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Abstract.

Recent angle-resolved photoemission spectroscopy (ARPES) has identified that a

finite-range Fröhlich electron-phonon interaction (EPI) with c-axis polarized optical

phonons is important in cuprate superconductors, in agreement with an earlier proposal

by Alexandrov and Kornilovitch. The estimated unscreened EPI is so strong that

it could easily transform doped holes into mobile lattice bipolarons in narrow-band

Mott insulators such as cuprates. Applying a continuous-time quantum Monte-Carlo

algorithm (CTQMC) we compute the total energy, effective mass, pair radius, number

of phonons and isotope exponent of lattice bipolarons in the region of parameters

where any approximation might fail taking into account the Coulomb repulsion and

the finite-range EPI. The effects of modifying the interaction range and different lattice

geometries are discussed with regards to analytical strong-coupling/non-adiabatic

results. We demonstrate that bipolarons can be simultaneously small and light,

provided suitable conditions on the electron-phonon and electron-electron interaction

are satisfied. Such light small bipolarons are a necessary precursor to high-temperature

Bose-Einstein condensation in solids. The light bipolaron mass is shown to be universal

in systems made of triangular plaquettes, due to a novel crab-like motion. Another

surprising result is that the triplet-singlet exchange energy is of the first order in

the hopping integral and triplet bipolarons are heavier than singlets in certain lattice

structures at variance with intuitive expectations. Finally, we identify a range of

lattices where superlight small bipolarons may be formed, and give estimates for their

masses in the anti-adiabatic approximation.

PACS numbers: 71.38.-k
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1. Introduction

A growing number of observations point to the possibility that high-Tc cuprate super-

conductors may not be conventional Bardeen-Cooper-Schrieffer (BCS) superconductors

[1], but rather derive from the Bose-Einstein condensation (BEC) of real-space pairs, as

proposed by Mott and others [2, 3, 4, 5]. A possible fundamental origin of such strong

departure of the cuprates from conventional BCS behaviour is the unscreened (Fröhlich)

EPI with a polaron shift, Ep of the order of 1 eV (La2CuO4, Ep ≈ 0.65eV) [6], routinely

neglected in the Hubbard U and t − J models [7]. This interaction with c−axis polar-

ized optical phonons is virtually unscreened because the upper limit for the out-of-plane

plasmon frequency (. 200 cm−1 [8]) is well below the characteristic frequency of opti-

cal phonons, ω ≈ 400 - 1000 cm −1. Since screening is poor, the magnetic interaction

remains small compared with the Fröhlich EPI at any doping of cuprates. In order to

generate a convincing theory of high-temperature superconductivity, one must treat the

Coulomb repulsion and unscreened EPI on an equal footing. When both interactions are

strong compared with the kinetic energy of carriers, the so-called “Coulomb-Fröhlich”

model (CFM) predicts a ground state in the form of mobile, preformed, inter-site pairs

dressed by lattice deformations (i.e intersite bipolarons) [6, 9, 4].

The most compelling evidence for (bi)polaronic carriers in novel superconductors

is the discovery of a substantial isotope effect on the carrier mass [10] predicted by the

bipolaron theory [11]. Recent high resolution ARPES [12, 13] provides another piece

of evidence for a strong EPI in cuprates between electrons and c-axis-polarised optical

phonons [13]. These, as well as recent tunnelling [14], earlier optical [15] and neutron

scattering [16] experiments unambiguously show that lattice vibrations play a significant

though unconventional role in high temperature superconductors.

Remarkably, earlier path-integral studies of large bipolarons in the continuous

limit [17]) led to a double surprise: (a) The large bipolaron is only stable in a very

limited sector of the parameter space (Coulomb repulsion versus the Fröhlich coupling

constant) (b) Most traditional “Fröhlich polaron” materials (alkali halides and the like)

lie completely outside (and “far” from) this bipolaron stability sector, but several high-

Tc superconductors lie very close and even inside this rather restricted area of stability

in the parameter space.

When the strong Fröhlich EPI operates together with a shorter range deformation

potential and molecular-type (e.g. Jahn-Teller) EPIs, it readily overcomes the Coulomb

repulsion at short distances of about the lattice constant, so that large (continuous)

bipolarons become local (lattice) bipolarons in narrow bands [4]. Even at significant

doping local pairs are not overlapped, so that a high critical temperature for Bose-

Einstein condensation (BEC) could be achieved, if they are sufficiently mobile. Analysis

of the site-local Holstein-Hubbard model has indicated that in order for the Coulomb

repulsion (Hubbard U) to be overcome by the induced attractive force between electrons,

EPI must be so large that the polaron (and bipolaron) masses must be huge, rendering

the transition temperature minuscule [18]. All is not lost, however, since the Holstein
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interaction is the extreme short-range limit of a finite range EPI. Using the finite-range

EPI it is possible for electrons to pair between sites [6, 9] without requiring the electron-

phonon induced attraction to be larger than the Hubbard U . Moreover, the individual

polarons are significantly lighter, so the mass of the pair has potential to be orders of

magnitude smaller than in the Holstein case.

To put these arguments on a solid microscopic ground we simulate the CFM

Hamiltonian on a lattice using an advanced QMC technique for bipolarons and compare

with analytic results in the strong coupling and anti-adiabatic limits. First, we introduce

the model.

2. Coulomb-Fröhlich model

The Hamiltonian for the CFM is written as

H = − t
∑

〈nn′〉σ

c†n′σcnσ +
1

2

∑

nn′σσ′

V (n,n′)c†nσcnσc
†
n′σ′cn′σ′

+
∑

m

P̂ 2
m

2M
+
∑

m

ξ2
mMω2

2
−
∑

nmσ

fm(n)c†nσcnσξm . (1)

Each ion has a displacement ξm. Sites labels are n and m for electrons and ions

respectively. c annihilate electrons. The phonons are Einstein oscillators with frequency

ω and mass M . 〈nn′〉 denote pairs of nearest neighbours, and P̂m = −i~∂/∂ξm ion

momentum operators. The instantaneous interaction V (n,n′) has on-site repulsion U

and nearest neighbour interaction V (if the electron-phonon coupling term is set to zero,

one obtains the simple UV model). The force function is of the screened Fröhlich type,

fm(n) =
κ

[(m − n)2 + 1]3/2
exp

(

−|m− n|
Rsc

)

(2)

(κ is a constant) [20]. We will also use a slightly different notation for the electron-

phonon interaction term here, Hel−ph = −ω
∑

ijσ gijc
†
iσciσ(d†

j + dj) where gij is a

dimensionless interaction proportional to the force, and d†
j create phonons at site j.

We set ~ = 1.

Such a model has a remarkable property. Unlike the site local Holstein model,

there is attraction (and potentially pairing) even in the presence of very strong on-

site Coulomb repulsion. The model is justified in the presence of alternating planes of

itinerant electrons and ions, where there is strong screening along the c-axis.

There have been a number of studies discussing the masses of polarons and

bipolarons with long range interaction [19, 21, 22]. The polaron formed from the

long-range Fröhlich interaction proposed in [6] has been simulated in reference [9],

demonstrating that the polaron mass may be significantly lighter than its Holstein

counterpart. This is due to the nature of polarons in the Holstein case, which

may be demonstrated nicely by examining the Lang-Firsov transformation. In that
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Figure 1. (a) Staggered vs (b) rectangular ladders. Ions are placed one lattice spacing

above a ladder of electrons, with one ion per site. The ions are permitted to vibrate

in the z-direction only. Electrons inhabit one leg each, with no hopping between

the legs. In the strong coupling limit, there are significant geometrical differences.

On the staggered ladder, two degenerate near neighbour pairs (A and A′) can form,

which allows the polaron to scuttle in a crab-like manner with mass proportional

to the polaron hopping. Alternatively, on the rectangular ladder there is one near-

neighbour state, and in order to move, the pair must break to state A in order to change

configuration from state B to B′. Such a state propagates by waddling awkwardly, and

has mass proportional to polaron hopping squared.

transformation, the operators in the Hamiltonian are replaced in the following way,

d†
j → d̃†

j = d†
j +
∑

i

gijni c†i → c̃†i = c†i exp[
∑

j

gij(d
†
j − dj)] (3)

dj → d̃j = dj +
∑

i

gijni ci → c̃i = ci exp[−
∑

j

gij(d
†
j − dj)] (4)

thus hopping processes in the Holstein polaron (where gij = gδij) take place by a

complete relaxation of the lattice on the initial site, a hop, and then a distortion on

the target site. With a longer range interaction, the lattice is pre-distorted before the

particle moves, leading to a much smoother process with a lower intermediate energy

state. We have recently determined that long-range interactions lead to a reduction

of the importance of geometry on the properties of the bipolaron, especially the mass,

leading to very similar results on triangular and square lattice [21]. We will discuss the

crossover between Fröhlich and Holstein polarons later in this article.

