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Superlight small bipolarons in the presence of strong Coulomb repulsion
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We study a lattice bipolaron on a staggered triangular ladder and triangular and hexagonal lat-
tices with both long-range electron-phonon interaction and strong Coulomb repulsion using a novel
continuous-time quantum Monte-Carlo (CTQMC) algorithm extended to the Coulomb-Fröhlich
model with two particles. The algorithm is preceded by an exact integration over phonon degrees
of freedom, and as such is extremely efficient. The bipolaron effective mass and bipolaron radius
are computed. Lattice bipolarons on such lattices have a novel crablike motion, and are small but
very light in a wide range of parameters, which leads to a high Bose-Einstein condensation tempera-
ture. We discuss the relevance of our results with current experiments on cuprate high-temperature
superconductors and propose a route to room temperature superconductivity.

PACS numbers: 71.38.-k

As recognized by Landau, Pekar and Fröhlich, an elec-
tron may drag a lattice distortion as it moves through an
ionic material, leading to a new particle - the polaron,
which has quite different properties to the original elec-
tron (for reviews see, for example, Refs. [1, 2]). At weak
coupling, two polarons can be bound into a large bipo-
laron via exchange forces, without assuming anything
more complicated than the Fröhlich electron-phonon in-
teraction [3]. On increasing density large bipolarons over-
lap, giving rise to either a conventional (BCS) supercon-
ductor or a normal metal. Electron-phonon interactions
may overcome the Coulomb repulsion between electrons,
so the resulting interaction becomes attractive at a dis-
tance of the order of the lattice constant [4]. Then two
small polarons form tightly bound pairs, i.e. small bipo-
larons, in the strong electron-phonon coupling limit. Ear-
lier studies [5] considered small bipolarons as entirely lo-
calized objects. However, a perturbation expansion with
respect to the hopping integral has proved they are itin-
erant quasiparticles existing in Bloch states for any finite
coupling with phonons and forming a Bose-Einstein con-
densate (BEC) of charge 2e bosons at sufficiently low
temperatures [6].

For very strong electron-phonon coupling, polarons be-
come self-trapped on a single lattice site. The energy of
the resulting small polaron is given as Ep = −λzt, where
λ is the electron-phonon coupling constant, t is the hop-
ping parameter and z is the coordination number. Ex-
panding about the atomic limit in small t (which is small
compared to Ep in the small polaron regime, λ > 1) the
polaron mass is computed as m∗ = m0 exp(γzλ/h̄ω) ,
where ω is the frequency of Einstein phonons, m0 is the
rigid lattice band mass, and γ is a numerical constant.
For the Holstein model [7], which is purely site local,
γ = 1. Bipolarons are on-site singlets in the Holstein
model and their mass m∗∗

H appears only in the second or-
der of t [6] scaling as m∗∗

H ∝ (m∗)2 in the limit h̄ω ≫ ∆
, and as m∗∗

H ∝ (m∗)4 in a more realistic regime h̄ω ≪ ∆

[4]. Here ∆ = 2Ep − U is the bipolaron binding energy,
and U is the on-site (Hubbard) repulsion. Since the Hub-
bard U is about 1 eV or larger in strongly correlated
materials, the electron-phonon coupling must be large to
stabilize on-site bipolarons and the Holstein bipolaron
mass appears very large, m∗∗

H /m0 > 1000, for realistic
values of phonon frequency.

This estimate led some authors to the conclusion that
the formation of itinerant small polarons and bipolarons
in real materials is unlikely [8], and high-temperature
bipolaronic superconductivity is impossible [9]. However,
one should note that the Holstein model is an extreme
polaron model, and typically yields the highest possible
value of the (bi)polaron mass in the strong coupling limit.
Many advanced materials with low density of free car-
riers and poor mobility (at least in one direction) are
characterized by poor screening of high-frequency opti-
cal phonons and are more appropriately described by a
long-range Fröhlich electron-phonon interaction [4]. For
a long-range Fröhlich interaction the parameter γ is less
than 1 (γ ≈ 0.3 on the square lattice and γ ≈ 0.2 on
the triangular lattice [10, 11]), reflecting the fact that in
a hopping event the lattice deformation is partially pre-
existent. Hence the unscreened Fröhlich electron-phonon
interaction provides relatively light small polarons, which
are several orders of magnitude lighter than small Hol-
stein polarons. This has been confirmed by numerical
Monte-Carlo simulations [11, 12], Lanczos diagonaliza-
tion [13] and variational calculations [14].

