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Abstract. In the present paper, we study the existence of descriptive
patterns, i. e. patterns that cover all words in a given set through mor-
phisms and that are optimal in terms of revealing commonalities of these
words. Our main result shows that if patterns may be mapped onto words
by arbitrary morphisms, then there exist infinite sets of words that do
not have a descriptive pattern. This answers a question posed by Jiang,
Kinber, Salomaa, Salomaa and Yu (International Journal of Computer
Mathematics 50, 1994). Since the problem of whether a pattern is de-
scriptive depends on the inclusion relation of so-called pattern languages,
our technical considerations lead to a number of deep insights into the
inclusion problem for and the topology of the class of terminal-free E-
pattern languages.

1 On Patterns Descriptive of a Set of Strings

A pattern is a finite string that consists of variables taken from an alphabet X
and terminal symbols taken from an alphabet Σ. For any pattern α and any
word w over Σ, α is said to cover w if w can be obtained from α by substituting
the variables with appropriate strings of terminal symbols. Whenever α contains
several occurrences of the same variable, the substitution of variables needs to
be “uniform”, i. e. each of the occurrences must be replaced with the same word
over Σ. Therefore, and more formally, such a substitution is simply a terminal-
preserving morphism σ : (Σ∪X)∗ → Σ∗, i. e. a morphism that satisfies σ(a) = a
for every terminal symbol a in the pattern. For instance, the pattern α := xybxa
(where x, y are variables and a, b are terminal symbols) covers the word w1 :=
abababa since there is a substitution σ, given by σ(x) := ab and σ(y) := a,
satisfying σ(α) = w. In contrast to this, α does not cover, e. g., w2 := bbbbaa.

Due to the simplicity of the concepts involved, the above described notion of a
pattern is studied in a variety of fields of research. The present paper mainly deals
with two quite closely related approaches: Firstly, a pattern α over Σ∪X can be
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regarded as a generator of a formal language L(α), the so-called pattern language,
which simply comprises all words in Σ∗ that can be obtained from the pattern
by arbitrary substitutions. Secondly, for any given finite or infinite language
S, patterns can be used to approximate S; i. e., a pattern α is sought that is
consistent with S (which means that α covers all words in S or alternatively, in
terms of pattern languages, L(α) ⊇ S). The latter concept is motivated by the
fact that if a pattern is consistent with a language S, then this pattern reveals a
common structure of the strings in S. Hence, and since they are compact devices
that can be easily read and interpreted by humans, patterns can be very helpful
when commonalities of data represented by strings are analysed.

The characteristics of pattern languages have been intensively studied in the
past decades. Therefore, quite a number of basic properties of pattern languages,
e. g. regarding the usual decision problems for classes of formal languages, are
known (cf. the surveys by Mateescu and Salomaa [7] and Salomaa [11] and our
recent paper [4]). Furthermore, pattern languages have been a focus of inter-
est of inductive inference from the very beginning, investigating whether it is
possible to infer a pattern from the words in its pattern language (see Ng and
Shinohara [8]). It is quite remarkable that many of the corresponding results in
language theory and inductive inference differ for the two main types of pat-
tern languages that are normally considered, namely the NE -pattern language
of a pattern (introduced by Angluin [1]), which merely consists of those words
in Σ∗ that can be obtained from the pattern by nonerasing substitutions (i. e.
substitutions that do not replace any variables with the empty word), and the E -
pattern language (established by Shinohara [12]), which additionally comprises
those words that can be derived from the pattern by substituting the empty
word for arbitrary variables.

The problem of finding a consistent pattern for an arbitrary set S of strings
is often referred to as (string) pattern discovery, and many of its applications
are derived from tasks in bioinformatics (cf. Brazma et al. [2]). In contrast to
the inductive inference approach to pattern languages, where a pattern shall be
inferred that exactly describes the given language, string pattern discovery faces
the problem that S can typically have many consistent patterns showing very
different characteristics. For instance, both

α1 := xyxyx and α2 := xaby

are consistent with the language

S0 := {ababa, ababbababbab, babab},

and the pattern α0 := x is consistent with every set of strings, anyway. Hence,
the algorithms of string pattern discovery require an underlying notion of the
quality of a pattern in order to determine what patterns to strive for. With regard
to the above example set and patterns, it seems quite likely that one might not
be interested in a procedure outputting α0 when reading S0. Concerning α1 and
α2, however, it is, a priori, by no means evident which of them to prefer. Thus,
the definition of the quality of a pattern might often depend on the field of



application where string pattern discovery is conducted. In addition to this, it
is a worthwhile goal to develop generic notions of quality of consistent patterns
that can inform the design of pattern discovery algorithms.

