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Abstract

In the present paper, we introduce a variant of Gold-style learners that is not required to infer pre-
cise descriptions of the languages in a class, but that must find descriptive patterns, i. e., optimal
generalisations within a class of pattern languages. Our first main result characterises those indexed
families of recursive languages that can be inferred by such learners, and we demonstrate that this
characterisation shows enlightening connections to Angluin’s corresponding result for exact infer-
ence. Using a notion of descriptiveness that is restricted to the natural subclass of terminal-free
E-pattern languages, we introduce a generic inference strategy, and our second main result char-
acterises those classes of languages that can be generalised by this strategy. This characterisation
demonstrates that there are major classes of languages that can be generalised in our model, but not
be inferred by a normal Gold-style learner. Our corresponding technical considerations lead to deep
insights of intrinsic interest into combinatorial and algorithmic properties of pattern languages.

1 Introduction
In Gold’s intensively studied learning paradigm of language identification in the limit from positive data
(Gold, 1967), it is a requirement for the computational learner to infer, for any positive presentation of
any language in some class, an exact description of that language. While this maximum accuracy of the
output of the inference procedure is clearly a natural goal, it has a number of downsides, the most obvious
one being the fact that it can lead to significant limitations to the learning power of the model. From a
more applied point of view, there is another important reason why one might wish to relax it and settle
for receiving an approximation of the language from the learner: depending on the class of languages to
be inferred, the corresponding grammars or acceptors might have undesirable properties, i. e., they might
have computationally hard decision problems or be incomprehensible to a (human) user. Thus, in various
settings it might be perfectly acceptable for an inference procedure to output a compact and reasonably
precise approximation of the language instead of producing a precise yet arbitrarily complex grammar.

In the present paper, we introduce and study such a variant of Gold’s model, where the requirement of
exact language identification is dropped and replaced with that of inference of easily interpretable approxi-
mations. More precisely, we consider a learner that, for any language it reads, must converge to a consistent
pattern, i. e., a finite string that consists of variables and of terminal symbols and that can be turned into
any word of the language by substituting arbitrary strings of terminal symbols for the variables. In addition
to being seen as mere descriptions of common features of words in a given language, such a pattern α can
also be interpreted as a generator of a formal language L(α), the so-called pattern language (cf. Angluin
(1980a)), which is simply the maximum set of words the pattern is consistent with. Hence, referring to this
terminology, we can state that our learner has to output a pattern generating a language that is a superset of
the input language, which means that our approach does not yield an arbitrary approximation of a language,
but rather a generalisation. Even though many classes of pattern languages have a number of NP-complete or
undecidable basic decision problems (see, e. g., Angluin (1980a), Jiang et al. (1994) and Freydenberger and
Reidenbach (2010)), patterns (or related concepts, such as regular expressions and their various extensions
implemented in today’s programming languages and text editors, see Câmpeanu et al. (2003)) are widely
used when commonalities of words are to be specified or interpreted by a human user, which demonstrates
that they are a worthwhile concept in the context of our paper.
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When inferring consistent patterns instead of precise descriptions, it is of course vital to develop and
employ a notion of high-quality patterns, so that the inference procedure does not lead to an overly imprecise
result. Otherwise, the learner could always output the pattern α := x1 (where x1 is a variable), which
is consistent with every language, and this approach would obviously neither lead to a rich theory nor to
practically relevant results. In our model, the inference procedure shall therefore be required to converge
to a pattern δ that is descriptive of the language L (with respect to a class PAT? of pattern languages).
This means that δ must be consistent with L, L(δ) must be included in PAT?, and there is no pattern δ′
satisfying L(δ′) ∈ PAT? and L ⊆ L(δ′) ⊂ L(δ); in other words, a pattern is descriptive of a language if
there is no other pattern providing a closer match for the language. Since descriptiveness captures a natural
understanding of patterns providing a desirable generalisation of languages and, furthermore, descriptive
patterns can be used to devise Gold-style learners precisely identifying classes of pattern languages from
positive data, this concept has been thoroughly investigated (see, e. g., Angluin (1980a), Jiang et al. (1994)
and Freydenberger and Reidenbach (2009)). While established definitions of descriptiveness often restrict
their view to patterns covering finite languages and normally use the full class of E- or NE-pattern languages
(to be formally introduced in Section 2) as the class PAT? of admissible pattern languages, we allow a
descriptive pattern to cover a finite or an infinite language, and we have a class PAT? that can be arbitrarily
chosen. Both of these extensions of the original definition are absolutely straightforward.

To summarise our model of inference, we consider a learner that reads a positive presentation of a lan-
guage and, after having seen a new input word, outputs a pattern, the so-called hypothesis. We then say that,
for a class L of languages and a class PAT? of pattern languages, the learner PAT?-descriptively generalises
L if and only if, for every positive presentation of every language L ∈ L, the sequence of hypotheses pro-
duced by the learner converges to a pattern δ that is descriptive of L with respect to the class PAT?. A more
formal definition of our model is given in Section 3.1.

The main difference between descriptive generalisation and related approaches (see, e. g., Arimura et al.
(1994), Mukouchi (1994), Kobayashi and Yokomori (1995), Kobayashi and Yokomori (1997) and, indirectly,
Jain and Kinber (2008)) is that we have a distinct split between a class L of languages to be inferred and
an arbitrary class PAT? of pattern languages determining the set of admissible hypotheses. This leads to a
compact and powerful model that yields interesting insights into the question of to which extent the generalis-
ability of L depends on properties of L or of PAT?. We discuss this topic in Section 3.2, and we demonstrate
in Section 3.3 that descriptive generalisation can be interpreted as a natural instance of a very general and
simple inference model which, to the best of our knowledge, has not been considered so far.

In Section 4, we investigate our model for a fixed and rich class PAT?, namely the class of terminal-
free E-pattern languages, i. e., the class of all pattern languages generated by patterns not containing any
terminal symbols, where the empty word may be substituted for the variables in the pattern. Our studies
reveal that, for this choice of PAT?, descriptive generalisation and inductive inference from positive data
are incomparable, and they show that there are major and natural classes of formal languages that can be
descriptively generalised according to our model, but not precisely inferred in Gold’s model. Technically,
our decision to focus on terminal-free E-pattern languages leads to a number of substantial combinatorial
challenges for pattern languages, and we present various respective insights and tools of intrinsic interest.

Due to space constraints, Sections 2.2 and 4 do not include any proofs of formal statements.

2 Preliminaries
This paper is largely self-contained. For language theoretic and recursion theoretic notations not explicitly
defined, Rozenberg and Salomaa (1997) and Rogers (1992) can be consulted, respectively.

2.1 Definitions
Let N := {0, 1, 2, 3, . . .} and let ∞ denote infinity. The symbols ⊆, ⊂, ⊇ and ⊃ refer to subset, proper
subset, superset and proper superset relation, respectively. The symbols P and \ denote the power set and
the set difference, respectively. For an arbitrary alphabet A, a string (over A) is a finite sequence of symbols
from A, and λ stands for the empty string. The symbol A+ denotes the set of all nonempty strings over A,
and A∗ := A+ ∪ {λ}.

For any alphabet A, a language L (over A) is a set of strings over A, i. e. L ⊆ A∗. A language L is
empty if L = ∅; otherwise, it is nonempty. A class L of languages (over A) is a set of languages over A, i. e.
L ⊆ P(A∗). Let FINA denote the class of all finite languages over A.