The Lang-Firsov transformation is an exact canonical transformation, and leads

to a transformed Hamiltonian with a new transformed wavefunction |Ψ〉LF = e−S|Ψ〉.
It is most instructive to consider the transformation of the atomic Hamiltonian and

the transformation of the hopping terms separately, since typically the Lang-Firsov

transformation is the starting point for a series of perturbative analyses.
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2.1. Transforming the atomic Hamiltonian

When the hopping term is set to zero, the phonon portion of the CFM is written as

follows:

Hat = −ω
∑

ij

gijni(d
†
j + dj) + ω

∑

j

(

d†
jdj +

1

2

)

(5)

(N.B. The index i is now taken to contain a spin and a site index). Applying the

Lang-Firsov canonical transformation ‡,
H̃at = − ω

∑

ij

gijni(d
†
j + dj + 2

∑

i′

gi′jni′)

+ ω
∑

j

[

(d†
j +
∑

i

gijni)(dj +
∑

i′

gi′jni′) +
1

2

]

(6)

= −
∑

ii′

nini′

∑

j

fijfi′j

2ω2M
+ ω

∑

j

(

d†
jdj +

1

2

)

(7)

where we reordered the summation, and noted that gij = fij/ω
√

2Mω. This shows the

remarkable property of the Lang-Firsov transformation, since the electron and phonon

subsystems in the atomic limit are now completely decoupled.

At this stage, it is convenient to introduce the following function,

Φ∆r[r(τ), r(τ ′)] =
∑

m

fm[r(τ)]fm+∆r[r(τ
′)] (8)

where the reason for adding an additional translation, ∆r, to the phonon sub-system will

become apparent when the action is introduced in the next section. For the following

discussion, ∆r = 0. The Φ function for the ladder systems investigated in this paper

is shown in figure 2, corresponding to a screened Fröhlich interaction with Rsc = 1.

We also define the dimensionless interaction parameter λ = Ep/W where W is the

magnitude of the energy of the tight-binding electron (normally the half band-width

zt). As we can see from equation 7, the energy shift when there is only one particle

(polaron shift for i = i′) is Ep = 1
2Mω2

∑

j f 2
0j = Φ0(0,0)

2Mω2 . Thus λ = Φ0(0,0)
2WMω2 . Substituting

that definition into the atomic Hamiltonian, one obtains:

H̃at = −
∑

ii′

nini′
WλΦ0(i, i

′)

Φ0(0, 0)
+ ω

∑

j

(

d†
jdj +

1

2

)

(9)

The reason for introducting the new functions Φ can immediately be seen, since they

appear in the Hamiltonian as a ratio. Thus, in combination with λ they give a universal

definition of coupling in models with long-range hopping.

‡ Inspection of equations 3 and 4 shows that electron number operators are unchanged on

transformation, so the Coulomb part of the Hamiltonian is also unchanged
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Figure 2. Φ functions for (a) the staggered ladder and (b) the rectangular ladder

(subscripts 1 and 2 correspond to the leg of the chain). Note that since an index is

assigned to each unit cell, there is an offset of 1 index in the interaction funcion between

paths 1 and 2, relative to the interaction function between paths 2 and 1 when the

staggered ladder is simulated.

2.2. Transforming the electron hopping term

Substitution of equations (3-4) transforms the tight binding Hamiltonian in the following

way:

Htb =
∑

ii′

tii′c
†
ici′ → H̃tb =

∑

ii′

tii′ c̃
†
i c̃i′ =

∑

ii′

σii′c
†
ici′ (10)

where

σii′ = tii′ exp

(

∑

j

gij(d
†
j − dj)

)

exp

(

−
∑

j

gi′j(d
†
j − dj)

)

(11)

i.e. we can see that the electron-phonon interaction in the transformed Hamiltonian is

part of the hopping process, and that to some extent, one may regard the operators c̃

as creating polarons (i.e. electrons and a phonon cloud at the same time).

We now apply the following identity,

eAeBe−[A,B]/2 = eA+B (12)

(which is valid if C = [A, B] commutes with both A and B) with e−AeA = 1, which

is always valid. Therefore, eAeB = eA+Be[A,B]/2. In equation 11 we may choose

A =
∑

j gij(d
†
j − dj) and B = −∑j gi′j(d

†
j − dj). So, A + B =

∑

j(gij − gi′j)(d
†
j − dj)

and [A, B] = 0 Since the commutator is a number, equation 12 may be applied.

The hopping operator becomes:

σii′ = tii′ exp

(

−
∑

j

(gij − gi′j)dj +
∑

j

(gij − gi′j)d
†
j

)

(13)

Now, the identity may be used again, making the grouping, A = −
∑

j(gij − gi′j)dj

and B =
∑

j(gij − gi′j)d
†
j. Thus [A, B] = −∑j(gij − gi′j)(gij − gi′j), and

σii′ = tii′ exp

[

−Wλ

ω

(

1 − Φ0(i, i
′)

Φ0(0, 0)

)]

e
P

j(gij−gi′j)d
†
j e−

P

j(gij−gi′j)dj (14)
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This form is particularly useful, due to the order of the creation and annihilation

operators. Thus, when one carries out the perturbation theory, calculation is reduced

to computing matrix elements of the form, 〈l|(
∑

j(gij −gi′j)d
†
j)

n(
∑

j′(gij′ −gi′j′)dj′)
m|l′〉.

It’s interesting to note that, when computed as an average over the atomic wavefunction,

the hopping integral may be regarded as being modified by the EPI as tii′ →
tii′ exp (−Wλγii′/ω) = t̃ii′, where γii′ = 1 − Φ0(i, i

′)/Φ0(0, 0). Such an approximation

is valid in the anti-adiabatic limit, and will be revisited later in this paper. The band-

narrowing factor was originally introduced by Tyablikov using an equations of motion

scheme [24].

3. Quantum Monte-Carlo simulation

The CTQMC algorithm presented here is an extension of a similar path-integral method

for simulating the polaron problem [19]. An integration over phonon degrees of freedom

following Feynman leads to an effective action, which is a functional of two polaron

paths in imaginary time which form the bipolaron and is given by the following double

integral when ~ωβ ≫ 1 [22],

A[r(τ)] =
zλω̄

2Φ0(0, 0)

∫ β̄

0

∫ β̄

0

dτdτ ′e−ω̄β̄/2
∑

ij

Φ0[ri(τ), rj(τ
′)]

×
(

eω̄(β̄/2−|τ−τ ′|) + e−ω̄(β̄/2−|τ−τ ′|)
)

+
zλω̄

Φ0(0, 0)

∫ β̄

0

∫ β̄

0

dτdτ ′e−ω̄τe−ω̄(β̄−τ ′)

×
∑

ij

(Φ∆r[ri(τ), rj(τ
′)] − Φ0[ri(τ), rj(τ

′)])

− 1

2

∫ β

0

V (r1(τ), r2(τ)) dτ . (15)

where the vector ∆r = r(β) − r(0) is the difference between the end points of one of

the paths in the non-exchanged configuration (here ω̄ = ~ω/t and β̄ = t/kBT ). The

indices i = 1, 2 and j = 1, 2 represent the fermion paths. V (r1, r2) is an instantaneous

Coulomb repulsion. The part of the action depending on ∆r arises because the entire

phonon subsystem at τ = β must also be shifted when there is a shift in the electron

sub-system between the start and end configurations. The definition of ∆r and other

nomenclature for the CTQMC simulation of ladder systems are shown in figure 3.

