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Abstract This paper investigates and improves a technique
known as Nonlinear Dynamic Data Reconciliation (NDDR) for a
real industrial process. NDDRS is a technique for data
reconciliation that requires an objective function to be
minimised subject to both algebraic and differential, equality
and inequality constraints. These constraints are obtained from
the mathematical description of the process and ensure that the
measurement data can be optimised to conform as closely as
possible to the true behaviour of the process. One of the
difficulties of using the original NDDR is that a rigorous process
dynamic model is required as a constraint. Unfortunately it is
very hard to establish a rigorous dynamic model for a complex
industrial process, particularly for data reconciliation purpose.
A transfer function matrix model has been introduced in this
new NDDR method. Therefore the rigorous dynamic model is
avoided. The real industrial data from FCCU is used to
illustrate the efficiency of the new NDDR method. Copyright C)
2006 IEEE.

Keywords: Fluid Catalytic Cracking Unit (FCCU); transfer
function; non-linear dynamic data reconciliation.

I. INTRODUCTION

TData processing and reconciliation allows the quality of
measurement data from a process to be improved upon,
which involves procedures for the reduction of the errors

present in the measurements of the process, and for the
estimation of those aspects of the process that are
unmeasured. The reasons for conducting data processing and
reconciliation are that it allows for a more detailed knowledge
of the state of the observed process, enabling decisions to be
made with the best possible information. An improved
knowledge of the state of the process allows for maintaining
the process at its optimal level, increasing product quantity or
quality and providing better safety and environmental levels.

1.1 Random errors and gross errors

There are two different types of error that can be present in a
data set. The first and most common are random errors and
the second and less frequent are gross errors. Random errors
can come from a number of sources; most commonly, they
are the result of measurement error and fluctuation of the
process. Random errors are expected to have a normal
distribution and an expected value of zero. Errors of this
type are the easiest to deal with, and there exist numerous
different methods by which they can be minimised. Gross
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errors (Ozyurt and Pike, 2004; Bagajewicz, 2000; Amand et
al., 2001), sometimes known as systematic errors, result
from occurrences such as instrument malfunction or
mis-calibration, process leaks or malfunctions, poor
sampling and inaccurate transcription of data. Gross errors
are usually larger and less frequent than random errors and
their expected values are not zero. The majority of data
reconciliation procedures are based upon the assumption that
errors are random with a zero mean; the presence of gross
errors invalidates their statistical basis. For this reason it is
necessary for gross errors to be identified and either
corrected or removed from the data set for data
reconciliation to be used.

1.2 Dynamic processes

Dynamic processes are those in which the process variables
change with time. Data reconciliation for these systems is
more complex than for steady state systems, primarily due to
the fact that the optimisation problem that is being solved
contains more complex constraints. Dynamic processes will
have more information available than a similarly sized steady
state process because of the presence of temporal redundancy
in the data between the different sampling times, in addition
to the spatial redundancy observed in steady state systems.

Wavelets are an extension of Fourier analysis and allow data
to be expressed in terms of averages and differences between
the data. Wavelet techniques can be used to reduce the errors
in data by taking into account the temporal redundancy in the
data. They do not however make use of the spatial
redundancy of the data. Additionally, wavelets can be used to
represent the differential equation present in the optimisation
problem, and therefore the problem can be discretised and
converted to a more standard algebraic problem. The
application of this technique is discussed in Kong et al.
(2002). Another approach taken to conducting dynamic data
reconciliation is to use commercial simulation software to
produce the model for the process, removing the need for a
complex equation based model. Methods can then be applied
to this model. This method is discussed by Alici & Edgar
(2002). Both Kong et al. (2002) and Alici & Edgar (2002)
applied their techniques to a continuous-flow stirred tank
reactor system. Both obtained better results than the
techniques they were compared with. Unfortunately, these
two methods cannot be directly compared as they use
different metrics to determine the performance of the
techniques and different inputs to the system.

1.3 Objectives of the paper

This paper focuses on the data reconciliation for random
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errors of dynamic processes, and in particular investigates the
application of dynamic data reconciliation techniques for
large scale complex industrial processes. The investigation is
based on the non-linear dynamic data reconciliation (NDDR)
technique. Since NDDR involves a rigorous dynamic model
for a complex industrial process the improved NDDR
proposed in this work aims to use a simple transfer function
model to replace the rigorous dynamic model. The rest paper
is organized as follows. Section 2 gives the description of the
original NDDR technique. Section 3 presents the application
of the original NDDR on a well-known example. Section 4
extends the NDDR technique to real measurement data taken
from an industrial Fluid Catalytic Cracking Unit (FCCU)
where a rigorous dynamic model is not available. Section 5 is
the conclusions.