For the concatenation of two stringsw1, w2 we writew1 ·w2 or simplyw1w2. We say that a string v ∈ A∗
is a factor of a string w ∈ A∗ if there are u1, u2 ∈ A∗ such that w = u1vu2. The notation |K| stands for the
size of a set K or the length of a string K; the term |w|a refers to the number of occurrences of the symbol a
in the string w. For any w ∈ Σ∗ and any n ∈ N, wn denotes the n-fold concatenation of w, with w0 := λ.
Furthermore, we use · and the regular operations ∗ and + on sets and strings in the usual way.



For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies h(vw) = h(v)h(w) for all
v, w ∈ A∗. Given morphisms g : A∗ → B∗ and g : B∗ → C∗ (for alphabets A, B, C), their composition
h ◦ g is defined by h ◦ g(w) := h(g(w)) for all w ∈ A∗.

A morphism h : A∗ → B∗ is said to be nonerasing if h(a) 6= λ for all a ∈ A. For any string w ∈ C∗,
where C ⊆ A and |w|a ≥ 1 for every a ∈ C, the morphism h : A∗ → B∗ is called a renaming (of w) if
h : C∗ → B∗ is injective and |h(a)| = 1 for every a ∈ C.

Let Σ be a (finite or infinite) alphabet of so-called terminal symbols (or: letters) and X an infinite set of
variables with Σ ∩ X = ∅. We normally assume {a, b, . . .} ⊆ Σ and {x1, x2, x3 . . .} ⊆ X . A pattern is
a string over Σ ∪X , a terminal-free pattern is a string over X and a word is a string over Σ. The set of all
patterns over Σ ∪X is denoted by PatΣ. For any pattern α, we refer to the set of variables in α as var(α),
and to the set of terminal symbols in α as symb(α).

A morphism σ : (Σ ∪X)∗ → (Σ ∪X)∗ is called terminal-preserving if σ(a) = a for every a ∈ Σ. A
terminal-preserving morphism σ : (Σ ∪X)∗ → Σ∗ is called a substitution.

The NE-pattern language LNE,Σ(α) of a pattern α ∈ PatΣ is given by

LNE,Σ(α) := {σ(α) | σ : (Σ ∪X)∗ → Σ∗ is a nonerasing substitution},

and the E-pattern language LE,Σ(α) of α is given by

LE,Σ(α) := {σ(α) | σ : (Σ ∪X)∗ → Σ∗ is a substitution}.

Let ePATΣ denote the class of all E-pattern languages over Σ, and ePATtf,Σ the class of all terminal-free
E-pattern languages over Σ. Let PAT?,Σ be a class of NE-pattern languages or a class of E-pattern languages
over Σ, and let Pat?,Σ be the corresponding class of generating patterns. If the correspondence is clear, we
write L(α) instead of LE,Σ(α) or LNE,Σ(α) for any α ∈ Pat?,Σ.

Let PAT?,Σ be a class of NE-pattern languages or a class of E-pattern languages over Σ. We say that a
pattern δ ∈ (Σ∪X)+ is PAT?,Σ-descriptive of a language L ⊆ Σ∗ if and only if L(δ) ∈ PAT?,Σ, L(δ) ⊇ L,
and there is no pattern α with L(α) ∈ PAT?,Σ satisfying L ⊆ L(α) ⊂ L(δ). Furthermore, DPAT?,Σ(L)
denotes the set of all patterns that are PAT?,Σ-descriptive of L.

Let L be a class of languages over some alphabet A. Then L is said to be indexable provided that there
exists an indexing (Li)i∈N of languages Li such that, first, L = {Li | i ∈ N} and, second, there exists a
total computable function χ which uniformly decides the membership problem for (Li)i∈N – i. e., for every
w ∈ A∗ and for every i ∈ N, χ(w, i) = 1 if and only if w ∈ Li . In this case, we call L = (Li)i∈N an indexed
family (of recursive languages). Of course, in this notation for an indexed family (which conforms with the
use in the literature) the equality symbol “=” does not refer to an equality in the usual sense, but is merely a
symbol indicating that L contains all languages in (Li)i∈N and vice versa.

2.2 Preliminary Results
Obviously, the definition of a descriptive pattern is based on the inclusion of pattern languages, which is an
undecidable problem for both the full class of NE-pattern languages and the full class of E-pattern languages
(cf. Jiang et al. (1995), Freydenberger and Reidenbach (2010)). A significant part of our subsequent technical
considerations, however, is restricted to terminal-free E-pattern languages, where the inclusion problem is
known to be decidable. This directly results from the following characterisation:

Theorem 1 (Jiang et al. (1994)) Let |Σ| ≥ 2. For every α, β ∈ X+, LE,Σ(α) ⊆ LE,Σ(β) holds if and only
if there is a morphism φ : X∗ → X∗ with φ(β) = α.

Unfortunately, this problem is NP-complete:

Theorem 2 (Ehrenfeucht and Rozenberg (1979)) Let Σ be an alphabet with |Σ| ≥ 2. Then the inclusion
problem for ePATtf,Σ is NP-complete.

On the other hand, in conjunction with Reidenbach and Schneider (2009), a recent result by Holub (2009)
demonstrates that the equivalence problem can be decided in polynomial time:

Theorem 3 There is a polynomial-time algorithm deciding, for any pair of terminal-free patterns α, β and
for any alphabet Σ with |Σ| ≥ 2, on whether LE,Σ(α) = LE,Σ(β).

As shown by Freydenberger and Reidenbach (2009), not every language has an ePATtf,Σ- or an ePATΣ-
descriptive pattern:

Theorem 4 There is an infinite sequence (βn)n≥0 over X+ such that, for every alphabet Σ with |Σ| ≥ 2,
DePATtf,Σ(LΣ) = DePATΣ(LΣ) = ∅ holds for the language LΣ :=

⋃
n≥0 LE,Σ(βn).



Note that LΣ is an infinite language (and, in fact, an infinite union of languages from ePATtf,Σ). In contrast
to this, Jiang et al. (1994) shows that every finite language has an ePATΣ-descriptive pattern. This is also
true when considering ePATtf,Σ-descriptive patterns:

Proposition 5 For every Σ with |Σ| ≥ 2 and every finite nonempty S ∈ FINΣ, DePATtf,Σ(S) 6= ∅, and a
δ ∈ DePATtf,Σ(S) can be effectively computed.

While Proposition 5 proves the existence of an ePATtf,Σ-descriptive pattern for every finite nonempty set,
its proof makes use of a procedure that computes a descriptive pattern in a costly manner, since it solves
the NP-complete inclusion problem (cf. Theorem 2) for an exponential number of patterns. Indeed, there is
probably no algorithm that solves this problem in polynomial time:

Theorem 6 Let Σ be an alphabet with |Σ| ≥ 2. If P 6= NP, then there is no polynomial-time algorithm
computing, for any finite set S of words, a pattern that is ePATΣ-descriptive of S.

Theorem 6 addresses a problem left open by Jiang et al. (1994), and it provides a result that is stronger than
the corresponding statement by Angluin (1980a) on NE-descriptive patterns. Since Theorem 6 can be proved
using terminal-free patterns only, we can strengthen the corresponding result as follows:

Corollary 7 Let Σ be an alphabet with |Σ| ≥ 2. If P 6= NP, then there is no polynomial-time algorithm
computing, for any finite set S of words, a pattern that is ePATtf,Σ-descriptive of S.