From this starting point, the bipolaron is simulated using the Metropolis Monte-

Carlo (MC) method. The electron paths are continuous in time with hopping events (or

kinks) introduced or removed from the path with each MC step. Analytic integration is

performed over sections of parallel paths. The ends of the two paths at τ = 0 and τ = β

are related by an arbitrary translation, ∆r. In contrast to the one-particle case, the

fixing of the end configurations limits the update procedure to inserting and removing

pairs of kinks and antikinks. We constrain particles to opposite legs of the ladder, which
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τ=0
r

N
−A

N
+A

a

a

ab ∆
1

2 τ=β

N
−B

+B
N

∆a
2

1 ∆

Figure 3. Example path configuration on the ladder system, showing the notation

used. Paths are separated by a vector b, and sites in the chain by a. The path

configuration at τ = 0 is identical to that at τ = β up to a shift ∆r (i.e. the ends of

the beginning and end of the paths are separated by ∆). Each path has a number of

kinks NA/B+ and antikinks NA/B−

.

corresponds to two species of charged particles. In such a system, there is no exchange

between particles. Exchange and singlet triplet splitting from Quantum Monte-Carlo

simulations is briefly discussed in this section, with an analytical discussion in section

5. A full discussion of the QMC procedure for exchange is left to a future article.

3.1. Binary updates

In the path integral QMC with two paths, it is necessary to make two kink

operations simulataneously to ensure that the end configurations remain identical

up to a translation. There exist two classes of update. First, kink/antikink pair

addition/removal on a single path is useful, since it always maintains the same end

configurations up to a change in the interpath displacement. Second, kink pair additions

on different paths are needed in the analysis of the bipolaron mass, where the τ = β end

configuration must be exactly equal to the τ = 0 end configuration up to a parallel shift.

Within both subclasses, there are two specific update types that satisfy the imaginary-

time boundary conditions, as follows:

(I) Two kinks of the same type l are added to or removed from two different paths.

(II) A kink-antikink pair is added to or removed from one of the two paths. An antikink

to kink l is a kink with the opposite direction −l.

(III) A kink of type l is inserted into one path, and another kink of the same type l is

removed from the same path (kink shift).

(IV) A kink of type l is added to one path, and an antikink −l is removed from the other

path.

An important property of the bipolaron system is that the type and time of added

or removed kinks still does not define the new path unambiguously. Indeed, imagine a
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kink of type l being inserted on a single path at time τins. This could change the path

in two different ways: Either the path at times τ > τins is shifted in the direction l, or

the path at times τ < τins is shifted in the antidirection l. We refer to the former change

as a top shift, and the latter as bottom shift. For the single-path (polaron) problem

the distinction between the top and bottom shifts was not important because they are

identical up to a translation of the entire path. This argument does not hold for two

paths, since the resulting interpath distance in a binary update changes with shift type,

thus a choice of shifts is an important part of the Monte Carlo update process. We

proceed to derive the update probabilities for the Monte-Carlo scheme set out above.

There is considerable flexibility in choosing the probabilities for adding and

removing kinks. We choose an equal weighting scheme for choosing kinks, shifts and

paths as follows:

Ai Choose a kink type l from the list of all possible kinks, with equal probability

Pl = 1/Nk, where Nk is the total number of kink types. Pl cancels on both sides of

all balance equations considered below.

Aii Anti-kink types are always determined from the kink type.

Aiii Shift type (top or bottom) is chosen with equal probability Ps = 1/2 independently

for the two kinks. Ps also cancels on both sides of the balance equation.

Aiv Assign path A with equal probability 1/2 from the two available paths.

Av Assign path B as the other path.

We will also choose kinks to add and remove according to the following weightings,

although there are some specific rules in the updates below to deal with cases where

there are no kinks or antikinks of the chosen type on a path.

Bi The probability density for kink time selection when adding a kink is always

p(τ) = 1/β, (0 < τ < β).

Bii The probability for removing a kink of type l from path A in a configuration C is

1/NAl(C) where NAl(C) is the number of kinks of type l on the path A.

We note that the following is not the only set of possible rules, however, we consider

this to be the most transparent method of choosing kinks to insert and remove.

Update type (I): Addition/removal of two kinks to or from different paths Consider

two configurations with two paths, C and D, where configuration D has two more l

kinks than C, one on the first path at time τ1, and one on the second path at time τ2.

The balance equation is

W (C) · QA(C) · P (C → D) = W (D) · QR(D) · P (D → C) . (16)

The relative weight of configurations C and D is W (D)/W (C) = (tl∆τ)2eA(D)−A(C).

In order to approach the limit of continuous time, we rewrite the probability QA of

selecting two kinks at τ1 and τ2 to add to different paths given a configuration C as
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QA(l, τ1, A; l, τ2, B|C) = qA(l, τ1, A; l, τ2, B|C)(∆τ)2, where qA is the corresponding two-

dimensional probability density. The probability of selecting the two specific kinks τ1

and τ2 to remove from the resultant configuration (D) to get back to C is a finite

number QR(l, τ1, A; l, τ2, B|D), which is the probability of removing those two kinks

given configuration D. Substituting these results into the balance equation, one may

cancel the (∆τ)2. Applying Metropolis, update probabilities are obtained as follows:

P (C → D) = min

{

1 ;
t2l QR(l, τ1, A; l, τ2, B|D)

qR(l, τ1, A; l, τ2, B|C)
eA(D)−A(C)

}

, (17)

P (D → C) = min

{

1 ;
qA(l, τ1, A; l, τ2, B|C)

t2l QR(l, τ1, A; l, τ2, B|D)
eA(C)−A(D)

}

. (18)

Thus we have obtained update probabilities that do not depend on the time

discretisation, and we can immediately take the limit of continuous time. A similar

approach can be taken for any of the update types I to IV. We now demonstrate all

steps in the derivation of the first update probability as an example.

The rules and resulting probabilities are as follows:

(i) Choose kink types, shifts and paths according to rules Ai-Av.

(ii) If the initial configuration has at least one l kink on path A and on path B, then

removal of a pair is proposed with probability PR = 1/2, and addition of a pair

is proposed with probability PA = 1/2. Otherwise, only pair addition can be

attempted and PA = 1.

(iii) If pair addition is selected, times are selected to insert one kink on path A, and

another on path B with independent equal probability density (rule Bi).

(iv) If pair removal is chosen, then one candidate kink is selected with independent

equal probability from each of paths A and B in configuration D (rule Bii).

Implementing these choices, one obtains qA(l, τ1, A; l, τ2, B|C) = PlP
2
s PA(C)/β2 from

the combination of rules (i), (ii), (iii). Likewise, the combination of rules (i), (ii)

and (iv) specifies that QR(l, τ1, A; l, τ2, B|D) = PlP
2
s PR(D)/NlA(D)NlB(D). Rule (iii)

leads to PA(C) = 1/2 if NAl(C) ≥ 1 and NBl(C) ≥ 1 and PA(C) = 1 otherwise.

Since configuration D always has sufficent kinks to make a removal, we always have

PR(D) = 1/2

leading to the following acceptance rules:

P (addition) = P (C → D) = min

{

1 ;
PR(D)(tlβ)2eA(D)−A(C)

PA(C)NAl(D)NBl(D)

}

(19)

P (removal) = P (D → C) = min

{

1 ;
PA(C)NAl(D)NBl(D)

PR(D)(tlβ)2eA(D)−A(C)

}

(20)

Please note which configuration the kink numbers apply to. In the case of kink

addition, initial configuration is C and final configuration is D. In the case

of kink removal, the initial configuration is D and the final configuration is

C.
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Update type (II): Addition/removal of a kink-antikink pair to one path The general

properties of this update type are similar to update type (I): the addition of a

pair at times τ1 and τ2 is characterized by a two-dimensional probability density

qA(l, τ1, A;−l, τ2, A|C) while removal of a pair is charaterized by a finite number

QR(l, τ1, A; l, τ2, A|D). Eqs. (17)-(18) still apply with tlt−l in place of t2l . Since tl = t−l,

the acceptance rules are idential, and only Q and q differ.

We use the following rules.

(i) Choose kink types, shifts and paths according to rules Ai-Av.

(ii) If the initial configuration has at least one l kink and one antikink (NAl ≥ 1,

NA−l ≥ 1), then removal of a pair is proposed with probability PR = 1/2, and

addition of a pair is proposed with probability PA = 1/2. Otherwise, addition of a

pair is proposed with probability PA = 1.