This unscreened Fröhlich interaction combined with
on-site repulsive correlations can also bind holes into in-
tersite mobile bipolarons [10, 15]. Using an advanced
variational method Bonča and Trugman [14] studied the
chain model of Ref. [12] with two electrons for nearest-
neighbor e-ph interaction and a Hubbard U . Intersite
bipolarons of Ref. [14] propagate along the chain with
a mass which is still of the second order in the polaron
mass as in the Holstein model.
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Here we study a bipolaron on a staggered triangu-
lar ladder (1D), triangular (2D) and strongly anisotropic
hexagonal (3D) lattices using a continuous-time quantum
Monte-Carlo technique. On such lattices, bipolarons are
found to move with a crab like motion (Fig. 1(b)), which
is distinct from the crawler motion (Fig. 1(c)) found on
cubic lattices [6, 14]. Such bipolarons are small but very
light for a wide range of electron-phonon couplings and
phonon frequencies.

We use a generic Coulomb-Fröhlich model of electron-
phonon interactions which has the following Hamiltonian,

H = −t
∑

〈nn
′〉σ

c†
n

′σcnσ +
∑

nn
′σ

V (n,n′)c†
nσcnσc†

n
′σ̄cn′σ̄

+
∑

m

P̂ 2
m

2M
+

∑

m

ξ2
m

Mω2

2
−

∑

nmσ

fm(n)c†
nσcnσξm .

Each vibrating ion has one phonon degree of freedom
ξm associated with a single atom. The sites are num-
bered by the indices n or m for electrons and ions re-
spectively. Operators c annihilate electrons. The phonon
subsystem is a set of independent oscillators with fre-
quency ω and mass M . Here 〈nn

′〉 denote pairs of near-
est neighbors, and P̂m = −ih̄∂/∂ξm is the ion momen-
tum operator. Coulomb repulsion V (n − n

′) is screened
up to the first nearest neighbors, with on site repul-
sion U and nearest-neighbor repulsion VC . In contrast,
the Fröhlich interaction is assumed to be long-range,
due to unscreened interaction with c-axis high-frequency
phonons [4]. The form of the interaction with c-axis po-
larized phonons is specified via the force function[12],

fm(n) = κ
[

(m − n)2 + 1
]−3/2

, where κ is a constant.

The dimensionless electron-phonon coupling constant λ
is defined as λ =

∑

m
f2
m

(0)/2Mω2zt which is the ratio
of the polaron energy at t = 0 to the kinetic energy of
the free electron zt.

In the limit of high phonon frequency h̄ω ≫ t and large
on-site Coulomb repulsion, the model is reduced to an ex-
tended Hubbard model with intersite attraction and sup-
pressed double-occupancy [15]. Then the Hamiltonian
can be projected onto the subspace of nearest neighbor
intersite crab bipolarons. In contrast with the crawler
bipolaron, the crab bipolaron’s mass scales linearly with
the polaron mass (m∗∗ = 4m∗ on the staggered chain and
m∗∗ = 6m∗ on the triangular lattice). Here we formulate
the following question: Can such a bipolaron exist for
more realistic intermediate values of the electron-phonon
coupling and phonon frequency?

To answer this question, we have extended the
CTQMC algorithm [11, 12, 16, 17] to systems of two
particles with strong electron-phonon interactions. We
have solved the bipolaron problem on a staggered lad-
der (Fig.1), triangular and anisotropic hexagonal lattices
from weak to strong coupling in a realistic parameter
range where usual limiting approximations fail.