3 Inferring Descriptive Generalisations
In the present section, we formally introduce our notion of inferring descriptive generalisations, establish
some of its basic properties (mainly by characterising, for any class of pattern languages determining the
set of valid hypotheses, those indexed families that can be generalised in our model) and, finally, present a
much more general inference paradigm that captures the essence of our approach. If we wish to compare
Gold’s well-known model of language identification in the limit from positive data (cf. Gold (1967)) with our
model, then we refer to the former occasionally as LIM-TEXT. We use the same notation for the class of all
classes of languages that can be inferred in that model; the meaning of this term shall therefore follow from
the context.

3.1 The Inference Paradigm
We formalise our explanations on the model given in Section 1 as follows: For any alphabet Σ and any
nonempty language L ⊆ Σ∗, we call a total function t : N → Σ∗ a text of L if and only if it satisfies
{t(i) | i ∈ N} = L. Moreover, for every text t and every n ∈ N, tn encodes the first n values of t in a single
string, i. e. tn := t(1)∇ t(2)∇ t(3)∇ . . . ∇ t(n) with∇ 6∈ Σ; additionally, we define t[n] := {t(i) | i ≤ n}.
Finally, text(L) denotes the set of all (computable and non-computable, repetitive and non-repetitive) texts
of a language L.

Let L be a class of nonempty languages over an alphabet Σ, and let PAT?,Σ be a class of NE-pattern
languages or a class of E-pattern languages over Σ. Then L is PAT?,Σ-descriptively generalisable (or,
if PAT?,Σ is understood, (descriptively) generalisable for short) if and only if there exists a computable
function S : (Σ∪{∇})∗ → (Σ∪X)+ such that, for every L ∈ L and for every t ∈ text(L), S(tn) is defined
for every n ∈ N, and there is a δ ∈ (Σ ∪X)+ with δ ∈ DPAT?,Σ(L) and there is an m ∈ N with S(tn) = δ
for every n ≥ m. We call S a (generalisation) strategy and, for every n ∈ N, S(tn) a hypothesis of S. The
notation DGPAT?,Σ refers to the class of all classes of languages that are PAT?,Σ-descriptively generalisable.

Consequently, and as already mentioned in Section 1, we have an inference model where the class to
be inferred and the hypothesis space (we shall use this term in a rather informal manner for both the class
PAT?,Σ and any set Pat? of patterns satisfying PAT?,Σ = {LΣ(α) | α ∈ Pat?}) are entirely different
objects. We feel that this feature precisely reflects our motivation as outlined in Section 1, and it establishes
the difference of our approach to a number of related models.

3.2 Fundamental Insights into the Model
We now discuss some basic properties of descriptive generalisation without considering a specific class of
pattern languages determining the hypothesis space. At first glance, the definitions of descriptive generali-
sation and of the LIM-TEXT model are closely related, and our first observation states that they are indeed
equivalent if they are applied to any class of pattern languages:

Proposition 8 Let PAT?,Σ be a class of pattern languages. Then PAT?,Σ ∈ LIM-TEXT if and only if
PAT?,Σ ∈ DGPAT?,Σ .



Proof: Directly from the definitions of LIM-TEXT and DGPAT?,Σ .

While descriptive generalisation and inductive inference from positive data, thus, seem to be very similar,
there are major differences between these two models. In fact, there are classes that can be descriptively
generalised, although neither the class nor the hypothesis space can be exactly inferred from positive data:

Proposition 9 There exists a class L of languages and a class PAT?,Σ of pattern languages satisfying L /∈
LIM-TEXT, PAT?,Σ /∈ LIM-TEXT, and L ∈ DGPAT?,Σ .

Proof: The statement follows from our Corollaries 26 and 31 in Section 4 and the fact that ePATtf,Σ /∈
LIM-TEXT for |Σ| = 2 (cf. Reidenbach (2006)).

Since the definition of descriptive generalisation allows any class of pattern languages to be chosen as a
hypothesis space, we can even devise a maximally powerful (yet utterly useless) generalisation strategy:

Proposition 10 Let Σ be an alphabet. There exists a class PAT?,Σ of pattern languages such that every
class L of languages over Σ satisfies L ∈ DGPAT?,Σ .

Proof: Let PAT?,Σ := {LE,Σ(x1)}. Since x1 is PAT?,Σ-descriptive of every language L ⊆ Σ∗, a strategy
S that constantly outputs x1 generalises L.

Obviously, the substantial gap between the LIM-TEXT model and descriptive generalisation illustrated
by Proposition 10 is based on a proof that uses a trivial notion of descriptiveness. In Section 4, we shall
demonstrate that there are similarly deep differences between both models if a natural and nontrivial class of
pattern languages, namely ePATtf,Σ, is used as admissible hypotheses for the generalisation process.

The main result of the present section is the following characterisation of descriptively generalisable in-
dexed families of recursive languages. While our model as well as our studies in Section 4 consider descrip-
tive generalisations of arbitrary classes of languages, this restriction facilitates an interesting comparison of
our result to Angluin’s characterisation of those indexed families that are inferrable in the LIM-TEXT model
(see Angluin (1980b)). It is also worth noting that the subsequent argument cannot be based on strong insights
into the descriptiveness of patterns, since we deal with arbitrary classes of pattern languages.

Theorem 11 Let Σ be an alphabet, let L = (Li)i∈N be an indexed family of nonempty recursive languages
over Σ, and let PAT?,Σ be a class of pattern languages. L = (Li)i∈N ∈ DGPAT?,Σ if and only if there are
effective procedures d and f satisfying the following conditions:

(i) For every i ∈ N, there exists a δd(i) ∈ DPAT?,Σ(Li) such that d enumerates a sequence of patterns
di,0, di,1, di,2, . . . satisfying, for all but finitely many j ∈ N, di,j = δd(i).

(ii) For every i ∈ N, f enumerates a finite set Fi ⊆ Li such that, for every j ∈ N with Fi ⊆ Lj , if
δd(i) /∈ DPAT?,Σ(Lj), then there is a w ∈ Lj with w /∈ Li.

Proof: We begin with the if direction. In our proof, F (m)
i refers to the subset of Fi that is enumerated by f

in m ∈ N steps of the computation.
We define a generalisation strategy S as follows: For any text t and for any m ∈ N, when given tm as

an input, S outputs the pattern di,m, where i ∈ N is the smallest index satisfying: (a) t[m] ⊆ Li and (b)
F

(m)
i ⊆ t[m]. If no such i exists, then S outputs d0,0.

Since L = (Li)i∈N is an indexed family, which means that the membership problem is uniformly decid-
able for all i and for all w ∈ Σ∗, and d and f are effective, it is obvious that S is computable and defined for
every input tm.

We now demonstrate that S PAT?,Σ-descriptively generalises L = (Li)i∈N if (i) and (ii) are satisfied.
Thus, we choose an arbitrary n ∈ N and an arbitrary text t of Ln, and we show that S, when reading t,
converges to a pattern that is PAT?,Σ-descriptive of Ln. Before we start our actual reasoning, we determine a
value m0 ∈ N such that a number of vital parameters for the computation of S(tm0) have already stabilised:
Let m1 ∈ N be sufficiently large such that, for every k ∈ N with k ≤ n and Lk 6⊇ Ln, t[m1] contains a
word w satisfying w /∈ Lk. The value m1 must exists since Lk 6⊇ Ln and t is a text of Ln. Let m2 ∈ N be
sufficiently large such that, for every k ∈ N with k ≤ n, dk,m = δd(k) for every m ≥ m2. The value m2

must exists due to (i). Let m3 ∈ N be sufficiently large such that, for every k ∈ N with k ≤ n, F (m3)
k = Fk.