(iii) If pair addition is selected, kink and antikink insertion times are selected with

independent equal probability density for insertion on path A. (Rule Bi)

(iv) If pair removal is chosen, then one candidate kink and one candidate antikink are

selected with independent equal probability from path A in configuration D (Rule

Bii).

One computes the update probabilities as before:

P (addition) = P (C → D) = min

{

1 ;
PR(D)(tlβ)2eA(D)−A(C)

PA(C)NAl(D)NA−l(D)

}

(21)

P (removal) = P (D → C) = min

{

1 ;
PA(C)NAl(D)NA−l(D)

PR(D)(tlβ)2eA(D)−A(C)

}

(22)

Update type (III): Addition and removal of a kink to one path (kink shift) This

update type does not change the number of kinks, and hence does not change the

kinetic energy of the system. We define a configuration C, and a configuration D which

is identical to C except that one kink has been shifted. To get from configuration C

to D, a kink is removed from path A at time τ1 and is reinserted in the path at time

τ2. Since C and D have equal total kink number, the ratio of statistical weights is

W (D)/W (C) = eA(D)−A(C). From detailed balance and Metropolis:

P (C → D) = min

{

1 ;
QR(l, τ2, A|D)qA(l, τ1, A|D)

QR(l, τ1, A|C)qA(l, τ2, A|C)
eA(D)−A(C)

}

(23)

There is only one update rule, since we can get from D and C using exactly the same

process as going from C to D. All attributes of the kinetic energy have dropped out

from the equations. The acceptance rules are determined solely by the electron-phonon

interaction, as expected for this update type.

In many practical situations it is reasonable to choose the functions q and Q

independent of time τ . In this case the above expressions simplify significantly. In

particular, consider the following set of update rules.

(i) Choose kink types, shifts and paths according to the general rules Ai-Av.
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(ii) If the path has no l kinks, Nl = 0, the update attempt is aborted. Otherwise,

Nl ≥ 1, so propose an l kink for removal with equal probability 1/Nl(C) (rule Bii).

(iii) Propose time for new l kink with constant probability density p(τ) = 1/β (rule Bi).

These rules result in cancelation of Qremove and qadd from the above equations, which

reduce to

P (C → D) = min
{

1 ; eA(D)−A(C)
}

, (24)

Update type (IV): Kink addition to one path and antikink removal from the other path

In this update, a kink l is added to one path and an antikink −l is removed from the

other path. As a result, the β end configuration shifts as a whole by l. In a reciprocal

process, a kink l is removed from one path, an antikink −l is inserted in the other path,

and the β configuration shifts by −l.

The ratio of weights is W (D)/W (C) = (t−l/tl)e
A(D)−A(C). The balance equation is

satisfied by the following solution

P (C → D) = min

{

1 ;
QR(l; τ1; A|D)qA(−l; τ2; B|D)

QR(−l; τ2; B|C)qA(l; τ1, A|C)
eA(D)−A(C)

}

(25)

Since we can obtain the inverse process by changing kink l for its antikink, the update

probability P (D → C) is not necessary since we always choose l from all kink types.

As the simplest implementation, the following rules are used,

(i) Choose kink types, shifts and paths according to rules Ai-Av.

(ii) If path B has no antikinks −l, NB−l = 0, then the update attempt is aborted.

Otherwise, NB−l ≥ 1, so an antikink is proposed for removal from path B with

equal probability (rule Bii).

(iii) The time location for kink insertion on path A is proposed with equal probability

density (rule Bi).

With these assumptions, the acceptance probability takes the form:

P (C → D) = min

{

1 ;
NB−l(C)

NAl(D)
eA(D)−A(C)

}

, (26)

3.2. Estimators

When our Monte-Carlo scheme has reached equilibrium, we make a series of

measurements of physical properties. The ground state energy is:

ǫ0 = − lim
β→∞

[

〈

∂A

∂β

〉

− 1

β

〈

∑

s

Ns

〉]

, (27)

where Ns is the number of kinks of type s, and angular brackets denote ensemble

averaging. The number of phonons is given by:

Nph = − lim
β→∞

1

β̄

〈

∂A

∂ω̄

∣

∣

∣

∣

λω̄

〉

, (28)
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where the derivative is taken keeping λω̄ constant. The polaron band energy spectrum

can be computed from:

ǫk − ǫ0 = − lim
β→∞

1

β
ln〈cos(k · ∆r)〉 , (29)

where k is the quasi momentum. By expanding this expression in small k, the i-th

component of the inverse effective mass is obtained as

1

m∗
i

= lim
β→∞

1

β~2
〈(∆ri)

2〉 . (30)

Thus the inverse effective mass is the diffusion coefficient of the polaron path in the limit

of the infinitely long “diffusion time” β. The bipolaron radius is the average distance

between paths,

Rbp =

〈

√

1

β

∫ β

0

∆r12(τ)2dτ

〉

(31)

Finally, the mass isotope coefficient, αm∗
i

= d ln m∗
i /d lnM , is calculated as follows

αm∗
i

= lim
β→∞

ω̄

2

1

〈(∆ri)2〉

[〈

(∆ri)
2 ∂A

∂ω̄

∣

∣

∣

∣

λ

〉

− 〈(∆ri)
2〉
〈

∂A

∂ω̄

∣

∣

∣

∣

λ

〉]

. (32)

3.3. General Monte-Carlo considerations

There are certain aspects of good practice for quantum Monte-Carlo simulations that

we adhere to here. As always for Monte-Carlo simulations a random number generator

with sufficient period is used. Measurements are performed every few steps to avoid

unnecessary correlations in results (the aim here is to spend no longer measuring than

simulating, since time correlated results do not make a large contribution to more

accurate measurement). Careful blocking analysis with large blocking sizes NB is

performed to determine accurate error bars. To avoid anomalous error bars caused

by long time correlations, we compare error bars computed with two block sizes NB and

2NB.

3.4. Exchanges

Exchanges are significantly more complicated, with several possibilities for the exchange

update involving inserting and removing kinks. In the exchanged configuration, there

are an additional 4 update rules, and there is also an ambiguous configuration where

both paths have the same start and end points, which leads to some small additional

modifications. We defer a full discussion of exchange update rules to a later paper. On

our ladder models, exchanges are not required, since electrons sit on opposite legs.

3.5. Singlet-triplet splitting in the Monte-Carlo method

A consequence of exchange is that singlet and triplet states are not degenerate. We can

see the singlet-triplet mass difference as a consequence of interference between paths in
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the Monte Carlo simulation. We take a simplified one-dimensional example to illustrate

the mechanism. Consider a bipolaron of separation R propagating from the sites {0, R}
at τ = 0 to {∆r, R + ∆r} at τ = β. We assume that the weight w of a single-electron

path is a monotonically decreasing function of the number n of kinks in the path, and

the paths with the smallest number of kinks dominate. This is likely to be valid in the

strong-coupling limit. We can therefore write the weight of as path as a monotonically

rapidly decreasing function w(d), where d is the distance between endpoints. We also

neglect the interaction between paths.

Consider first the case of periodic boundary conditions ∆r = 0. The weights of the

singlet and triplet bipolaron paths are respectively the sum and the difference of the

direct and exchange paths.

ws(0) ≈ w(0)w(0) + w(R)w(R), (33)

wt(0) ≈ w(0)w(0)− w(R)w(R). (34)

Here if w(R) ≪ w(0), the singlet and triplet weights are dominated by the direct path

and are nearly equal.

Now consider a twist larger than the bipolaron radius, ∆r > R > 0. The singlet

and triplet weights are dominated by the shortest paths:

ws(0) = w(∆r)w(∆r) + w(∆r + R)w(∆r − R), (35)

wt(0) = w(∆r)w(∆r) − w(∆r + R)w(∆r − R). (36)

In this case the total number of kinks in either the direct or the exchange path is

the same (2∆r), so there will be substantial cancellation in the triplet case. Thus the

diffusion coefficient of the triplet bipolaron will be smaller, and the effective mass larger,

than that of the singlet.

4. Polarons on triangular and rectangular systems

We briefly discuss the lattice dependent features of the polaron problem here. For more

detailed discussion of the polaron problem, the reader is directed towards our papers

on this subject [21, 20, 19], and to the paper by Kornilovitch in this issue [26]. In this

section, we specifically discuss the changes to the masses of polaron moving on trangular

and square lattices as the screening length Rsc is varied. The polaron mass forms part

of the argument later in this article.