The CTQMC method employed here has been de-
scribed in detail with regard to the single polaron prob-
lem in Refs. [11, 16, 17]. Here we give a quick overview
of the extended algorithm. The initial step is to deter-
mine the effective bipolaron action that results when the
phonon degrees of freedom have been integrated out ana-
lytically. The action is a functional of two polaron paths
in imaginary time which form the bipolaron and is given
by the following double integral,

A[r(τ)] =
zλω̄

2Φ0(0, 0)

∫ β̄

0

∫ β̄

0

dτdτ ′e−ω̄β̄/2
(

eω̄(β̄/2−|τ−τ ′|) + e−ω̄(β̄/2−|τ−τ ′|)
)

∑

ij

Φ0[ri(τ), rj(τ
′)] (1)

+
zλω̄

Φ0(0, 0)

∫ β̄

0

∫ β̄

0

dτdτ ′e−ω̄τe−ω̄(β̄−τ ′)
∑

ij

(Φ∆r[ri(τ), rj(τ
′)] − Φ0[ri(τ), rj(τ

′)]) −
∫ β

0

V (r1(τ), r2(τ)) dτ .

The full interaction between the particles is
Φ∆r[r(τ), r(τ ′)] =

∑

m
fm[r(τ)]fm+∆r[r(τ

′)] where
the vector ∆r = r(β) − r(0) is the difference between
the end points of one of the paths in the non-exchanged
configuration (here ω̄ = h̄ω/t and β̄ = t/kBT ). The
indices i = 1, 2 and j = 1, 2 represent the fermion
paths. V (r1, r2) is an instantaneous Coulomb repulsion.
From this starting point, the bipolaron is simulated
using the Metropolis Monte-Carlo (MC) method. The
electron paths are continuous in time with hopping
events (or kinks) introduced or removed from the path

with each MC step. Analytic integration is performed
over sections of parallel paths. The ends of the two
paths at τ = 0 and τ = β are related by an arbitrary
translation, ∆r. In contrast to the one-particle case,
the fixing of the end configurations limits the update
procedure to inserting and removing pairs of kinks and
antikinks in the following ways: (a) addition/removal of
two kinks to/from different paths, (b) addition/removal
of a kink-antikink pair to/from one path, (c) addition
and removal of a kink to/from a single path (kink shift),
(d) kink addition to one path and antikink removal from
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FIG. 1: (a) Schematic of the ladder model. Electrons sit
on opposite sides (legs) of a staggered ladder with intersite
distance a, with ions vibrating across the ladder on an iden-
tical system sitting a height a above the electron legs. (b)
Schematic motion of the crab bipolaron - the two states are
degenerate. (c) Schematic of the crawler motion.

the other path. On kink insertion/removal, either the
top or bottom of the path is shifted, which allows the
interparticle distance to change. Another significant
difference to the one-particle problem is that the paths
can now be exchanged. There are two ways to carry
out the exchanges: (1) Inserting/removing multiple
kinks/antikinks, or (2) If there is a common segment,
one may break the paths at that segment, and splice the
bottom half of path 1 to the top half of path 2 and vice-
versa. In the exchanged state, updates (a) to (d) with
idential shifts for both single updates are combined with
(e) Addition of kink and antikink on different paths (f)
Kink addition to 1 path and kink removal from the other
(g) Addition of kink and removal of antikink on same
path (h) Addition/removal of kink pair to one path. The
shift types are opposed for these binary update parts,
and allow for a change in the interparticle distance in
the exchanged configuration, and as such are essential to
sample the full configuration space. From the ensemble
the ground state bipolaron energy and effective mass
are computed as in Ref. [16]. Also, the bipolaron radius

is computed as Rbp =

〈

√

1
β

∫ β

0 (r1(τ) − r2(τ))2dτ

〉

,

where β ≫ (h̄ω)−1.

Figure 2 shows the ratio of the polaron to bipolaron
masses on the staggered ladder as a function of effective
coupling and phonon frequency for VC = 0. The bipo-
laron to polaron mass ratio is about 2 in the weak cou-
pling regime (λ ≪ 1) as it should be for a large bipolaron
[3]. In the strong-coupling, large phonon frequency limit
the mass ratio approaches 4, in agreement with strong-
coupling arguments given above. In a wide region of pa-
rameter space, we find a bipolaron/polaron mass ratio of
between 2 and 4 and a bipolaron radius similar to the
lattice spacing, see Figs. 3 and 4. Thus the bipolaron is
small and light at the same time. Taking into account ad-
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FIG. 2: (color online) Polaron to bipolaron mass ratio for
a range of ω̄ and λ on the staggered ladder. Mobile small
bipolarons are seen even in the adiabatic regime ω̄ = 0.5 for
couplings λ up to 2.5.
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FIG. 3: (color online) Bipolaron radius (in units of a) for a
range of ω̄ and λ on the staggered ladder.

ditional intersite Coulomb repulsion VC does not change
this conclusion. The bipolaron is stable for VC < 4t , see
Fig. 4 (inset). As VC increases the bipolaron mass de-
creases but the radius remains small, at about 2 lattice
spacings. Importantly, the absolute value of the small
bipolaron mass is only about 4 times of the bare electron
mass m0, for λ = h̄ω/t = 1 (see Fig. 4).