The value m3 must exist since, according to (ii), Fk is finite. Let m4 ∈ N be sufficiently large such that
Fn ⊆ t[m4]. The value m4 must exist since t is a text of Ln and, according to (ii), Fn ⊆ Ln. Then
m0 := max{m1,m2,m3,m4, n}.

Referring to these definitions, our proof of the if direction is based on the following Claims:

Claim 1. For every m ≥ m0, n satisfies t[m] ⊆ Ln, and F (m)
n ⊆ t[m].



Proof (Claim 1). The first part of the statement holds since t is a text of Ln; the second part holds because of
m ≥ m0 ≥ m4. (Claim 1)

Claim 2. For every m ≥ m0, S(tm) ∈ DPAT?,Σ(Ln).

Proof (Claim 2). Let S(tm) = dk,m. By definition, S outputs the pattern dk,m for the smallest index k ≤ m
satisfying conditions (a) and (b), or it outputs the auxiliary hypothesis d0,0 if such a k does not exist. Due to
Claim 1, and since m ≥ m0, we know that there exists at least one index (namely n) satisfying (a) and (b)
for tm. Thus, m ≥ m0 ≥ n implies that S does not choose to output its auxiliary hypothesis. Therefore, the
following statements hold true for k: (1) k ≤ n (since S outputs dk,m for the smallest k satisfying conditions
(a) and (b) of the definition of S); (2) dk,m = δd(k) (because ofm ≥ m0 ≥ m2 in conjunction with statement
(1)); (3) t[m] ⊆ Lk (because of condition (a)); (4) Fk ⊆ t[m] ⊆ Ln (because of m ≥ m0 ≥ m3 in
conjunction with statement (1), and due to condition (b)).

Now assume to the contrary that S(tm) = dk,m /∈ DPAT?,Σ(Ln). Due to statement (2), this means that
δd(k) /∈ DPAT?,Σ(Ln). Then statement (4) and condition (ii) of the Theorem imply that there exists a word
w ∈ Ln \ Lk which, due to m ≥ m0 ≥ m1 in conjunction with statement (1), satisfies w ∈ t[m]. Hence,
t[m] 6⊆ Lk. This contradicts statement (3). (Claim 2)

Claim 3. There is a pattern δ and an m′ ≥ m0 such that, for every m ≥ m′, S(tm) = δ.

Proof (Claim 3). Due to statement (1) in the proof of Claim 2 andm ≥ m0 ≥ m2, there is only a finite number
of possible hypotheses – namely δd(0), δd(1), . . . , δd(n) – that S can output when reading tm. Therefore, it is
sufficient to show that a hypothesis, once it has been discarded, is not chosen by S anymore. More precisely,
we prove that if, for an l0 ≥ m, S(tl0) = δd(k) and S(tl0+1) 6= δd(k), then, for every l ≥ l0 + 1, there exists
a k′ 6= k with S(tl) = δd(k′).

Since l0 ≥ m ≥ m3, S(tl0) = δd(k) implies (A) t[l0] ⊆ Lk and (B) Fk ⊆ t[l0]. By definition,
t[l0 + 1] ⊇ t[l0], and therefore (B) is satisfied for tl0+1, too. Thus, the only event that can trigger a change
of the hypothesis when extending tl0 to tl0+1 is t[l0 + 1] 6⊆ Lk; this implies M 6⊆ Lk for all supersets M of
t[l0 + 1]. Hence, for every l ≥ l0+1, there is a k′ 6= k with S(tl) = δd(k′). (Claim 3)

To summarise, Claim 3 shows that S converges when reading t to a pattern δ, and Claim 2 demonstrates that
δ is PAT?,Σ-descriptive of Ln. This concludes the proof of the if direction.

We continue with the only if direction. Hence, let S be a computable generalisation strategy that PAT?,Σ-
descriptively generalises L = (Li)i∈N, i. e., for every i and for every text t of Li, S converges to a pattern
that is PAT?,Σ-descriptive of Li. We show that this implies the existence of effective procedures d and f
satisfying conditions (i) and (ii).

Since L = (Li)i∈N is an indexed family, there is an effective procedure enumerating, for every i ∈ N, all
words wi,0, wi,1, wi,2, . . . in Li. Furthermore, we can use this to define a second effective procedure which
enumerates, for every i ∈ N, all finite sequences si,0, si,1, si,2, . . . of words in Li. Note that each sequence
si,j , j ∈ N, may contain repetitions of words. Furthermore, if Li is finite, we can nevertheless easily make
sure that the output of the above procedures is infinite for every i.

We now give a procedure that defines the behaviour of d and f :

Procedure SIM S
Let i ∈ N, and let wi,0, wi,1, wi,2, . . . and si,0, si,1, si,2, . . . be as given above. Go to Stage 0.

Stage 0. Define t0 := wi,0, Fi := {wi,0}. Define x := 0 and di,x := S(t0). Go to Stage 1.

Stage n (n ≥ 1). For every j = 0, 1, 2, . . . proceed as follows: Consider si,j = (ŵj,0, ŵj,1, . . . , ŵj,y),
y ∈ N, and define t′j := ŵj,0 ∇ ŵj,1 ∇ . . . ∇ ŵj,y . Define x := x + 1 and di,x = S(tn−1 ∇ t′j). If
S(tn−1 ∇ t′j) 6= S(tn−1), then define tn := tn−1 ∇ t′j ∇ wi,n, Fi := Fi ∪ {ŵj,0, ŵj,1, . . . , ŵj,y, wi,n}, and
go to Stage n+ 1.

Since S and the procedures enumerating the wi,j and si,j , i, j ∈ N, are computable, the same holds
for SIM S. Consequently, effective procedures d and f which, for all i ∈ N, uniformly produce sequences
di,0, di,1, di,2, . . . and enumerate Fi, respectively, can be directly derived from SIM S.

We now show that d and f satisfy conditions (i) and (ii). Our corresponding reasoning makes use of the
following fact:

Claim 4. For every i ∈ N there exists an n0 such that procedure SIM S, when given input i, enters Stage n0,
but it does not enter Stage n0 + 1.



Proof (Claim 4). Assume to the contrary that procedure SIM S enters an infinite number of stages. This
implies that S does not converge to a fixed pattern, since SIM S goes to the next stage if and only if S
changes its hypothesis for the given input. However, since all considered words are contained in Li, each
transition from Stage n to Stage n + 1 adds the word wi,n to tn, and {wi,j | j ∈ N} = Li, the string
limn→∞ tn is an encoding of a text t of Li. Since S PAT?,Σ-descriptively generalises L = (Li)i∈N, this
means that S, when reading t, must converge to a pattern. This is a contradiction. (Claim 4)

By definition, for every i ∈ N, SIM S produces an infinite sequence of patterns. It outputs a pattern di,x+1

that differs from di,x only if it moves from one stage to another. Thus, due to Claim 4 and for the cor-
responding x0 ∈ N, the sequence of patterns di,x0 , di,x0+1, di,x0+2, . . . produced in Stage n0 satisfies, for
every j ∈ N, di,x0+j = di,x0 . Furthermore, due to fact that the constructed input is a text of Li, S needs to
converge to a PAT?,Σ-descriptive pattern of Li. This implies that di,x0 = δd(i) for a δd(i) ∈ DPAT?,Σ(Li).
Consequently, the sequence of patterns di,0, di,1, di,2, . . . satisfies condition (i).

