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ABSTRACT

It is now well over a century since Lord Rayleigh puldished his
model for western-style bells. He used a hyperbdoid of
revolution dus a flat circular plate for the aown. By limiting
himself to inextensional modes of a very restricted type, and
exploiting the hyperbold's parametric form, he produwced an
equation whose roots give the locaions of nodal circles.
Remarkably this equation invaves neither the wall thicknessnor
physicd properties of the bell material and this approach
remains the only available analyticd way of making such
predictions. Although le gave aleguate acourts of the
derivation and method d solution d his equation, Rayleigh dd
not present much in the way of comparison d its predictions
with experiment. Rather he focussed on wsing it to explain the
faa that the Hum note never has any nod circles. In the present
paper we mnsider how well profil es of some modern church and
handbell s can be fitted by hyperboae We cmpare the model’s
predictions for these bell s with data for a range of inextensional
modes and report a new, surprisingly acarate, approximate
analyticd solution o Rayleigh's equation.

1. INTRODUCTION

Dueto its axial symmetry, it is convenient to discussabell using
cylindricd pdar co-ordinates with z-axis defined by the ais of
symmetry. Thus a typicd point (r, #, z) on the bell undergoes
displacements (u, v, w) in radial, transverse and axial diredions.
Rayleigh [1] pointed ou that norma modes of bells canna have
any nodss in the sense of their being pants of zero motion.
However, if one wnsiders nodes in the more limited sense of
being padnts of zero amplitude in any ore glindricd poar
diredion, e.g. radial, then nodil patterns do arise nsisting d m
equally spacal “diameters’ and ncircles paralel to therim. This
isbecaise aial symmetry requires the normal modes to accur in
degenerate pairs, for non-zero m, whose modal functions, in any
one g/lindricd pdar diredion, vary like sin(m#) and cos(mh)
[2].

Rayleigh's professonal interest in church bells ssams to have
gore bad to experiments he conducted onthe spedmensin his
locd church tower in 1879 His subsequent applicaion o his

general theory for thin curved plates and shells to the strictly
inextensional modes of concave bellsis well known [1]. There
exists only ore of these modes for eat value on m. This
application is very unwual in that, being based puely on
geometry and threeinextensibility condtions, it does not predict
frequencies but only the locaions of noddl circles. Rayleigh's
use of thisto explain the fad that the Hum (m=2) never has any
noda circles whil e the Tierce (m=3) may, or may na, do so is
very convincing and remains the best available due to what is
redly happening with these modes. However he never explored
his model’s predictions for higher m modes and so was not
drawn to consider whether they could have more than ore nodal
circle. The predictions for these higher modes are interesting bu
prove to be & odds with bah experimental and finite-element
studies of bath church bells and handbells.

2.RAYLEIGH'SMODEL

Rayleigh assumed that the profile of a (thin) bell, as £enin any
plane cntaining the symmetry axis, could be gproximated by
part of a hyperbola with its pole & the bell’s douder. For
convenience we shall use the upper half of the right hand kranch
of the hyperbda and regard the bell as being stood onits crown,
as swown in Figure 1. The omplete bell wall is thus the upper
half of the hyperboloid of revolution produced by rotating the
hyperbda @ou the zaxis. The aown Rayleigh considered to be
aflat rigid circular plate caising the pole of the hyperbolato be
rigidly fixed. Surprisingly no boundry condtions need to be
impaosed onthe rim of the bell in order to solve the eguations.
Indeed the rim’s location is only required at all when ore wants
to compare the predictions of the model with experiment.

3. THEHYPERBOLA
Choaosing a plane mntaining the symmetry axis (i.e. fixed h),
and retaining cylindrical polar variables, the hyperbola’s
equation is
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where a and b have their usual geometrical meanings and are
related to the eccentricity ¢ by e2=1+ (b/a)2 so that e > I.

In his model Rayleigh chose to work with the parametric form
for the hyperbola:

z=btany , r=asecy 2)

Geometricd interpretations of a, b and y are shown in Figure 1.
Note the role of the paint (b, 0) in defining the angle x. Thisis
not usualy discussd in texts on conic geometry. Since the
solutions of Rayleigh's model come out in terms of 7y it is
important to ndeitsinterpretationandrangeof 0 <y <7 /2.

