associated natural circular

frequencies (m = 6), as evaluated by using six assumed modes for each layer

(n = 6). Also in this case the results of the proposed approach are in good

agreement with the closed-form expressions provided in Ref. [12]. Interest-

ingly, the inner layer is transversally deformed in all the modal shapes of

this variant, and therefore all the natural frequencies depend on the stiffness

K0. It is worth mentioning that very similar results have been presented in

the Ref. [20] for the same variants V1 and V2, in which however a more

complicated and time-consuming procedure was adopted.

In a third stage, aimed at showing the capacity of the proposed approach

to deal with double-nanobeam systems (e.g. Refs. [7, 6]), the in-phase
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Figure 4: First in-phase (a) and out-of-phase (b) modal shapes and natural circular fre-

quencies evaluated for the double-nanobeam system considered in Ref. [7]

and out-of-phase modal shapes and natural frequencies of a coupled pair

of carbon nanotubes have been computed. The mechanical properties of

outer nanobeams and inner elastic medium are: L = 20 nm, ρ1 = ρ2 =

2, 300 kg/m2, E1 = E2 = 971 GPa, A1(z) = A2(z) = π R2, I1(z) = I2(z) =

π
4
R4, R = 0.34nm being the radius of the nanotubes, and K0 = 10E1I1/L

4.

Fig. 4 reports the modal properties for the first two modes of vibration

(m = 2) as obtained with n = 4 assumed mode for each layer. The same re-

sults can be recovered as a particular case by neglecting the non-local effects

in the formulation proposed in Ref. [7].

5.2. Forced vibrations

Following the modal analyses reported in the previous subsection, validat-

ing the proposed approach against results already available in the literature

for undamped double-beam systems and homogeneous distributions of mass
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Figure 5: Elastic finite-element model built with SAP2000 [38]

and stiffness, our numerical applications proceed with forced vibration analy-

ses of double-beam systems with both viscous (outer layers) and viscoelastic

(inner layer) damping and inhomogeneous inertia and rigidity.

The mechanical parameters of the objective double-beam system are as

follows: length L = 10 m; Young’s modulus Er = 10 GPa, mass density

ρr = 2, 000 kg/m3 and viscous damping ratio ζr = 0.05 for both outer beams

(r = 1, 2); mass per unit length m̄inn = 12 kg/m, Winkler-type equilibrium

modulus K0 = 30 kN/m2, and Maxwell’s parameters K1 = 5K0 and τ1 =

0.2 s for the inner layer (see Fig. 1a). The boundary conditions are Clamped–

Free for the top beam and Free–Clamped for the bottom beam.

Stepped geometries are assumed for the three layers, all experiencing a

sudden variation of mass and stiffness at midpspan position (z = L/2), while

taking constant values in each half of the structure. Fig. 5 shows the finite-

element model of the objective double-beam system built in SAP2000 [38]

with 48 Euler–Bernoulli beam elements (outer beams), 50 uniaxial bar ele-

ments (inner layer), 150 nodes and 296 degrees of freedom. This model is used

herein to validate the modal properties delivered by the proposed Galerkin-
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type discretisation of the equations of motion in presence of inhomogeneous

distributions of mass and stiffness.

Mathematical expressions of cross-sectional area and second moment of

outer beams are:

A1(z) = Aref [1− 0.5U(z − L/2)] ; (34a)

I1(z) = Iref [1− 0.5U(z − L/2)] ; (34b)

A2(z) = Aref [1 + U(z − L/2)] ; (34c)

I2(z) = Iref [1 + U(z − L/2)] , (34d)

Aref = 600 cm2 and Iref = 5, 000 cm4 being the reference values at the

left-hand end of outer beams (z = 0), while U is the Heaviside’s unit step

function, defined in sub-section 2.1. The dimensionless influence functions

for the inner layer are stepped as well:

αM(z) = αK(z) = 1− 0.5U(z − L/2). (35)

Fig. 6 displays the first nine pairs of modal shapes and undamped natural

circular frequencies (m = 9) of the objective double-beam system, as evalu-

ated with the proposed approach by considering nine assumed modes for each

layer (n = 9). Interestingly, in the first six modes (top two rows in Fig. 6) the

deformed shape of the inner layer (dashed line) always passes through nodal

points where those of the outer beams cross each other, and therefore in this

case outer beams’ deflections are sufficient to represent core’s deformations

(e.g., as in the procedure proposed in Ref. [20]). The deformed shapes of the

inner layer become more complicated in higher modes of vibration (bottom

row in Fig. 6), as they do not always pass through the nodal points (see
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Figure 6: First nine modal shapes and undamped natural circular frequencies of the

double-beam system considered in sub-section 5.2
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Figure 7: Convergence study for the first four natural circular frequencies

right-hand side of 7th and 8th mode) and may have larger amplitude (see

9th mode).