Screened Fröhlich electron-phonon interactions were simulated by Spencer et al.

[20], who demonstrated a continuous crossover between the Fröhlich and Holstein limits

on the chain. In particular, the mass of the particle is found to be light down to quite

small screening radii, consistent with results by Bonča and Trugman [18] for nearest-

neighbour electron-phonon interactions.

We have previously computed the properties of polarons on several Bravais lattices,

showing that the effects of the lattice type on the properties of the polaron are ‘washed

out’ by long range interactions [21]. Figure 4 shows the effective mass of the dicrete
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Figure 4. Inverse effective mass of the discrete Fröhlich polaron on square and

triangular lattices. ω/t = 1, and λ is varied. Triangular lattices are shown on the

left, and square lattices are shown on the right. From top to bottom, the screening

radius of the interaction is decreased, with the top graphs showing Fröhlich interaction

Rsc → ∞, middle graphs screened interaction Rsc = 1 and the bottom graphs the

Holstein interaction Rsc = 0. Fröhlich polarons are significantly lighter than their

Holstein conterparts because the long range interaction leads to pre-distortions of the

lattice before a hopping.

Fröhlich polaron on square and triangular lattices. Fröhlich polarons are significantly

lighter than their Holstein counterparts, due to the long range interaction. We have

also shown that the overriding factor for the properties of Holstein polarons is the

number of nearest neighbours in the lattice, and not the dimensionality [21]. Since we

are interested in long-range interactions in this paper, then it suffices to note that the

masses of Fröhlich polarons are of the same order of magnitude on all lattice types, and

that they are extremely light [21]. The properties of realistic screened interactions lie

somewhere inbetween, but such polarons remain light down to quite small interaction

ranges of the order of a lattice spacing [20].
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5. Bipolarons on ladder systems

The properties of bipolarons are significantly more complicated than those of polarons.

One expects bound Holstein bipolarons in strongly correlated materials to be extremely

heavy, since a very large attractive potential is needed to overcome the repulsion. This

is not true for longer range interactions. According to work by Bonča and Trugman [18],

even bipolarons with nearest neighbour interactions are significantly more mobile than

their Holstein counterparts (indeed, one normally expects the mass of a bipolaron to

scale like the squared mass of the polaron, so polarons which are an order of magnitude

lighter than Holstein ones, may become bipolarons which are two orders of magnitude

lighter). Another extremely interesting proposition is the role of geometry on the

bipolaron mass. When bipolarons are bound on nearest neighbour sites, and another

degenerate state may be reached in a single hopping event, the leading correction to

the atomic Hamiltonian is first order in the hopping term, and not second order as one

might expect for the Holstein model, which leads to a bipolaron with a mass that is of

similar order of magnitude to the polaron mass (i.e. a superlight bipolaron) [9]. Such

systems may be realised on triangular lattices, or on lattices with large next-nearest

neighbour hopping. We have recently extended our Quantum Monte-Carlo algorithm

to explore this type of bipolaron, leading to similar conclusions [22]. In this paper, we

discuss some of these extensions to the algorithm to look at two types of ladder system

shown in figure 1.

5.1. Weak and strong coupling

Since the particles on the different legs of the ladder cannot exchange the very weak-

couping limit is not well bound, consisting of two large polarons. As such, the weak-

coupling perturbation theory can be made about the unbound state. As will become

apparent when we show the quantum Monte-Carlo results, the number of phonons

is small for the weakly bound states, especially in the anti-adiabatic limit. The

perturbation theory in the electron-phonon coupling term only excites single phonons,

so if the number of phonons becomes too large, the theory fails. In the presence of strong

on-site repulsion, the bipolaron is not bound at zero coupling. In general, if there is

a bound state for λ → 0+, then this perturbation expansion fails. The expansion is

written as follows:

Ek = 2ǫ
(0)
k − 2

λωW

Φ0(0, 0)

1

N

∑

q

|fq|2
W (k,q)

, (37)

W (k,q) = ǫ
(0)
k−q + ω − ǫ

(0)
k , (38)

fq =
∑

m

fm(0)e−iq·m , (39)

where N is the number of momentum states. Thus the ground state polaron energy (at

k = 0) is ǫ
(2)
0 = −W + λWΓǫ0(ω̄), which defines a dimensionless coefficient ΓE0

.
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There is no general analytic solution for the second order perturbation theory, but

values may be computed using numerical integration. The number of phonons, isotope

exponent and inverse mass may also be written as, Nph = 2λΓN(~ω), α = 2λΓα(~ω)

and 2m0/m
∗∗ = 1 − Γm(~ω)λ. The weak coupling limits for the polaron are discussed

in references [20, 21] amoung others. λ is defined as before.

Aspects of the strong coupling limit are easy to compute from the path integral

formalism. In the very strong coupling limit, the most common configurations are

straight paths, since the action is proportional to λ and that configuration gives the

smallest possible action. Thus the strong coupling action reads:

Astrong =
λW (~ωβ − 1 + e−~ωβ)

Φ0(0, 0)~ω

∑

ij

Φ0(i, j) (40)

For a polaron, the total energy for a self-interacting strong-coupling system (i.e. a

straight path) is E = −Wλ, where W is the half band width, −ǫk=0. Computing

the action for the straight path configuration, one obtains the energy as Estrong =

−∂Astrong∂β|β→∞. Leading to,

Ebp
strong = −2Wλ[1 + Φ0(0,b)/Φ0(0, 0)] (41)

Where b is a nearest neighbour vector between chains indicating the point of closest

approach. This result is of little suprise, since there are 2 polarons in a bipolaron, with

E = −Wλ each, and 2 inter-polaron binding terms with E = −WλΦ(0,b)/Φ(0, 0). We

may also compute the number of phonons associated with the bipolaron in a similar

manner using equation 28 with Astrong, which we obtain as:

Nph
strong = 2Wλ[1 + Φ(0,b)/Φ(0, 0)]/~ω (42)

As we have discussed, the Φ functions for the ladder systems with Rsc = 1 are

plotted in fig. 2. Numerical values for Φ(0,b), Φ(0, 0) and 1 + Φ(0,b)/Φ(0, 0) are

shown in table 1, from which numerical values for the strong coupling behaviour are

computed. We discuss the region of validity of these results when we compute the exact

QMC results. In particular, if we plot appropriate ratios, such as the ratio Nphω/λ, we

expect saturation at strong coupling, consistent with table 1.

Typically, it has been discussed that an expansion of the Lang-Firsov transformed

Hamiltonian in the polaron hopping can be used at strong coupling. The perturbation

expansion to second order may be written as,

Etot = Eat + 〈Ψ|H̃tb|Ψ〉at +
∑

j

|〈Φj|H̃tb|Ψat〉|2
Ej − Eat

(43)

The values for the strong coupling energy may be computed from the leading term

of this expansion, and have the same form as the energy computed from the straight

paths. This is not suprising, since the corrections to the energy are at least as small as

t̃.

There is a subtle point associated with phonon numbers. By examination, the

ground state of the phonon subsystem in the transformed Hamiltonian is
∑

j d†
jdj =
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Lattice Φ(0, 0) Φ(0,b) 1 + Φ(0,b)
Φ(0,0) E/λ ωNph/λ

Staggered 1.06896 0.30034 1.28096 -5.12384 5.12384

Rectangular 1.05554 0.284832 1.26984 -5.07936 5.07936

Table 1. Strong coupling behaviour of the staggered and rectangular lattices.

∑

j nj = 0. In order to determine the total number of phonons in the true ground

state of the atomic Hamiltonian, one must transform back to the regular wavefunction.

One may either transform the wavefunction, or the phonon part of the Hamiltonian.

Transforming the phonon part of the Hamiltonian is easy, and one obtains,

〈φLF |H̃ph|φLF 〉 = 〈φ|Hph|φ〉 = ωNph (44)

thus

Nph = 〈φLF |
∑

j

(d†
j +
∑

i

gijni)(dj +
∑

i′

gi′jni′)|φLF 〉/ω (45)

= 〈φLF |
∑

ii′j

gijgi′jnini′|φLF 〉/ω (46)

the expectation value of the phonons occupation may be rewritten in terms of λ and Φ,

thus:

Nph = −Eat

ω
(47)

(Note the minus sign in front of the equation - phonon number is positive).