SIM S adds a finite number of words to Fi if and only if it moves to the next stage. Hence, Claim 4
shows that each Fi is finite. Now assume to the contrary that, for an i ∈ N, Fi does not satisfy condition (ii),
i. e., there exists a j ∈ N with Fi ⊆ Lj , δd(i) /∈ DPAT?,Σ(Lj) and Lj ⊆ Li. Let t<j> be an arbitrary text of
Lj . Since Fi ⊆ Lj and tn0−1 encodes the words in Fi, for every m ∈ N, tn0−1 ∇ tm<j> is an encoding of
initial values of a text of Lj . Thus, for m → ∞, S must converge when reading tn0−1 ∇ tm<j> to a pattern
that is PAT?,Σ-descriptive of Lj . According to Claim 4, when tn0−1 is continued with the encoding of any
finite sequence of words from Li, SIM S does not leave Stage n0. Since Lj ⊆ Li, this implies that SIM S
does not leave Stage n0 for tn0−1 being continued with the encoding of any finite sequence of initial values
of t<j>. Therefore S converges, when given tn0−1 ∇ tm<j> for m = 0, 1, 2, . . ., by definition to δd(i). This
contradicts δd(i) /∈ DPAT?,Σ(Lj). Consequently, Fi satisfies condition (ii), and this concludes the proof of
the only if direction.

Hence, L = (Li)i∈N is PAT?,Σ-descriptively generalisable if and only if there are effective procedures d
and f satisfying conditions (i) and (ii).

As briefly mentioned above, Theorem 11 shows natural connections to the seminal characterisation of
learnable indexed families given by Angluin (1980b), and therefore it is not surprising that some elements of
our proof do not need to differ from hers. Most of these similarities result from the fact that each successful
inductive inference process requires the existence of so-called locking sequences (see Lange et al. (2008)
for a detailed discussion), and this is reflected by Angluin’s telltale Ti and our comparable concept Fi.
Nevertheless, there are crucial differences between the two characterisations. First, we need to define an
enumeration of an appropriate subset of our hypothesis space (this is done by the procedure d), whereas this
is automatically given in Angluin’s model. In this context, it is important to note that we have to attune
the set Fi to the pattern δd(i), i ∈ N, which leads to d and f being defined by the same procedure SIM S.
Second, while Angluin’s Ti must, for every j with Lj ⊂ Li, contain a word from Li \ Lj , our equivalent
Fi only needs to do so if δd(i) is not an acceptable hypothesis for Lj . This fits with the requirement of
inductive inference from positive examples to distinguish between all languages Li and Lj with Li 6= Lj ,
whereas descriptive generalisation only has to distinguish between some of them, and this requisite might be
asymmetric, i. e., a strategy S might have to discover that a text of a language Li is not a text of a language
Lj , but it might not need to figure out that a text of Lj is not a text of Li. The explanation of why descriptive
generalisation, in general, is more powerful than inductive inference from positive data directly follows from
this observation; further considerations on this topic are given in Section 3.3. Thirdly, and finally, the strategy
S we deploy in our proof is, in a sense, not optimal, as it might discard a correct hypothesis – i. e. pattern
δd(j) that incidentally is descriptive of the language Li the text of which is read – simply because Li contains
a word that is not contained in Lj .

Our generic strategy S of course is not very efficient; furthermore, it has the bothersome property de-
scribed above. However, it is worth mentioning that S does not test whether the given words are contained in
the language of the hypothesis pattern, and it does not check the inclusion of pattern languages, either. Thus,
it circumvents two decision problems that, for many natural classes of pattern languages, are known to be
NP-complete or even undecidable (see, e. g., Angluin (1980a) and Freydenberger and Reidenbach (2010)),
although these decision problems are essential elements of the definition of descriptiveness. Instead, S infers
descriptive patterns purely based on membership tests for the languages in the indexed family. Thus, if in-
dexed families with a fast membership test are to be generalised, then our strategy raises hope that it might be
possible to do this efficiently in spite of using a hypothesis space with an NP-complete membership test. On
the other hand, it might be difficult to find rich classes of pattern languages where the procedure d introduced
by Theorem 11 is efficient (even though it should normally be possible to devise a d that, for every i ∈ N,
directly outputs the pattern δd(i) instead of enumerating the sequence di,j). This expectation is substantiated
by Theorem 4.2 in Angluin (1980a) and our Theorem 6 and Corollary 7 given in Section 2.



3.3 A More General View
While an application of Theorem 11 might require profound knowledge on the descriptiveness of patterns,
a closer look confirms our above remark that the actual characterisation and its proof do not at all. More
precisely, neither the Theorem nor our reasoning deal with the properties of the descriptive patterns δd(i),
i ∈ N, but they merely make use of a notion of the validity of a hypothesis for a given language, i. e., a
hypothesis is acceptable for a language if it is descriptive, but we do not check for descriptiveness. This view
is quite convenient to study the difference between descriptive generalisation and inductive inference from
positive data. In the LIM-TEXT model when applied to indexed families, a hypothesis i – i. e., the index of
the language Li – is valid for a language Lj , j 6= i, if and only if the hypothesis j is valid for the language
Li (if and only if Li = Lj). In our model, this symmetry does not necessarily exist, as demonstrated by the
following example:

Example 12 Let Σ := {a, b}. Let L1 := {a b a b a, b a b a b} and L2 := {a b a b a, b a b a b, a b a a b a}.
We state without proof that δ1 := x1 a b a bx2 is ePATΣ-descriptive ofL1 and δ2 := x1x2x1x2x1 is ePATΣ-
descriptive of L2. While δ2 is also ePATΣ-descriptive of L1, δ1 is not ePATΣ-descriptive of L2. Hence, a
strategy S that ePATΣ-descriptively generalises a class including L1 and L2 can output δ1 or δ2 when
reading a text for L1, but it must not output δ1 when reading a text for L2.

Referring to this phenomenon and restricted to indexed families, we can now give a much more general model
of inference than the one of descriptive generalisation, and we can still characterise those indexed families
that can be inferred according to this model in exactly the same way as we have done in Theorem 11. Hence,
let L = (Li)i∈N be an indexed family. Furthermore, for any i ∈ N, let HYP be a function that maps i to
a subset of N that consists of all valid hypotheses for Li. Here it is important to note that the numbers in
HYP(i) do normally not refer to indices of the indexed family L = (Li)i∈N; e. g., in our model of descriptive
generalisation they would stand for indices in an arbitrary enumeration of a set of patterns. We then say that
L = (Li)i∈N is inductively inferrable with hypotheses validity relation HYP if and only if there exists a
computable function S : (Σ ∪ {∇})∗ → N such that, for every i ∈ N and for every t ∈ text(Li), S(tn) is
defined for every n ∈ N and there is a j ∈ HYP(i) and there is an m ∈ N with S(tn) = j for every n ≥ m.

Our notion of descriptive generalisation demonstrates that there are natural instances of the model of
inductive inference with hypotheses validity relation HYP. Nevertheless, to the best of our knowledge, its
properties have not been explicitly studied so far.