(2)
(D[y, Y(t, ), a] =
cI ~~~T

E-W(tk )-Y (tk )] ' (t k ) y(tk )]

Where:
c: current time
T: variance-covariance matrix where TVi
tk: discrete time instance

Thus, the aim of the NDDR technique is to select the

optimum values of Y for each instance in time so that the

value of the objective function is minimised. The values of Y
that can be chosen are constrained by the need for them to
satisfy the constraints, which are themselves derived from the
description of the process on which the NDDR is being
performed.

II. DESCRIPTION OF NDDR

NDDR is a technique for data reconciliation that requires an
objective function to be minimised subject to both algebraic
and differential, equality and inequality constraints. These
constraints are obtained from the mathematical description of
the process and ensure that the measurement data can be
optimised to conform as closely as possible to the true
behaviour of the process. NDDR is applicable to dynamic
processes and where data is absent from gross errors. The
NDDR approach can be described mathematically as shown
in Equation 1 (Liebman et al., 1992).

Min 4y, (t),a](0)
A') 1

s.t.

f [di@) i(t)] o

h[y(t)]= 0

gQ(t)] > 0

Where:
$D: objective function;
y(t): estimate functions
y: discrete measurements;
o: measurement noise standard deviations;
f: differential equation constraints;
h: algebraic equality constraints;
g: inequality constraints

The nature of the problem for which NDDR is to be applied
will determine the nature of the objective function to be
used. For this study only a weighted least squares objective
function will be considered. The weighted least squares
objective function can be described mathematically as
shown in Equation 2 (Romagnoli & Sanchez, 2000).

III. APPLICATION OF NDDR TO A SIMULATED CSTR

This example is selected because it appears relatively
frequently in the literature on data reconciliation, and has
become to some extent the first call example in the
demonstration on the utility of any new technique in dynamic
data reconciliation. The example was first used in Liebman et
al. (1992), and also appears in Romagnoli & Sanchez (2000),
as well as in the works of Alici & Edgar (2002) and Kong et
al. (2002).

Fig. 1 shows a CSTR (continuous stirred tank reactor) with a
first order, exothermic reaction and defined by a
mathematical model shown in Equation 3 (Liebman et al.,
1992) with the parameters shown in Table 1.

FIG. 1 CSTR

dA-q(AO A)- KA
dt v

dT ±q (To -T)+ AH KA UAR (T - T)cit V pCp pcpV

(3)

Where:
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-Ed4
K=K e T
A0: Feed concentration, gmol cm-3
To: Feed temperature, K
A: Tank concentration, gmol cm-'
T. Tank temperature, K

CSTR is modelled over a period of250 seconds, with samples
taken every 2.5 second. The process was initialised at a steady
state condition with the following values. AO = 6.5, TO = 3.5,
A = 0.1531, and T = 4.6091. At a time of 75s, the feed
concentration is stepped from 6.5 to 7.5. The simulated values
are treated as the process measurements by adding noise to
them. The noise added to the simulated values was normally
distributed with a mean of zero and a standard deviation of
0.05. The simulated values are denoted as a solid line, the
measurements as a dotted line in Fig. 2.

Table 1 Parameters of CSTR
Parameter
q
V
AHr
p
Cp
U
AR
TC
Ko
EA

Value
10.0
1000.0
-27,000.0
0.001
1.0
5.0 x10-4
10.0
340.0
7.86 x 1012
14,090.0
1.0

Units
--T
cm s

cm3
cal gmol'-
g cm-3
cal (g K)-1
cal (cm2 s K)-1
cm2
K
s

K

Using Equation 2 as the optimal objective in NDDR for the
above CSTR, NDDR can be straightforwardly applied to
CSTR. We implement NDDR in MATLAB by calling an
inbuilt MATLAB function fmincon. The fmincon function
requires two input functions, one describing the objective
function to be minimised, and the other describing the
constraints on the minimisation variables.

The results of the reconciliation are shown in Fig. 2. As can
be seen, the estimates produced by the reconciliation contain
considerably less noise than the measurements on which
they were performed.

Table 2 shows numerically the reduction in the standard
deviation of the error between the measurements and the
estimates, along with a comparison with the reconciliation
carried out by Liebman et al. (1992) on the same process
under the same conditions. The results are similar to those of
Liebman et al. (1992), providing confirmation that the NDDR
technique has been correctly implemented in MATLAB.
These results were obtained using a moving window of 10
time steps, i.e. 25 seconds.

As can be seen from Table 2, the estimates for the feed
concentration (AG) have a large increase in standard
deviation. This is caused by the lag, which can be seen from

the graph, where the estimates fail to respond quickly to the
step change in the feed concentration. This lag comes about
due to the assumption that the inputs to the CSTR are
constant. The size of the lag is directly related to the length of
the moving window. The estimates for the feed concentration
outside ofthe area affected by the lag have a reduced standard
deviation, but overall this reduction is masked by the effect of
the lag.