Figure 1: Meaning of the parametric angle
4. SUMM ARY OF RAYLEIGH'STHEORY

By considering the dhange in length of an arbitrary element
traced onthe surface ad imposing axia symmetry, Rayleigh
derives three ondtions for inextensibility of the dement. These
are:

ov drou_, e
0z dz 0z

&+u=0 (3b)
00
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To achieve strict inextensibility al three of these mndtions
must be satisfied. However, if the dement seleded lies in the
plane of fixed z, then orly the second condtion applies. This
equation is well known and is metimes regarded as “the”
inextensibility condtion [3]. This is because, if one mnsiders
the bell’s crosssedion in a plane of fixed z, then this is the
condtion a neutral circle, whaose total length remains unchanged
throughou the oycle, must satisfy. It requires that if u = A(2)
sin(m# ) then mv = A(z) cos(m#) so the radial and transverse
comporents are locked together. It iswell established that all the
aousticdly important bell modes obey this condtion to a good
degreeof approximation.
Starting from equations (1) and (3), using the known anguar
form for v(z,i), conwverting to parametric forms of the -

ordinates and imposing the boundry condtion at the pole,
Rayleigh shows that to get zero motion namal to the bell’s
surfacerequires

sin(2y)+2m tzm(m)()(e2 —cos? ;() =0 “

Note that the root y = 0 is built into this equation for all values
of m due to the boundary condition at the crown. To locate the
nodal circles for the one strictly inextensional mode for each
value of m requires a solution of the equation for that m value. It
is easy to see that no further solutions occur for m = 0 or 1,
simply by remembering that 0 <y < 7t / 2. In that range sin (2y)
> 0 so equation 4 can only have solutions if tan (my) < 0 ,
which can never be the case form =0 or 1.

5. ASYMPTOTIC SOLUTION

As the eccatricity of the hyperboa increases © the model bell
approades a right circular cylinder. As e —» o andor m —» o
the only possbility of solutions of equation 4isfor

tan(my) > 0 %)

The limit needs to be from the negative side because sin(2X) > 0
and (e2 —cos2x ) > 0. Thus

y~0,2 " ()

so, depending on m, there could be any number of nodal circles
up to a maximum of m/2 because y < m/ 2. If this asymptotic
solution is a reasonably accurate approximation to the exact one,
which we show to be the case in the next section, then a nodal

circle for m=2 would be ruled out because its location at X < T/
2 puts it at the far end of an infinitely long bell, see Table 1.

Maximum possible m values
number of nodal circles
0 0,1,2
1 3,4
2 5,6
3 7,8

Table 1. Possible m values

6. EXACT SOLUTIONS

It has already been pdnted ou that X = 0 is always a solution of
equation 4 and that no other exists form =0 or 1. For m = 2 the
equation can be rewritten as

. 4 2 2 _
s1n(2;(){1 + m (e —Cos 1)} =0 )
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Thus either sin(27)=0 (8)

or 4e* —1-2cos? y =0 ©)

The latter condtion can never be satisfied becaise e>1 so the
only solutionsare x = 0, as expeded, and ¥, = /2 which isof no
pradicd significance

Putting m = 3 into equation 4 expanding the multiple angle
terms, cancdling siny, throughou, rewriting the remaining terms
in pawers of cosy and colleding them up yields a quadratic

equationin cos?y, :

8cos? y—12¢% cos? y+3e* =0 (10)

whaose roats can be written

2 35 2 (11)
cos =—e" |1t |[1-—
x 4 3e?

where the upper roat is unphysicd, leadingto cos2y > lase >
1. The values of ¥ for the lower roct as e varies are given in
Table 2 from which it will be seen that it approaches the
asymptotic value of 60° very rapidly as eincreases. When e =2,
a typicd vaue for church and hendbells, the exad vaue is
arealy lessthan 1° away. The reason for thisis easier to seeif
one uses the Binomial theorem to expand the sgquare roct in
equation 1landthen colledstermsto gve

! + L + O[L) (12

1
2
cos” y=—+
4 24¢*  72¢° el
where the leading term is just the asymptotic value.
If one proceasin asimilar fashionfor m=4 ore obtainsa

different quadratic in cos?; whose roots are given by
2 1( » 1 [ 2
cos 126(46 +1)i5 64e™ —64e” +10 (13)

Again the upper roat is unphysicd and values of y for the lower
roct are listed in Table 2. As expeded the asymptotic value is
reated even more quickly and the e =2 value is now to within
half a degreeof it.

Because the exad roats of equation 4are expeded to get ever
closer to the asymptotic values as m increases, and it is already
so goodfor m = 4 there may be littl e point in bahering with it.
However we dedded to chedk this for the next two values of m
becaise they are expeded to gve two physicd roats. Procealing
as before one now obtains cubic equations in coszx which can
be solved exadly using Cardin’s formula. In ead case the three
roats were dl red but only two were physicd. Their algebraic

forms not being very enlightening we limit ourselves to
including their valuesin Table 2.

m— 3 4 5 6
el

11 | 5683 | 4235 | 3399 | 7138 | 2849 | 59.26

15 | 5857 | 4397 | 3532 | 7168 | 2954 | 59.65

20 | 5925 | 4449 | 3568 | 7183 | 29.79 | 59.82

50 | 5989 | 4493 | 3596 | 7197 | 2997 | 5997

limit | 60.00 | 4500 | 3600 | 7200 | 30.00 | 60.00

Table 2. Exact solutions in degrees to Rayleigh's equation for a
range of values of mand d eccantricity.