Fig. 7 compares the convergence rate for proposed Galerkin-type approach

(denoted with circles) and standard finite element method (FEM, denoted

with crosses). It appears that both techniques converge to the same values of

undamped natural circular frequencies for the first four modes of vibration,

although the proposed approach is faster: that is, when 10 degrees of free-

dom (i.e. 5 translations and 5 rotations) are considered per each layer, the

inaccuracy of the FEM modelling can be as large as 12% for the first mode

and 9% for the third mode; on the contrary, the inaccuracy of the proposed

Galerkin-type modelling with just 8 assumed modes per layer does not ex-

ceed 0.1% for all the four modes, which makes this approach preferable from

a computational point of view.
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Aimed at studying the forced vibration of the objective double-beam

system, a uniform dynamic load is considered to be applied on the right-

hand side of the top beam, while bottom beam and inner layer are not forced.

Accordingly, the array of generalised forces (see Eq. (18b)) can be expressed

as:

F(t) = F̄w(t); (36)

where w(t) is the time-varying scalar force per unit lenght, while F̄ is the

(3n)× 1 spatial influence array, given by:

F̄ =


∫ L

L/2
ϕ1(z) dz

On×1

On×1

 (37)

In a first stage, a frequency-domain approach is pursued. To do this,

Fourier’s transform of both sides of Eq. (32) are taken:

F ⟨y(t)⟩ = H(ω) · F ⟨F(t)⟩ , (38)

where H(ω) is the (3m)× (3n) complex-valued matrix collecting the FRFs

(frequency response functions) of the state variables listed in the three n-

dimensional arrays θ(t), θ̇(t) and λ1(t), which in turn is so defined:

H(ω) = [ı ωI3m −D]−1 ·G. (39)

Recalling now Eqs. (8), (9) and (22), the FRFs of transverse displacements

at a given abscissa z = z̄ for the selected load pattern can be expressed as:

F

⟨
v1(z̄, t)

v2(z̄, t)

v3(z̄, t)


⟩

=


Z̄1(ω)

Z̄2(ω)

Z̄3(ω)

 F ⟨w(t)⟩ =

Γ(z̄) ·H(ω) · F̄F ⟨w(t)⟩ . (40)
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Figure 8: Modulus (a) and phase (b) of the complex-valued frequency response functions

of transverse displacements at z = L/6
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Absolute value |Z̄r(ω)| (in dB) and phase ∠Z̄r(ω) (in rad) are plotted in

Fig. 8 for the three layers of the double-beam system under investigation at

the abscissa z̄ = L/6. It can be observed that in the low-frequency range

(ω < 40 rad/s), the absolute value for the inner layer (dashed line) always

falls between those of the outer beams (circles and crosses), therefore core’s

deformation is only dictated by outer beams’ deflections. This well-ordered

behaviour vanishes in the high-frequency range (ω > 50 rad/s), where the

absolute value for the inner layer shows a much more complicated pattern.

The regular nature of vibrations at low frequencies is confirmed by the phase

plots for the three layers (Fig. 8(b)), which are very close each other for

ω < 40 rad/s, and separate for ω > 50 rad/s.

It is also worth noting than the absolute values of the three FRFs |Z̄r(ω)|

in Fig. 8(a) show a relative minimum in the interval [0, ω̃1], corresponding

to the quasi-static frequency range. This is due to the relaxation processes

within the viscoelastic core, which cannot be represented with a simpler

viscous damping model, therefore confirming the need of a more accurate

modelling for composite double-beam systems with viscoelastic core.

In a second stage, the dynamic response is sought in the time domain.

The excitation is chosen as superposition of low-frequency sine and high-

frequency sweep functions:

w(t) = 1 kN/m×
[
sin

(
2π t

Tf

)
+ sin

(
Ωf t

3
+

2Ωf t
2

3Tf

)]
, (41)

in which Tf = 12 s and Ωf = 15π rad/s.

The following unconditionally-stable single-step numerical scheme of so-
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Figure 9: Time histories of transverse displacements experienced by different layers at

z = L/6
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lution is adopted to solve Eq. (32):

y(t+∆t) = Θ(∆t) · y(t) +ψ0(∆t)w(t) +ψ1(∆t)w(t+∆t), (42)

where the transition matrix is given by:

Θ(∆t) = exp [D∆t] , (43)

in which the dynamic matrix D is defined by the first of Eqs. (33) and

∆t = 0.004013 s is the selected time step, while the loading vectors take the

expressions:

ψ0(∆t) =

[
Θ(∆t)− 1

∆t
Λ(∆t)

]
·D−1 ·G · F̄; (44a)

ψ1(∆t) =

[
1

∆t
Λ(∆t)− I3m

]
·D−1 ·G · F̄, (44b)

where Λ(∆t) = [Θ(∆t)− I3m] ·D−1.