Thus one determines that the total number of phonons in the bipolaron case is:

Nph,at =
2Wλ

ω

(

1 +
Φ0(0,b)

Φ0(0, 0)

)

(48)

(N.B. A similar argument can be used for polarons.)

Unfortunately, the computation of the mass is not so simple. The mass is very

sensitive to the exact form of the renormalised hopping, and the leading order of the

perturbation expansion varies with lattice type. For the superlight small bipolarons

on triangular plaquettes discussed here, there is a leading term with order t̃, and

for rectangular systems, the leading order is t̃2. Examination of the path integrals

demonstrates that the mass is computed from a parallel shift. The first perturbation of

the paths from the straight line in the atomic limit is the insertion of two parallel kinks

(one on each path). In order for the mass to be genuinely first order in the polaron

hopping, we would require updates with only one kink. Thus, there are significant

contributions from the second order term, including a cancellation between the orders

as λ → ∞. In fact, the expansion of the Lang-Firsov transformed Hamiltonian to 1st

order in the hopping turns out to correspond to the extreme anti-adiabatic limit, which

we now discuss.

5.2. Anti-adiabatic approximation

The bipolaron dispersion can be evaluated analytically in the anti-adiabatic strong-

coupling limit (~ω ≫ t, λ ≫ 1), in which case the problem can be reduced to that of
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a rigid dimer. In this limit the Lang-Firsov transformation[23] eliminates the phonons

from the Coulomb-Fröhlich Hamiltonian (1). In combination with an averaging over

phonons consistent with the anti-adiabatic approximation (if the phonon frequency is

very large, there are no real phonons) one obtains the following effective UV Hamiltonian

H̃ = −
∑

nn′σ

t̃nn′c†nσcn′σ − Ep

∑

nσ

c†nσcnσ

+ Ũ
∑

n

c†n↑cn↑c
†
n↓cn↓ +

∑

nn′

′
∑

σσ′

Ṽnn′c†nσcnσc
†
n′σ′cn′σ′ . (49)

where the primed sum excludes self-interaction, and the renormalised on-site and inter-

site interactions are

Ũ =
V (0, 0)

2
− Wλ (50)

and

Ṽnn′ =
V (n,n′)

2
− WλΦ0(n,n′)

Φ0(0, 0)
(51)

respectively. (There is no retardation in the anti-adiabatic limit.) Now suppose the

on-site repulsion Ũ ≫ t̃ is large and repulsive and the inter-site interaction has a well-

defined minimum Vmin < 0 at some separation. Let Nn be the set of sites of n′ at that

separation from n:

Nn = {n′ : Ṽnn′ = Vmin} (52)

and

Ṽnn′ − Vmin ≫ t̃ for n′ /∈ Nn. (53)

We shall call Nn the “neighbours” of n. In general, Nn need not be the hopping

neighbours {n′ : t̃nn′ 6= 0}. The low-energy sector for two electrons corresponds to

dimer states (bipolarons) in which the electrons are on neighbouring sites; the energies

in this sector are Vmin + O(t̃). The energy cost of internal excitations of the bipolarons

introduces a gap.

We can now sharply distinguish two types of bipolaron motion: “crab-like”, in

which the constituent polarons remain neighbours, and “crawler”, which requires virtual

transitions out of the low-energy sector. The crab-like bipolaron bandwidth will be

O(t̃), while the crawler contributions will be O(t̃2). We shall for the present purposes

project onto the low energy sector and hence ignore the resulting higher-order terms in

t̃, immobilising crawlers. For simplicity we drop the tildes from the notation and absorb

the polaron shift −Ep into the chemical potential.

If a lattice Λ has L sites with a mean number ν of neighbours per site, then the

single-polaron Hilbert space is 2L-dimensional, the two-polaron Hilbert space is 4L2-

dimensional and the crab bipolaron Hilbert space is just 4νL-dimensional. We can

further reduce to one singlet and three triplet spaces, each of dimensionality νL. The

singlet bipolaron space is

S = span

{

1√
2

(|n ↑ n′ ↓〉 + |n′ ↑ n ↓〉) : n ∈ Λ,n′ ∈ Nn

}

(54)
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and the Sz = 1, 0,−1 sectors of the triplet bipolaron space are

T1 = span {|n ↑ n′ ↑〉 : n ∈ Λ,n′ ∈ Nn} (55)

T0 = span

{

1√
2

(|n ↑ n′ ↓〉 − |n′ ↑ n ↓〉) : n ∈ Λ,n′ ∈ Nn

}

(56)

T−1 = span {|n ↓ n′ ↓〉 : n ∈ Λ,n′ ∈ Nn} . (57)

This enables us to write the low-energy effective Hamiltonian of the dimers in each

sector as a tight-binding Hamiltonian on the dimer lattice constructed in the following

way: a node is placed on the line joining neighbours in the lattice Λ. If n′ and n′′

are both hopping neighbours of n (t̃n′n′′ 6= 0), then the dimer can hop from nn′ to

nn′′. A bond is then drawn between the two nodes on the dimer lattice with hopping

integral t̃n′n′′ in the singlet sector and −t̃n′n′′ in the triplet sector. This sign change

ensures the correct exchange symmetry for closed paths on odd-membered rings: as a

dimer completes one cycle of an odd-membered ring its end-points are interchanged.

This can lead to a dramatic difference between singlet and triplet bipolaron masses on

a non-bipartite lattice, as we shall see.

5.3. Ladders

In the staggered ladder depicted in Fig 1 the neighbours of a site on one chain are the

two adjacent sites on the opposite chain, while the hopping neighbours of a site are

along the same chain. The corresponding dimer lattice is a one-dimensional chain with

hopping ±t̃ and two sites per unit cell. As there are no exchange paths, the sign of the

hopping can be gauged away and there is no singlet-triplet splitting. The polaron and

bipolaron dispersions are therefore respectively

Epol(k) = − t̃ cos ka, (58)

Ebip(k) = ± t̃ cos
ka

2
. (59)

The bipolaron effective mass is therefore four times that of the polaron (as previously

reported [9]):

m∗ = ~
2 d2Epol(k)

dk2

∣

∣

∣

∣

k=0

=
~

2

2t̃a2
, (60)

m∗∗ = ~
2 d2Ebp(k)

dk2

∣

∣

∣

∣

k=0

=
2~

2

t̃a2
. (61)

This result is remarkable if one considers the standard strong coupling result for the

mass of the bipolaron. In the rectangular ladder the requirement for a virtual internal

excitation of the bipolaron in the crawler dynamics would lead to a hopping O(t̃2) and

hence mass O((m∗)2). The staggered ladder with long range electron phonon attraction

has two degenerate nearest neighbour bound states (as summarised in figure 12), so

no intermediate state is required when the particle hops. It is clearly important that

the electrons are bound one lattice spacing apart to take advantage of this effect, but

this can easily be achieved in the presence of a strong site-local Coulomb repulsion



Superlight small bipolarons 21

(so that the energy is not at a minimum when both particles are on the same site).

This spaced minimum is clearly extremely important when real lattices beyond the

toy ladder models presented here are considered. Some details of real lattices will be

discussed later in this paper, but to briefly summarise, in order to obtain this special

kind of bipolaron, (a) The lattice must have several degenerate near-neighbour bound

states which can be transformed from one degenerate state to another via a single hop

(b) Strong Coulomb repulsion is required to stop a unique single-site bound state from

forming between the polarons, and (c) long range attraction is required so that the

minimum in the potential function (attraction + repulsion) is at approximately one

lattice spacing. This information is summarised in figures 12 and 13 in the conclusion

to this paper.

5.4. QMC

We compute QMC results for bipolarons moving on staggered and rectangular ladders

with period 1000 for a range of λ and ω, including the total energy, inverse bipolaron

mass, bipolaron radius, mass isotope exponent and the number of phonons in the

bipolaron cloud. Figure 5 shows the total energy of the bipolaron for (a) the rectangular

ladder and (b) the staggered ladder. A slight change in gradient between weak and

strong coupling is just discernable, demonstrating (as we shall see in the coming figures)

that the staggered ladder reaches the strong coupling limit at significantly lower λ than

the rectangular ladder. Strong coupling results from the previous section agree well. We

see that there are no significant differences between the total energy of the bipolarons

on the staggered and rectangular ladders, although the strong coupling limit is reached

for slightly lower λ in the case of the staggered ladder.