As announced above, we now rephrase Theorem 11 so that it characterises those indexed families that are
inductively inferrable with hypotheses validity relation HYP:

Theorem 13 Let Σ be an alphabet, let L = (Li)i∈N be an indexed family of nonempty languages over Σ,
and let HYP : N → P(N) be a function. L = (Li)i∈N is inductively inferrable with hypotheses validity
relation HYP if and only if there are effective procedures h and f satisfying the following conditions:

(i) For every i ∈ N, there exists a ηi ∈ HYP(i) such that h enumerates a sequence of natural numbers
i0, i1, i2, . . . satisfying, for all but finitely many k ∈ N, ik = ηi.

(ii) For every i ∈ N, f enumerates a finite set Fi ⊆ Li such that, for every j ∈ N with Fi ⊆ Lj , if
ηi /∈ HYP(j), then there is a w ∈ Lj with w /∈ Li.

Proof: Minor and straightforward editing of the proof of Theorem 11 – mainly substituting h for d, ik for
di,k, ηi for δd(i), and HYP(i) for DPAT?,Σ(Li) – turns it into a reasoning suitable for Theorem 13.

To conclude this section on basic properties of our model, we wish to mention that descriptive generalisa-
tion can alternatively be interpreted as inductive inference of classes of pattern languages from partial texts.
Hence, we can understand any language Li as a tool to define texts that do not contain all words in L(δd(i)),
but nevertheless can be used to infer δd(i). Within the scope of the present paper, we do not explicitly discuss
such a view, but we expect that it might be a worthwhile topic for further studies. We anticipate that its
analysis might involve substantial conceptual challenges that cannot be solved using established insights into
related approaches (see Fulk and Jain (1996)).

4 Inferring ePATtf,Σ-Descriptive Patterns
We now study our model for a fixed hypothesis space, namely the class ePATtf,Σ. The decidability of the
inclusion problem for this class (see Theorem 1) allows us to develop a set of powerful tools.

This section is divided into three parts. In the first part, we consider some questions on the existence of
ePATtf,Σ-descriptive patterns for various classes of languages and develop a set of tools in order to simplify
proofs on the existence and nonexistence of ePATtf,Σ-descriptive patterns.

The second part deals with a generalisation strategy that is based on the procedure that is described in
Proposition 5, which we deem so natural that we call it the canonical strategy Canon for ePATtf,Σ-descriptive



generalisations. Most importantly, we give a characterisation of the class T SLΣ of languages that can be
descriptively generalised with Canon.

In the final part of this section, we examine the relationship of various classes of languages to T SLΣ in
order to gain further insights into DGePATtf,Σ and the power of Canon.

4.1 Basic tools
Before we proceed to an examination of ePATtf,Σ-descriptive generalisation in the next part of this section,
we develop some tools and techniques that simplify the work with ePATtf,Σ-descriptive patterns, and gather
some results on the existence and nonexistence of such patterns for some classes of languages. We begin with
the following result:

Lemma 14 Let Σ be an alphabet with |Σ| ≥ 2, and let L1, L2 ⊆ Σ∗ with L1 ⊇ L2. If there is a δ ∈
DePATtf,Σ(L2) with LE,Σ(δ) ⊇ L1, then δ ∈ DePATtf,Σ(L1).

This observation might seem to be elementary, but together with Lemma 17, it forms the fundament of the
proof of almost every result in this section. The technical base of that Lemma derives from a phenomenon
that often arises when dealing with ePATtf,Σ-descriptive patterns. We consider the following example:

Example 15 Let Σ := {a, b} and let L1 := {a2}, L2 := {(a b1 a a b2 a . . . a bn a)2 | n ≥ 2}, and
L3 := LE,Σ(x2

1) \ {a2, b2}. It is easy to see that all three languages are included in LE,Σ(x2
1). However, in

addition to this, for every α ∈ X+ with LE,Σ(α) ⊇ Li (with 1 ≤ i ≤ 3), LE,Σ(α) ⊇ LE,Σ(x2
1) holds as

well. For L1, this is obvious. For L2, assume that LE,Σ(α) ⊇ L2 for some α ∈ X+, let n := | var(α)| and
w = (a b1 a a b2 a . . . a bn a)2 ∈ L2, and choose any morphism φ with φ(α) = w. As w contains n distinct
factors of the form a b+ a, each occurring exactly twice, there must be an x ∈ var(α) that contains at least
one complete occurrence of such a segment, which implies |α|x ∈ {1, 2}. In both cases, we can construct a
morphism ψ with ψ(α) = x2

1 (by mapping x to x1 or x2
1 and erasing all other variables), which (according

to Theorem 1) leads to LE,Σ(α) ⊇ LE,Σ(x2
1). Finally, as L3 ⊃ L2, this also proves the claim for L3.

As LE,Σ(x2
1) and all three Li have exactly the same superpatterns, we are able to conclude that, for every

i ∈ {1, . . . , 3}, DePATtf,Σ(LE,Σ(x2
1)) = DePATtf,Σ(Li). Although the four languages might seem rather

different, they have exactly the same sets of ePATtf,Σ-descriptive patterns.

When generalising languages using ePATtf,Σ-descriptive patterns, every language has a certain superset that
is covered by every descriptive generalisation of this language, and cannot be avoided. In order to formalise
this line of reasoning (and in order to use this phenomenon), we introduce the set of superpatterns Super(L),
and the superpattern hulls S-HullΣ(L), which are defined as

Super(L) := {α ∈ X+ | for every w ∈ L, there is a morphism φ with φ(α) = w},

S-HullΣ(L) :=
⋂

α∈Super(L)

LE,Σ(α)

for all alphabets Σ,Σ′ and any language L ⊆ (Σ′)∗. Note that, by Theorem 1, for every pair of patterns
α, β ∈ X+ and every Σ with Σ ≥ 2, LE,Σ(α) ⊆ LE,Σ(β) if and only if β ∈ Super(LE,Σ(α)) if and only if
β ∈ Super({α}). This allows us to state the following corollary:

Corollary 16 Let Σ,Σ′ be alphabets with |Σ|, |Σ′| ≥ 2. Then DePATtf,Σ(L) = DePATtf,Σ’(L) for every
L ⊆ (Σ ∩ Σ′)∗.

Although Super(L) and S-HullΣ(L) might appear to be rather simple concepts, they can be used to establish
most of the results in this section. Using Lemma 14, we can develop one of our main tools:

Lemma 17 Let Σ be an alphabet with |Σ| ≥ 2. For everyL ⊆ Σ∗,DePATtf,Σ(L) = DePATtf,Σ(S-HullΣ(L)).

In a sense, S-HullΣ(L) captures the whole essence of L with respect to ePATtf,Σ-descriptive patterns, as
every ePATtf,Σ-descriptive generalisation of L is unable to distinguish between these two languages. This is
illustrated by the following example:

Example 18 Let |Σ| ≥ 2 and define L := LE,Σ(x2
1) ∪ LE,Σ(x3

1). Furthermore, let

δ1 := x2
1x

3
2, δ2 := x1x2x1x

2
2, δ3 := x1x

2
2x1x2, δ4 := x1x

3
2x1, δ5 := x1x

2
2x

2
1,

δ6 := x1x2x1x2x1, δ7 := x1x2x
2
1x2, δ8 := x2

1x
2
2x1, δ9 := x2

1x2x1x2, δ10 := x3
1x

2
2.