In this regard, the descriptiveness of patterns is a well-known and plausible
concept, that is also used within the scope of inductive inference (cf. Ng and
Shinohara [8]). A pattern δ is said to be descriptive of a given set S of strings
if there is no pattern α satisfying S ⊆ L(α) ⊂ L(δ). Intuitively, this means
that if δ is descriptive of S, then no consistent pattern for S provides a strictly
closer match than δ. Thus, although δ does not need to be unique (as to be
further discussed below), it is guaranteed that it is one of the most accurate
approximations of S that can be provided by patterns. While descriptiveness is
unquestionably an appropriate notion of quality of consistent patterns, it leads to
major technical challenges, as its application requires insights into the inclusion
problem for pattern languages, which is known to be undecidable in the general
case and still combinatorially involved for some major natural subclasses where
it is decidable. This aspect is crucial to the subsequent formal parts of our paper.

Since the definition of a descriptive pattern is based on the concept of pattern
languages, the question of whether NE- or E-pattern languages are chosen can
have a significant impact on the descriptiveness of a pattern. This is reflected
by the terminology we use: we call a pattern δ an NE-descriptive pattern if it is
descriptive in terms of its NE-pattern language and the NE-pattern languages
of all patterns in (Σ∪X)+; accordingly, we call δ E-descriptive if its descriptive-
ness is based on interpreting all patterns as generators of E-pattern languages.
In order to illustrate these terms, we now briefly discuss the descriptiveness of
the example patterns introduced above (though the full verification of our corre-
sponding claims is not always straightforward and might require certain tools to
be introduced later). If we deal with S0 and the patterns in the context of NE-
pattern languages, then it can be stated that both α1 and α2 are NE-descriptive
of S0, since no NE-pattern languages can comprise S0 and, at the same time,
be a proper sublanguage of the NE-pattern languages of α1 or α2. If we study
S0 in terms of E-pattern languages, it turns out that α1 is also E-descriptive of
S0, i. e. there is no pattern generating an E-pattern language that is consistent
with S0 and strictly included in the E-pattern language of α1. However, the
second NE-descriptive example pattern α2 is not E-descriptive of S0, since the
E-pattern language generated by

α3 := xababy

is a proper sublanguage of the E-pattern language of α2 and comprises S0.
The pattern α3, in turn, is even E-descriptive of S0, but not NE-descriptive,
since it is not consistent with S0 if we disallow empty substitutions. Exactly
the same holds for α4 := xbabay, which also is consistent with S0 if we allow
the empty substitution of variables, generates an E-pattern language that is
strictly included in the E-pattern language of α2 and is E-descriptive, but not
NE-descriptive of S0.

The present paper examines the basic underlying problem of descriptive pat-
tern discovery, namely the existence of such patterns; this means that we study



the question of whether or not, for a given language S, there is a pattern that
is descriptive of S. To this end, four different cases can be considered: NE-
descriptive patterns of finite languages, NE-descriptive patterns of infinite lan-
guages, E-descriptive patterns of finite languages and E-descriptive patterns of
infinite languages. The problem of the existence of the former three types of
descriptive patterns is either trivial or has already been solved in previous pub-
lications. We therefore largely study the latter case, and our corresponding main
result answers a question posed by Jiang, Kinber, Salomaa, Salomaa and Yu [5].
Our technical considerations do not only provide insights into the actual topic
of our paper, but – due to the definition of descriptive patterns – also reveal
vital phenomena related to the inclusion of E-pattern languages and, hence, the
topology of class of terminal-free E-pattern languages. Due to the way the inclu-
sion of terminal-free E-pattern languages is characterised, this implies that we
have to deal with combinatorial properties of morphisms in free monoids.

2 Basic Definitions and Preparatory Technical
Considerations

This paper is largely self-contained. For notations not explicitly defined, Rozen-
berg and Salomaa [10] can be consulted.