If one is to reach a superconducting state via the Bose-Einstein condensation of

bipolarons, there are two conditions. First, the bipolaron pair must be light, and second,

the pairing radius must be small. We demonstrate the differences between the inverse

masses on the staggered and rectangular ladders in figures 6(a) and (b), which show the

inverse mass of the bipolaron for a number of different λ and ω/t. There is more than

an order of magnitude difference between the mass of the bipolaron on the staggered

ladder, and that on the rectangular ladder over significant regions of the parameter

space. In fact, the magnitude of the bipolaron mass turns out to be of similar size to

that of the polaron mass over a wide range of the parameter space. The mass is inversely

proportional to the transition temperature of the BEC, so a small mass is essential to

obtain a decent TC .

We have demonstrated that one of the precursors for a Bose-Einstein condensate of

pairs above the mK range may be met on the staggered ladder arrangement, but we also

require small pairs, with non-overlapping wavefunctions. In figure 7 we show how the

the size of the bipolaron varies as λ and ω/t are varied. Not only is the bipolaron on the

staggered ladder lighter than that on the rectangular ladder, it is also has a significantly

smaller radius than the bipolaron on the rectangular ladder, making it a much better
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Figure 5. Total energy of the bipolaron for (a) the rectangular ladder and (b) the

staggered ladder. A slight change in gradient between weak and strong coupling is just

discernable, demonstrating (as we shall see in the coming figures) that the staggered

ladder reaches the strong coupling limit at significantly lower λ than the rectangular

ladder.

prospect for Bose-Einstein condensation.

Since the result that the bipolaron mass is proportional to the polaron mass via

a numerical value relies on the anti-adiabatic limit, where the phonon frequency is

very large, so that phonons may not be excited, we investigate the number of phonons

asociated with the bipolaron in figure 8. The result is weighted by phonon frequency

and electron phonon coupling, so that the strong coupling result can clearly be seen.

Again, we can see that the strong-coupling limit is reached at significantly lower λ on

the staggered ladder than on the rectangular ladder. Strong coupling results from the

previous section agree well, with the ratio ωNph/λ approaching the numerical value given

in table 1. The anti-adiabatic limit can clearly be identified as regions on the graph

where the phonon number approaches zero (i.e. the ω > λ quadrant of the parameter

space), consistent with results for the mass.

We show the mass isotope exponent of the bipolaron in figure 9. Again, we can

see that the strong coupling limit is achieved at significantly lower λ on the staggered

ladder, compared with the rectangular ladder. The isotope exponent is also smaller on

the staggered ladder, demonstrating a much smaller range of mass from weak to strong

coupling.

Finally, in figure 10, we show example path configurations on (a) the rectangular

ladder and (b) the staggered ladder. Hopping events on different paths on the

rectangular ladder are very closely correlated on the imaginary time axis. On the

staggered ladder, there are two degenerate configurations, and paths are just as likely to

sit on either of the two neighbouring sites, significantly reducing the correlation between

kinks, and increasing the probability that kink pairs can be inserted. It is this that leads

to significantly lighter bipolarons on the staggered ladder.
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Figure 6. Inverse mass of the bipolaron for (a) the rectangular ladder and (b) the

staggered ladder. There is more than an order of magnitude difference between the

mass of the bipolaron on the staggered ladder, and that on the rectangular ladder over

significant regions of the parameter space. Bipolaron masses on the staggered ladder

have recently been shown to have a value commensurate with the polaron mass.
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Figure 7. Size of the bipolaron for (a) the rectangular ladder and (b) the staggered

ladder. Not only is the bipolaron on the staggered ladder lighter than that on the

rectangular ladder, its size is also smaller for equivalent λ.
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Figure 8. Number of phonons associated with the bipolaron for (a) the rectangular

ladder and (b) the staggered ladder, weighted by phonon frequency and electron

phonon coupling. Again, we can see that the strong coupling limit is achieved at

significantly lower λ on the staggered ladder. It is interesting to note that the states

with large omega have a smaller number of phonons. This is consistent with the anti-

adiabatic approximation: When phonon frequency is large, creating phonons becomes

difficult, and phonon wavefunction is the vaccum state. Then the phonon problem

maps onto a UV model (discussed later).
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Figure 9. Mass isotope exponent of the bipolaron for (a) the rectangular ladder and

(b) the staggered ladder. Again, we can see that the strong coupling limit is achieved

at significantly lower λ on the staggered ladder. The isotope exponent is also smaller

on the staggered ladder, demonstrating a much smaller range of mass from weak to

strong coupling.
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Figure 10. Example path configurations on (a) the rectangular ladder and (b) the

staggered ladder. Hopping events on different paths on the rectangular ladder are very

correlated in time. On the staggered ladder, there are two degenerate configurations,

and paths are just as likely to sit on either of the two neighbouring sites, significantly

reducing the correlation between kinks. (ω/t = λ = 4 in both cases.)

6. Beyond ladders: Other superlight systems

On the ladder systems, the electrons were held on neighbouring legs of the ladders.

This is partially consistent with a very strong local Coulomb repulsion or Hubbard U .

It is also possible to examine the effects of a very strong or even infinite Hubbard U

on the masses of bipolarons bound via long range attraction on other low dimensional

systems. As we have seen by examining the ladder systems, there are 3 requirements

for superlight bipolarons (1) Electrons are not allowed to bind on a single site (2) There

are at least two degenerate configurations of electrons sitting on neighbouring sites and

(3) There are single hopping events which transform one configuration into another

degenerate configurations. Then, hopping of the bipolaron is first order in the hopping

of the polaron. Condition (2) is satisifed by long range electron-phonon intereraction,

and there are several tight binding lattices which also satisfy conditions (2) and (3), and

a strong site-local Coulomb repulsion satisfies condition (1). We discuss bipolarons on
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these lattices in the anti-adiabatic approximation in this section.

6.1. Triangular molecule

The staggered ladder system discussed earlier in this paper can be considered to be

made up of triangular plaquettes, so the first logical step to looking beyond the ladder

systems is to analyse the physics of a single plaquette. If hopping is allowed between

all the sites on the plaquette, then one may consider exchange effects, which lead to

singlet and triplet bound states. To see exchange effects, we require lattices with odd-

membered rings. As the simplest example, consider three sites 0, 1, 2, all of which are

neighbours, with hopping t̃ > 0. The polaron Hamiltonian is

H =







0 −t̃ −t̃

−t̃ 0 −t̃

−t̃ −t̃ 0






. (62)

The dimer lattice is constructed by placing a node at the centre of each bond. The

singlet bipolaron Hamiltonian is therefore

HS =







Vmin −t̃ −t̃

−t̃ Vmin −t̃

−t̃ −t̃ Vmin






(63)

with eigenvalues {Vmin − 2t̃, Vmin + t̃, Vmin + t̃}, and the triplet bipolaron Hamiltonian is

HT =







Vmin t̃ t̃

t Vmin t̃

t t̃ Vmin






(64)

with eigenvalues {Vmin − t̃, Vmin − t̃, Vmin + 2t̃}. (An alternative choice of basis would

be the six-dimensional unsymmetrised Sz = 0 basis {|i ↑ j ↓〉}. This would transform

the triangle into a six-member ring. Such a basis becomes unwieldy for typical lattices).

Clearly, the properties of the plaquette are defined by single polaron hopping events,

since there are no eigenvalues with O(t̃2) terms. It is this property which makes lattices

which can be constructed from triangular plaquettes a good starting place when looking

for small superlight bipolarons.