7.HYPERBOLIC FITSTO BELL PROFILES

It is well known that both inner and ouer profiles of most
modern bell s are based on either ellipticd arcs, circular arcs, or
bath [3]. Since such curves can never be fitted by a single
hyperbda it is tempting to dsmiss Rayleigh's model on that
basis [4]. However it is not these profiles which are important
here but rather that of the neutral bell, which is better
approximated by their average. We have therefore tried fitting
hyperbolaeto the average profiles of two very different modern
bells whose details we had previousy measured with some
acarragy [5,6]. These were aMamark Cg handbell and a Taylor
D5 church bell. The parameters to be fitted were the usual

hyperbola parameters a and b pus the origin of co-ordinates for
the hyperbda & ®e from the m-ordinate system for the
empiricd measurements. The latter were expeded to be small
and it proved pcssble to set the x co-ordinate of the origin to
zero. Thefitting routine required us to inpu analytica forms for
bath the fitting curve and its partia derivatives with resped to
the parameters. The results are shown in Figures 2 and 3 from
which it can be seen that, in the cae of the handbell , the fit is
quite good apart from the region close to the rim. The optimum
fit eccentricity was 2.33. When the two padnts closest to the rim
were excluded from the fit this increased to 250. In the case of
the church bell the fit was worse and hed an eccentricity of 1.96.
When the three points neaest to the rim were removed the fit
improved markedly and the eccetricity went upto 219.

8. CIRCLE LOCATIONS

8.1 The handbell

In Figure 2 we show the hyperbola of best fit to the handbell
with lines of fixed y drawn correspondng to asymptotic
solutions of Rayleigh’s model for various values of m. From the
points where these ait the zaxis one can see by inspedion
where noddl circles are predicted. Sincethe 60 degreeline aits
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the ais beyondthe bell’s rim there shoud be no nodl circle for
m = 3. There shoud however be one for m = 4 abou a quarter of
the way upthe bell. Thisisin goodagreanent with experiment.
However, while Rayleigh’'s model predicts that this circle shoud
get ever closer to the aown as m increases, experiment shows
that it reades alimiting pant abou half way up[5, 6]. When m
= 8 is reated Rayleigh is predicting two nodl circles at ¥ =
22.59 and 459 degrees. There is no evidence for a second circle
arising in practice.
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©60
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000 Bell profile data
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—— m=3, chi 60 degrees
669 m =4, chi45 degrees

Figure 2: Best fit and theory predictions for a handbell

8.2 The church bell

In Figure 3 we show the crrespondng dagram for the church
bell. Again nocircles are predicted for m =2 or 3 but one is for
higher m values until a secndcircleis also predicted at m = 8.
Thisis in contrast to experiment where one finds that m = 2 is
the only mode with nocircles. Thereisadwaysa drclefor m=3
and for higher m values. Aswith the handbell, experiment shows
that the one drcle moves to a limiting pcsition rea the waist of
the bell asm increases. It never approaches the shouder.

40 50
50

i
OQO  church bell profile data
— best fit hyperbola

m= 3, chi 60 degrees
©0© m= 4, chi 45 degrees

Figure 3: Best fit and theory predictions for a church bell.

9. DISCUSSION

Handbells are cetainly thin axisymmetric shells and they do nat
deviate badly from a hyperbdlic shape. The mrred prediction o
zero or one drcle for m values up to 7 is impressve but the
failure to predict the rred locaion d this circle, as m
increases, is a problem as is the prediction o extra drcles at
higher m values.. It appeas this must be due to the incorrea
treament of the aown. Bells moda functions do nd just
disappea at the shouder but fall to zero at the center of the
crown in evanescent fashion [5,7]. An incorred boundry
condtion thus sams likely to be to bame but there is no
obvious way of correding it. Exadly the same is true of the
church bell but there the situation is worse becaise the
hyperbdlic fit isworse and the thicknessof the wall varies much
more. The failure to predict a drcle for the caeof m=3isa
red problem.

10. CONCLUSIONS

Rayleigh’'s model fails when ore looks at its predictionsin detail
but it remains of value for two main reasons. Firstly it does give
a qualitative explanation d why al concave bells have (2,0)
modes and why, as m becomes larger, a point is readied where
the otherwise expeded (m,0) mode is replacal by a second
(m,1). Seondy the faa that it predicts only one mode for eat
m emphasises the point that the first mode for eat m is drictly
inextensional and so dffers in a basic way from al the other
“inextensional” modes. In addition to this the model remains a
remarkable example of Rayleigh's sea inventive genius. After
more than a century a better analyticd approach to the bell has
yet to be produced.
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