IV. EXTENTION OF NDDR TO A REAL INDUSTRIAL
PROCESS - FCCU

It will be very difficult to build a rigorous mathematical
model for any real industrial processes. By introducing an
acceptable step change into the processes it is possible to
identify a transfer function model for them. In this section we
investigate the efficiency ofNDDR by replacing the rigorous
mathematical models with transfer function models. An
industrial fluid catalyst reactor unit (FCCU) is used as a case
study in this investigation.

4.1 FCCU transfer function models

A typical FCC process is shown in Fig. 3. It includes a
reactor-regenerator section, main fractionators and gas
processing facilities and converts heavy oils into gasoline,
light cycle oil (LCO), butanes and gas. The combined feed is
preheated against the heavy cycle gas oil pump around from
the main fractionators, then combined with regenerated
catalyst at the bottom of the riser and then reacts
endothermically in the riser to form lighter hydrocarbons. A
series of step changes have been introduced into the
operation of the FCC process. The responses of step change
in the temperature (TIC2201) and the flow rate (FIC2201) of
the combined feed are described in the following transfer
function model shown in Equation 4. The output variables
are the temperatures of the 1st and 2nd regenerators (Tregl,
Treg2), the carbon dioxide concentration of the 1st
regenerator (CI), and the oxygen concentration of the 2nd
regenerator (C2). The input variables are the temperature
and the flow rate of the feed (Tf, Ff).

G =
9lII g12 g13 g14

Lg21 g22 g23 g24 j

(4)

where
0.0085(1+ s)e-12s 0.085e-22s
59.2s2 +7.7s+1 13.7s 27.4s+1

0.32e-" 0.175(1+2s)e-3s
gl3= 2 gl4= 259.2s2 +8.3s+1 15s2 +5s+1

0.024e 27s 0.085e-22s
921= 2 g22= 230.9s +7.8s+1 8.16s +±4s+1

- 0.47(1 -15s)e-20s - 0.6e-24s
lOOs2 +9s+1 30.9s2 +7.8s+1
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Fig. 3. FCCU reactor-regenerator system (Yang et al., 1996)

Using the above transfer functions to replace the equality
constraints shown in Equation tin NDDR the model
constraint is implemented in terms of the MatLab inbuilt
function such as ilaplace, which allows the inverse Laplace
transform, therefore the data reconciliation is carried out.
The results of the reconciliation are shown in Fig. 4 and
Table 3. It can be seen that the estimates achieve a good
reduction in error during the dynamic portions of the
responses. However, outside of these portions the estimates
are little more than a smoothing of the measurements. The
reason that the reduction in standard deviation is so low for
the responses to the transfer functions g23 and g24 is that the
measurements of these responses deviate significantly from
the response defined by the transfer function, particularly in
the later sample times. This causes the values of standard
deviation to be dominated by these measurements and
results in the masking of any noticeable reduction in the
errors. This points out that replacing a rigorous mathematical
model with a transfer function model in NDDR is only
suitable for the range of the transfer function model.

function model to replace the rigorous mathematical model
in the data reconciliation. It has been shown that the NDDR
technique has some utility in a real industrial application by
employing a transfer function model, however its application
is very much limited within the range of the transfer function
models, and has not been ideal outside the range.
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V. CONCLUSIONS

The NDDR technique described in Section 2 has been
successfully implemented in two case studies in Section 3
and 4 and demonstrated to be a capable method of
performing data reconciliation on process measurements.
Large reductions in the random errors present in the
measurements of the process have been made even when the
process is in a highly dynamic state.
Although the NDDR technique performed well on a process
that was described by a system of differential equations, one
of the main weaknesses of the technique was using a
rigorous mathematical model as an equality constraint. The
way of overcoming this weakness is to use a transfer
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Table 2 Results for step change in feed concentration

Measurement Error Estimate Errc

SD Mean

0.0578
0.0509
0.0512
0.0521

5.63xlO
7.58x10-4
1.86x10-3
-6.96xl 0-4
_ _ _ ___..

)r %SD
%SD Reduction

SD Reduction (Liebman,
1992)

0.1833
0.0142
0.0084
0.0121

-217.3
72.11
83.58
76.67

65.7
87.8
77.1
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Fig. 2. CSTR response with measurements and estimates
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Table 3 Results for reconciliation based on transfer function models

Transfer Measurement Error
function Mean SD

gil -0.0047 0.0797
912 0.0154 0.2025

913 -1.0757 2.8875
gl4 -2.1550 3.1702
g21 0.0563 0.0825
922 -0.1593 0.4470
923 -2.2802 3.7999
g24 -4.8702 6.9560

Estimate Error
Mean

-0.0077
0.0256
-0.6619
-1.7882
0.0533
-0.1448
-2.0233
-4.6273

SD
0.0467
0.1099
1.3307
2.2082
0.5860
0.3894
3.5954
6.8008

%SD
Reduction

41.41
45.73
53.92
30.35
28.97
12.89
5.38
2.23

Fig. 4. Results of data reconciliation for FCCU
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