6.2. Triangular lattice

Let us consider a triangular lattice with nearest-neighbour hopping t. In the anti-

adiabatic approximation, this is replaced by t̃. The polaron band structure (ignoring

polaron shift) is E(k) = −2t̃C(k), where we have defined

C(k) ≡ cos kxa + cos
(

kxa/2 −
√

3kya/2
)

+ cos
(

kxa/2 +
√

3kya/2
)

, (65)



Superlight small bipolarons 26

2

1  ,00  ,1

0  ,2 1  ,2

2  ,1 2  ,0

t
tt

tt
t

Dimer graph

Polaron graph

1

0
t

tt

Bipolaron (dimer) lattice

1,2 2,0 1,2
2,0

0,1

1,2
2,0

0,1

1,2
2,0

0,1

1,2
2,0

0,1 +/−t

+/−t

+/−t

0,1

Figure 11. The triangular lattice (thin lines) with a dimer state (circle) at the mid-

point of each bond. The polaron and bipolaron states are indicated on one triangle,

with spin indices suppressed. The dimer lattice (thick lines) is a kagome lattice.

a being the lattice parameter. Expanding near the Γ point gives

E(k) = −6t̃ +
3

2
k2a2t̃ + O(k4) (66)

The polaron effective mass is therefore

m∗ =
~

2

3t̃a2
. (67)

By placing a node on each bond in the lattice, we see that the resulting dimer lattice

is a kagome lattice. The dispersion is easily found as follows (see also ref [25]) by

diagonalising the secular matrix

H(k) = Vmin ∓ t̃

∣

∣

∣

∣

∣

∣

∣

0 1 + γ∗ 1 + β

1 + γ 0 1 + α∗

1 + β∗ 1 + α 0

∣

∣

∣

∣

∣

∣

∣

, (68)

with

α = exp
(

−ikxa/2 + i
√

3kya/2
)

(69)

β = exp
(

−ikxa/2 − i
√

3kya/2
)

(70)

γ = exp (ikxa) . (71)

The sign in (68) is −t̃ for the singlet and +t̃ for the triplet. There are three bipolaron

bands with no gaps:

E1(k) = Vmin ± t̃
(

−1 −
√

3 + 2C(k)
)

(72)

E2(k) = Vmin ± t̃
(

−1 +
√

3 + 2C(k)
)

(73)

E3(k) = Vmin ± 2t̃. (74)
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with sign +t̃ for the singlet and −t̃ for the triplet.

The lowest singlet band is

E1(k) = Vmin − 4t̃ +
1

4
k2a2t̃ + O(k4), (75)

with effective mass

m∗∗
s =

2~
2

t̃a2
= 6m∗. (76)

We notice that this increases linearly with the polaron mass, indicating that crab-like

bipolarons can be relatively light.

The lowest triplet band is the flat band E3(k) = V − 2t̃. This implies that a triplet

crab-like bipolaron has infinite mass on a triangular lattice. Once crawler motion is

permitted, the effective mass is expected to be finite but proportional to (m∗)2.

6.3. Lattices with long range hopping

Lattices with triangular components are not the only ones where the ability to

move between degenerate paired states can be utilised to lead to small masses. For

example, if we introduce next-nearest-neighbour hopping to a linear chain, then, in

the anti-adiabatic approximation, we obtain a bipolaron mass, 2(2a)2t̃′ and a polaron

mass 2a2t̃ where t̃ = t exp(−Wλ(1 − Φ(0, a)/Φ(0, 0))/ω) and t̃′ = t′ exp(−Wλ(1 −
Φ(0, 2a)/Φ(0, 0))/ω). While this does not lead to an exact cancellation of the exponents,

the bipolaron to polaron mass ratio is linear in t′/t, and the bipolaron is therefore

expected to be light.

Another suggestion for bipolarons with light mass comes from the cuprate lattice.

It has often been suggested that the tight-binding structure of the cuprates is a square

lattice with nearest-neighbour hopping t and next-nearest-neighbour hopping t′. In the

presence of very stong Coulomb repulsion U , one may determine that the ground state

of the Lang-Firsov transformed Hamiltonian consists of nearest neighbour pairs with

degeneracy four. If one applies the anti-adiabatic approximation to such a lattice, one

determines that the hopping of such a bipolaron is first order in t′. We obtain a bipolaron

mass, 2(
√

2a)2t̃′ and a polaron mass 2a2t̃ where t̃ = t exp(−Wλ(1−Φ(0, a)/Φ(0, 0))/ω)

and t̃′ = t′ exp(−Wλ(1−Φ(0, a−R90a)/Φ(0, 0))/ω). Here R90 is the rotation operator.

Again, while we don’t get an exact cancellation of the exponents, we obtain a resulting

mass proportional to t′/t, and light bipolarons are likely §. Such pairing is an

appealing prospect, especially since the Hague has demonstrated the potential for d-

wave superconductivity mediated by Holstein-like electron-phonon interactions in the

intermediate coupling limit [29].

§ It is interesting to note that these lattices share a common feature with triangular lattices, namely

that it is possible for a single particle to hop 3 times to return to the point of origin, indicating a more

universal prospect for this phenomenon
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Figure 12. Pictorial demonstration of lattices which are expected to lead to

superlight and light bipolarons when long range electron-phonon interaction is present

in combination with a strong site-local Coulomb repulsion (Hubbard U) which stops

on-site binding. All degenerate nearest-neighbour bound states are shown as the thick

lines. The lightest bipolarons are expected on lattices with a trangular component,

where hopping between degenerate states can be realised with the same single hop

as the polaron (shown as arrows). Thus the bipolaron moves in the first order of the

polaron mass. We also show potential single hops for light bipolarons on the chain, and

the square lattice, which can be realised if next-nearest-neighbour hopping is present.

The superlight bipolarons are contrasted with traditional (Holstein) on-site bipolarons,

which move with two hopping events, the first one breaking the bound state (step ii),

and the second reforming it (step iii), thus such on-site (crawler) bipolarons cannot be

simultaneously small (well bound) and mobile.

7. Conclusions

The bipolaronic extension [4] of the BCS theory towards the strong interaction between

electrons and ion vibrations proved that the Cooper pairing in momentum space [1] and

the Ogg-Schafroth real-space pairing [27, 28] are two extreme limits of the same problem.

For a very strong electron-phonon coupling, polarons become self-trapped on a single

lattice site and bipolarons are on-site singlets. In the Holstein model of the zero-range

EPI their mass appears only in the second order of polaron hopping [18], so that on-site

bipolarons are very heavy. This estimate led some authors to the conclusion that the

formation of itinerant small polarons and bipolarons in real materials is unlikely [30],

and high-temperature bipolaronic superconductivity is impossible [31].

In fact, we have demonstrated here that small but light bipolarons could exist for

realistic values of the finite-range EPI with high-frequency optical phonons in staggered

ladder systems. Small light bipolarons are an essential precursor to high-temperature
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Figure 13. Pictorial demonstration of the interpolaron effective interaction which can

lead to superlight bipolarons (cross-section of anti-adiabatic limit of triangular lattice

with λ = 1). A strong on-site Coulomb repulsion (Hubbard U) stops on-site binding,

leading to binding between polarons on neighbouring sites when there is a long range

phonon mediated attraction. In this case, the potential well should lead to binding

of small bipolarons on the order of one lattice site. The long range Fröhlich electron-

phonon attraction may be found on quasi-2D lattices, where ions oscillate above planes

(as described in reference [9].

superconductivity, since the Bose-Einstein condensate has transition temperature that

is inversely proportional to mass, and wavefunctions may not overlap. Such bipolarons

are easily formed on lattices with triangular plaquettes in the presence of extremely

large on-site Coulomb repulsion, and persist to large EPI. This conclusion is backed

up by analytics in the anti-adiabatic approximation in the presence of large intersite

Coulomb attraction. Another important conclusion is that the triplet-singlet exchange

energy is of the first order in the hopping integral, and triplet bipolarons are heavier

than singlets in certain lattice structures at variance with simple intuitive expectations.

We summarise the types of lattices where light “crab” bipolarons may be formed in

figure 12, contrasting with the traditional Holstein bipolarons (bottom) and describe

the required effective interaction in figure 13 demonstrating the underlying physics of

such bipolarons.

Our CTQMC simulations lead us to believe that the following recipe is worth

investigating to look for very high-temperature superconductivity: (a) The parent

compound should be an ionic insulator with light ions to form high-frequency optical

phonons, (b) The structure should be quasi two-dimensional to ensure poor screening

of high-frequency c-axis polarized phonons, (c) A triangular lattice is required in

combination with strong, on-site Coulomb repulsion to form the small superlight Crab

bipolaron (d) Moderate carrier densities are required to keep the system of small

bipolarons close to the dilute regime. Many of these conditions are already met in

the cuprates.
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