The toy problem on the triangular ladder contains
the essential physics of the crab bipolaron. We demon-
strate this by simulating the bipolaron on an infinite
triangular lattice including exchanges and large on-site
Hubbard repulsion U = 20t. A moderate coupling
λ = 0.5 and a large phonon frequency ω = 2t lead
to m∗∗

xy = (3.77 ± 0.04)m0xy and a small bipolaron ra-
dius of (2.056 ± 0.004)a. For the triangular lattice,
m0xy = h̄2/3a2t. Finally, we have simulated the bipo-
laron in a hexagonal lattice, with out-of-plane hopping
t′ = 0.3t. We have calculated values of the bipolaron
mass and radius for experimentally achievable values of
the phonon frequency ω = t = 200meV and electron-
phonon coupling λ = 0.3. We have found a light in-plane
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FIG. 4: Variation of bipolaron energy, mass and radius (in
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λ and ω̄ = 1 on the staggered ladder.

mass, m∗∗
xy = (4.49 ± 0.04)m0xy. Out-of-plane m∗∗

z =

(68.4±1)m0z is Holstein like, where m0z = h̄2/2d2t′. The
bipolaron radius is Rbp = (2.60 ± 0.03)a, sitting mainly
in the xy plane.

When bipolarons are small and pairs do not over-
lap, the pairs can form a BEC at kBTBEC =

3.31h̄2(2nB/a2
√

3d)2/3/(m
∗∗2/3
xy m

∗∗1/3
z ). If we choose re-

alistic values for the lattice constants of 0.4 nm in the
plane and 0.8 nm out of the plane, and allow the density
of bosons to be nB=0.12 per lattice site, which easily
avoids overlap of pairs, then TBEC = 323K. The long-
range Fröhlich interaction combined with Coulomb re-
pulsion might cause clustering of polarons into finite-size
quasi-metallic mesoscopic textures. However analytical
[15] and QMC [18] studies of mesoscopic textures with
lattice deformations and Coulomb repulsion show that
pairs (i.e. bipolarons) dominate over phase separation
since they effectively repel each other [1].

Recently, there has been a large revival in quantitative
studies of polarons owing to evidence for polaronic effects
in high-temperature superconductors [19, 20]. There
are strong arguments in favor of 3D bipolaronic BEC
in cuprates [4] drawn using parameter-free fitting of ex-
perimental Tc with BEC Tc [21], unusual upper critical
fields and the specific heat [22], and more recently the
normal state diamagnetism [23]. Here we have presented
the numerically exact bipolaron mass and size, which put
these arguments (which require very light bipolarons in
the intermediate coupling, moderate phonon-frequency
regime) on a solid microscopic ground.

In summary, the CTQMC algorithm to simulate bipo-
larons in the Coulomb-Fröhlich model has been extended,
leading to an unusual bipolaron configuration that is
small and superlight. Such a particle has been found
in a wide parameter range using CTQMC in triangular
lattices with achievable phonon frequencies and couplings
in the presence of strong Coulomb repulsion. Such bipo-
larons could easily have a superconducting transition in

excess of room temperature. We believe that the fol-
lowing recipe is worth investigating to look for room-
temperature superconductivity: (a) The parent com-
pound should be an ionic insulator with light ions to
form high-frequency optical phonons, (b) The structure
should be quasi two-dimensional to ensure poor screening
of high-frequency c-axis polarized phonons, (c) A trian-
gular lattice is required in combination with strong, on-
site Coulomb repulsion to form the small superlight Crab
bipolaron (d) Moderate carrier densities are required to
keep the system of small bipolarons close to the dilute
regime.
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useful discussions with J. Devreese, P. Edwards, V. Ka-
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