Previous investigations [20, 39] have demonstrated stability and accuracy

of the proposed scheme of numerical integration for viscoelastically damped

structures. This technique is used herein to evaluate the time histories of

transverse deflections experienced by outer beams and inner layer at the same

location (z̄ = L/6) in the time interval [0, Tf]. Comparisons reported in Fig. 9

reveal the quite complicated dynamics of the objective double-beam system,

with a strong frequency-dependent behaviour. For instance, the top beam

(solid black line) oscillates less than bottom beam (dashed line, Fig. 9(a)) and

inner layer (gray line, Fig. 9(b)) when the frequency of vibration is relatively

low (first half of time histories); the opposite happens when the frequency of

vibration increases and the amplitude of the motion reduces drastically for

bottom beam and inner layer (second half of time histories).
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6. Conclusions

A general method has been presented for studying transverse vibrations

of a double-beam system, made of two parallel Euler–Bernoulli elastic beams

continuously connected by a Winkler-type viscoelastic layer. As opposite

to other techniques available in the literature (e.g. Refs. [12, 13, 14]), the

proposed method can be used also in the general case of inhomogeneous

systems and different boundary conditions; furthermore, the constitutive law

adopted for the inner layer incorporates a Maxwell’s element, able to describe

the rate-dependent behaviour of many viscoelastic materials.

In a first stage, the kinematics of the structure has been represented

through a Galerkin-type approach, requiring three sets of assumed modes

for top beam, bottom beam and inner layer. These assumed modes have

been conveniently selected as the first n buckling modes of each layer with

homogenised mechanical properties and its own boundary conditions, which

in general vary from layer to layer. As such, layers’ assumed modes are known

in closed form and involve simple harmonic functions (and possibly constant

and linear functions if the individual layer is not kinematically stable by

itself).

In a second stage, the Lagrange’s equations of motion have been de-

rived for undamped double-beam systems, and then arranged in a compact

state-space form, in which mass and stiffness matrices can be easily obtained

through simple numerical integrations. It has been also shown that the pro-

posed Galerkin-type approach converges faster that a classical finite-element

modelling.

In a third stage, working in a reduced modal space (of dimensionsm ≤ 3n),
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two different sources of damping have been embedded in the proposed mod-

elling, namely a Rayleigh-type viscous damping for the outer beams and a

Maxwell-type viscoelastic constitutive law for the core, therefore addressing

the very general case of non-viscous non-proportional damping. To do so, a

set of additional internal variables has been appended to the classical state

variables (i.e. Lagrangian displacements and velocities), which take into ac-

count the rate-dependent rheology of the inner layer.

The numerical applications herein included demonstrate that the pro-

posed method is accurate and versatile, being effective in both frequency-

and time-domain analyses.

Appendix A. Mass and stiffness coefficients

Aim of this appendix is to provide the analytical expressions to evaluate

mass and stiffness coefficients, which are introduced in Eqs. (11) and (12)

and are collected in the n × n block matrices M(r,r), K(r,s) and ∆K(r,r) in

Eqs. (19) and (25).

The generic mass coefficient M
(r,r)
j,k for the rth subsystem is given by:

M
(r,r)
j,k =

∫ L

0

µr(z)ϕr,j(z)ϕr,k(z) dz , (A.1)

where the mass per unit length µr(z) takes different expressions for outer

beams (r = 1, 2) and inner layer (r = 3), as shown in Section 3.1.

The stiffness coefficients associated with the flexural rigidity of the outer

beams (r = 1, 2) are given by:

K
(r,r)
i,k = Er

∫ L

0

Ir(z)ϕ
′′
r,j(z)ϕ

′′
r,k(z) dz , (A.2)
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in which the second derivative of the generic assumed mode, ϕ′′
r,j(z), is always

known in closed form, being either a simple trigonometric function of the

abscissa z or even zero for the rigid-body modes of kinematically unstable

layers.

The generic coefficient ∆K
(r,r)
j,k , which take into account the additional

stiffness coupling jth and kth assumed modes of the rth outer beam due to

the inner layer, can be evaluated as:

∆K
(r,r)
j,k = 2K0

∫ L

0

αK(z)ϕr,j(z)ϕr,k(z) dz . (A.3)

The direct stiffness coefficients K
(3,3)
j,k for the inner layer are given by:

K
(3,3)
j,k = 4K0

∫ L

0

αK(z)ϕ3,j(z)ϕ3,k(z) dz . (A.4)

Finally, the stiffness coefficient K
(r,3)
j,k , coupling the jth assumed mode of

the rth outer beam (r = 1, 2) and the kth assumed mode of the inner layer,

takes the expression:

K
(r,3)
j,k = −2K0

∫ L

0

αK(z)ϕr,j(z)ϕ3,k(z) dz . (A.5)

It is worth noting that for homogeneous double-beam systems, i.e. when

inertia and rigidity of the components do not vary with the abscissa z, all

the above coefficients can be evaluated in closed form, without any numerical

integration.
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