Recalling Theorem 1, it is easy to see that, for every α ∈ Super(L), there is a δi, 1 ≤ i ≤ 10, with
LE,Σ(α) ⊇ LE,Σ(δi) (as, for every α, there must be morphisms mapping α to both x2

1 and x3
1). By a



convention common in the literature, all patterns are given in canonical form (cf. Reidenbach and Schneider
(2009)), where variables names are introduced in increasing lexicographic order.

This example illustrates two important phenomena. First, note that δi ∈ DePATtf,Σ(L) for 1 ≤ i ≤ 10,
and for every δ ∈ DePATtf,Σ(L), there is a δi with LE,Σ(δ) = LE,Σ(δi), but LE,Σ(δ) 6= LE,Σ(δj) for every
j 6= i. Thus, L has ten distinct ePATtf,Σ-descriptive patterns.

Second, the previous observation leads to S-HullΣ(L) =
⋂10
i=1 LE,Σ(δi). For every n ≥ 2, there are

j, k ≥ 0 with n = 2j+3k, and therefore, S-HullΣ(L) ⊇
⋃∞
n=2 LE,Σ(xn1 ). Thus, every ePATtf,Σ-descriptive

generalisation of L is unable to exclude any language LE,Σ(xn1 ) with n ≥ 2. In this sense, S-HullΣ(L)
provides information on the coarseness of all descriptive generalisations.

Observe that L in the previous example is a finite union of languages from ePATtf,Σ that has a descriptive
pattern, and recall that, according to Proposition 5, every finite set of words has an ePATtf,Σ-descriptive
pattern, while (by Theorem 4), there are infinite unions of languages from ePATtf,Σ that have no descriptive
pattern.

Using Lemma 17, we can extend Proposition 5 to show that not only every finite set of words, but every
finite union of languages from ePATtf,Σ has an ePATtf,Σ-descriptive pattern:

Proposition 19 Let Σ be an alphabet with |Σ| ≥ 2, letA = {α1, . . . , αn} ⊂ X+ and letL =
⋃n
i=1 LE,Σ(αi).

Then DePATtf,Σ(L) 6= ∅.

Basically, Example 18 and Proposition 19 are based on the fact that words in languages from ePATtf,Σ

and the generating patterns of these languages can often be used interchangeably by defining a morphism
that maps the words back to their generating pattern. We proceed to develop this approach into another
tool that allows us to make further statements on the (non-)existence of ePATtf,Σ-descriptive patterns. Let
ν : Σ∗ → X∗ an arbitrary renaming. We define V-HullΣ(L) :=

⋃
w∈L LE,Σ(ν(w)). Like S-HullΣ(L),

V-HullΣ(L) is equivalent to L with respect to Super and DePATtf,Σ :

Lemma 20 Let Σ be an alphabet, |Σ| ≥ 2. For every L over Σ, Super(L) = Super(V-HullΣ(L)), and
DePATtf,Σ(L) = DePATtf,Σ(V-HullΣ(L)).

This leads us to the following insight into the existence of ePATtf,Σ-descriptive patterns for infinite unions
of languages from ePATtf,Σ:

Proposition 21 Let |Σ| ≥ 2. Then there is a set of patternsA ⊂ {x1, x2}+ such that no pattern is ePATtf,Σ-
descriptive of

⋃
α∈A LE,Σ(α).

Thus, unlike in the case of finite unions of languages from ePATtf,Σ (cf. Proposition 19), even restricting
the number of variables in the generating patterns does not ensure that infinite unions of languages from
ePATtf,Σ have a descriptive pattern. The renaming ν that maps terminals to variables can also be used to
obtain the following technical result:

Lemma 22 Let Σ be an alphabet with |Σ| ≥ 2. For every nonempty language L ⊆ Σ∗, S-HullΣ(L) is
infinite.

This insight shall be used in Section 4.3. We conclude the present part of Section 4 with a short remark
illustrating that there are finite classes of languages which are not contained in DGePATtf,Σ :

Proposition 23 Let Σ be an alphabet, |Σ| ≥ 2. There exists a class L of nonempty languages over Σ with
|L| = 1 and L /∈ DGePATtf,Σ .

4.2 The Canonical Strategy and Telling Sets
According to Proposition 5, every finite set has a computable ePATtf,Σ-descriptive pattern. We consider it the
canonical strategy of descriptive inference on any text t of a given languageL to compute a descriptive pattern
of every initial segment tn, in the hope that the hypothesises will converge to a pattern that is descriptive of L.
As evidenced by the language L := LE,Σ(x2

1) ∪ LE,Σ(x3
1) (cf. Example 18), there are languages with more

than one descriptive pattern. Furthermore, this applies also to finite languages, as for the set S := {a2, b3}
(for arbitrary letters a, b ∈ Σ), DePATtf,Σ(S) = DePATtf,Σ(L) holds. Although S already contains all the
information that is needed to compute a descriptive generalisation of L, the six distinct patterns δ1 to δ6 from
Example 18 are all valid hypothesises. In order to allow our strategy to converge to one single hypothesis, we
impose a total and well-founded order<LLO onX+ and let our strategy return the<LLO-minimal hypothesis.

Let <LLO denote the length-lexicographic order1 on X+. Note that <LLO is total and does not contain
infinite decreasing chains. Thus, every set has exactly one element that is minimal with respect to <LLO.

1I. e., α <LLO β if |α| < |β|, or if |α| = |β|, and α precedes β in the lexicographic order.



The strategy Canon : (Σ ∪ {∇})∗ → (Σ ∪X)+ is defined by, for every text t,

Canon(tn) := δ, where δ ∈ DePATtf,Σ(t[n]) and δ <LLO γ for every other γ ∈ DePATtf,Σ(t[n]).

The computability of Canon follows immediately from the proof of Proposition 5, as all that remains
is to sort the finite search space by <LLO. We say that Canon converges on a text t ∈ text(L) (of some
language L over some alphabet Σ) if there is a pattern α ∈ X+ with Canon(tn) = α for all but finitely many
values of n. If, in addition to this, α ∈ DePATtf,Σ(L), Canon is said to converge correctly on t. Now, when
considering the languages L and S given in the example above, for every text t ∈ text(L), there is an n ≥ 0
with S ⊆ t[n]. From this point on, Canon(t[n]) will return the pattern δ10 = x3

1x
2
2, as δ10 is an element of

(DePATtf,Σ(S)∩DePATtf,Σ(L)) and the <LLO-minimum of the canonical forms of the δi. This phenomenon
leads to the definition of what we call telling sets, which are of crucial importance for the study of descriptive
generalisability with the strategy Canon:

Definition 24 Let L ⊆ Σ∗. A finite set S ⊆ L is a telling set for L if (DePATtf,Σ(S) ∩DePATtf,Σ(L)) 6= ∅.

Note that telling sets have some similarity to the concept of telltales that is used in the model of learning in
the limit. For a comparison of telltales and telling sets, see our comments after Corollary 32.

Using Lemma 14, we are now able to show that the existence of a telling set is characteristic for the
correct convergence of Canon on any text:

Theorem 25 Let Σ an alphabet with |Σ| ≥ 2. For every language L ⊆ Σ∗, and every text t ∈ text(L),
Canon converges correctly on t if and only if L has a telling set.

In the final part of this section, we shall demonstrate that this is a strong result, by investigating the existence
and nonexistence of telling sets for various languages.

4.3 Examination of the Class T SLΣ

As stated by Theorem 25, the existence of telling sets is a strong sufficient criterion for ePATtf,Σ-descriptive
generalisability. Furthermore, generalisability of a class L ⊆ P(Σ∗) using Canon does not depend on the
properties of the whole class, but only on the existence of a telling set for every single language L ∈ L. Thus,
we consider the largest possible class that can be generalised by Canon and define T SLΣ := {L ⊆ Σ∗ |
L has a telling set}. Theorem 25 immediately leads to the following corollary:

Corollary 26 For every alphabet Σ with |Σ| ≥ 2, T SLΣ ∈ DGePATtf,Σ .

Thus, by examining T SLΣ, we gain insights into the power of Canon and of the whole model of descrip-
tive generalisation. Before we proceed to an examination of the relation of various classes of languages to
T SLΣ, we show that it is not required to choose Σ as small as possible, a result that is similar to Corollary 16,
which states that DePATtf,Σ(L) is largely independent of the choice of Σ. The same holds for telling sets:

Corollary 27 Let Σ,Σ′ be alphabets with |Σ|, |Σ′| ≥ 2. Then L ∈ T SLΣ if and only if L ∈ T SLΣ′ for
every L ⊆ (Σ ∩ Σ′).

This also implies that, for every Σ′ ⊇ Σ, T SLΣ′ ⊇ T SLΣ. We begin our examination of T SLΣ by
expanding finite languages without losing their telling set properties. The next result follows immediately
from Lemmas 14 and 17:

Lemma 28 Let Σ be an alphabet with |Σ| ≥ 2. Every nonempty S ∈ FINΣ is a telling set of S-HullΣ(S)
and of every L with S ⊆ L ⊆ S-HullΣ(S).

In addition to showing that FINΣ ⊆ T SLΣ, this result allows us (in conjunction with Lemma 22) to make
the following statement on the cardinality of T SLΣ:

Proposition 29 T SLΣ is uncountable for every alphabet Σ with |Σ| ≥ 2.

This is an uncommon property, as inference from positive data is normally considered for classes consisting
of countably many languages from some countable domain. Nonetheless, inferrability of uncountable classes
has been studied before, see Jain et al. (2009).

Next, we shall see that T SLΣ contains a rich and natural class of languages, the DTF0L languages.
A DTF0L language L over Σ is defined through a finite set of axioms w1, . . . , wm ∈ Σ∗ and a finite set
of morphisms φ1, . . . , φn : Σ∗ → Σ∗. Then L is the smallest language that satisfies wi ∈ L for every
i ∈ {1, . . . ,m}, and if w ∈ L, then φi(w) ∈ L for every i ∈ {1, . . . , n}. We denote the class of all DTF0L
languages over Σ by DTF0LΣ. Apart from FINΣ, the most prominent subclass of DTF0LΣ is the class
of D0L languages, where every language is defined through a single axiom and a single morphism (i. e.,
m = n = 1). The class D0L has been widely studied, for details, see Kari et al. (1997).



Proposition 30 Let Σ be an alphabet with |Σ| ≥ 2. Then DTF0LΣ ⊆ T SLΣ.

Lemma 28 and Proposition 30 both imply that FINΣ ⊆ T SLΣ. Furthermore, Proposition 29 and Propo-
sition 30 both demonstrate that T SLΣ contains at least one infinite language, which leads to the following
observation:

Corollary 31 The class T SLΣ is superfinite for every alphabet Σ with |Σ| ≥ 2.

Together with Proposition 23, this allows us to describe the relation between DGePATtf,Σ and LIM-TEXT:

Corollary 32 Let Σ be an alphabet, |Σ| ≥ 2. Then DGePATtf,Σ and LIM-TEXT are incomparable.

We now briefly discuss the relation between telling sets and the notion of telltales. As already mentioned in
Section 3.2, according to Angluin (1980b), an indexed family L = (Li)i∈N of non-empty recursive languages
is in LIM-TEXT if and only if there exists an effective procedure which, for every j ≥ 0, enumerates a set
Tj such that Tj is finite, Tj ⊆ Lj , and there does not exist a j′ ≥ 0 with Tj ⊇ Lj′ ⊃ Lj . If there
exists a set Tj satisfying these conditions, it is called a telltale for Lj with respect to L = (Li)i∈N. Thus,
the concepts of telltales and telling sets are incomparable, as the former refers to a language and the class
of languages it is contained in, whereas the latter relates to a language and certain properties of the class
ePATtf,Σ. Nevertheless, for every language L in ePATtf,Σ, a set S is a telling set for L if and only if S
is a telltale for L with respect to ePATtf,Σ (for more details on the existence of telltales for languages in
ePATtf,Σ, see Reidenbach (2008)).

As Proposition 33 and Proposition 34 below show, Lemma 25 by Reidenbach (2008) and Lemma 7 by
Reidenbach (2006) on the existence and nonexistence of telltales lead to the corresponding results for telling
sets:

Proposition 33 Let Σ,Σ′ be alphabets, Σ′ ⊆ Σ and |Σ′| ≥ 3. For every α ∈ X+, LE,Σ′(α) has a telling
set.

On the other hand, it is impossible to encode the structure of comparatively simple patterns in their languages
with only two letters, which leads to the following negative result:

Proposition 34 Let Σ be an alphabet with |Σ| ≥ 2, and let a, b be two distinct letters from Σ. Then
LE,{a,b}(x2

1x
2
2x

2
3) /∈ T SLΣ.

In contrast to this, Lemma 20 can be used to show that restricting the number of variables in the patterns leads
to telling sets not only for languages from ePATtf,Σ, but also for their finite unions:

Proposition 35 Let α1, . . . , αn ∈ {x1, . . . , x|Σ|}+, and let L :=
⋃n
i=1 LE,Σ(αi). Then L ∈ T SLΣ.

Proposition 35 is especially interesting when compared to Proposition 21, which tells us that infinite unions
of languages from ePATtf,Σ might not only have no telling set, but not even a descriptive pattern.

Furthermore, we state that the infinite sequence (βn)n≥0 that is used in the definition of the languages
LΣ for the proof of Theorem 4 describes an infinite ascending chain of languages from ePATtf,Σ; i. e.,
LE,Σ(β) ⊂ LE,Σ(βn+1) for every n ≥ 0. Although the presence of such a chain in S-HullΣ(L) for a
language L does not necessarily imply emptiness of DePATtf,Σ(L), it is a sufficient criterion for L /∈ T SLΣ

(again, the proof relies on Lemma 17):

Lemma 36 Let Σ be an alphabet with |Σ| ≥ 2 and let L ⊆ Σ∗. If there is an infinite chain (βn)n≥0

over X+ with LE,Σ(βn) ⊆ S-HullΣ(L) for every n ≥ 0, LE,Σ(βn) ⊂ LE,Σ(βn+1) for every n ≥ 0, and⋃
n≥0 LE,Σ(βn) ⊇ L, then L has no telling set.

As a direct application of this result, we can prove that there are regular languages that have no telling set:

Proposition 37 For every alphabet Σ with |Σ| ≥ 2, there is a regular language L ⊆ Σ∗ with L /∈ T SLΣ.

Note that this language is also an example of a language L that has no telling set, although S-HullΣ(L) has a
telling set.
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