Let N := {0, 1, 2, 3, . . .} and, for every k ≥ 0, Nk := {n ∈ N | n ≥ k}.
The symbols ⊆, ⊂, ⊇ and ⊃ refer to subset, proper subset, superset and proper
superset relation, respectively. The symbol∞ stands for infinity. For an arbitrary
alphabet A, a string (over A) is a finite sequence of symbols from A, and λ stands
for the empty string. The symbol A+ denotes the set of all nonempty strings over
A, and A∗ := A+ ∪ {λ}. For the concatenation of two strings w1, w2 we write
w1 · w2 or simply w1w2. We say that a string v ∈ A∗ is a factor of a string
w ∈ A∗ if there are u1, u2 ∈ A∗ such that w = u1vu2. If u1 = λ (or u2 = λ),
then v is a prefix of w (or a suffix, respectively). The notation |K| stands for the
size of a set K or the length of a string K; the term |w|a refers to the number
of occurrences of the symbol a in the string w. For any w ∈ Σ∗ and any n ∈ N,
wn denotes the n-fold concatenation of w, with w0 := λ.

For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies
h(vw) = h(v)h(w) for all v, w ∈ A∗. Given morphisms g : A∗ → B∗ and h : B∗ →
C∗ (for alphabets A, B, C), their composition (h ◦ g) is defined by (h ◦ g)(w) :=
h(g(w)) for all w ∈ A∗. For every morphism h : A∗ → A∗ and every n ≥ 0, hn

denotes the n-fold iteration of h, i. e., hn+1 := (h ◦ hn), where h0 is the identity
on A∗.

A morphism h : A∗ → B∗ is said to be nonerasing if h(a) 6= λ for all a ∈ A.
For any string w ∈ C∗, where C ⊆ A and |w|a ≥ 1 for every a ∈ C, the
morphism h : A∗ → B∗ is called a renaming (of w) if h : C∗ → B∗ is injective
and |h(a)| = 1 for every a ∈ C.

Let Σ be a (finite or infinite) alphabet of so-called terminal symbols (or:
letters) and X an infinite set of variables with Σ ∩X = ∅. We normally assume
{a, b, . . .} ⊆ Σ and {y, z, x0, x1, x2 . . .} ⊆ X. A pattern is a string over Σ ∪X, a



terminal-free pattern is a string over X and a word is a string over Σ. The set
of all patterns over Σ ∪ X is denoted by PatΣ . For any pattern α, we refer to
the set of variables in α as var(α).

A morphism σ : (Σ ∪X)∗ → (Σ ∪X)∗ is called terminal-preserving if σ(a) =
a for every a ∈ Σ. A terminal-preserving morphism σ : (Σ ∪X)∗ → Σ∗ is called
a substitution. Let S ⊆ Σ∗; then we say that a pattern α is consistent with S if,
for every w ∈ S, there exists a substitution σ satisfying σ(α) = w.

Intuitively, the pattern language of a pattern α is the maximum set of words α
is consistent with. Formally, we consider two types of pattern languages, depend-
ing on whether we restrict ourselves to nonerasing substitutions: the NE-pattern
language LNE,Σ(α) of a pattern α ∈ PatΣ is given by

LNE,Σ(α) := {σ(α) | σ : (Σ ∪X)∗ → Σ∗ is a nonerasing substitution},

and the E-pattern language LE,Σ(α) of α is given by

LE,Σ(α) := {σ(α) | σ : (Σ ∪X)∗ → Σ∗ is a substitution}.

The term pattern language refers to any of the definitions introduced above. We
call a pattern language terminal-free if it is generated by a terminal-free pattern.

We now can introduce our terminology on the main topic of this paper,
namely the descriptiveness of a pattern. For any alphabet Σ and any language
S ⊆ Σ∗, a pattern δ ∈ PatΣ is said to be NE-descriptive (of S) provided
that LNE,Σ(δ) ⊇ S and, for every α ∈ PatΣ with LNE,Σ(α) ⊇ S, LNE,Σ(α) 6⊂
LNE,Σ(δ). Analogously, δ is called E-descriptive (of S) if LE,Σ(δ) ⊇ S and, for
every α ∈ PatΣ with LE,Σ(α) ⊇ S, LE,Σ(α) 6⊂ LE,Σ(δ).

Obviously, the definition of a descriptive pattern is based on the inclusion
of pattern languages, which is an undecidable problem for both the full class
of NE-pattern languages and the full class of E-pattern languages (cf. Jiang et
al. [6], Freydenberger and Reidenbach [4]). A significant part of our subsequent
technical considerations, however, can be restricted to terminal-free E-pattern
languages, and here the inclusion problem is known to be decidable. This directly
results from the following characterisation:

Theorem 1 (Jiang et al. [6]). Let Σ be an alphabet, |Σ| ≥ 2, and let α, β ∈
X+ be terminal-free patterns. Then LE,Σ(α) ⊆ LE,Σ(β) if and only if there exists
a morphism h : X∗ → X∗ satisfying h(β) = α.

While Theorem 1 is a powerful tool when dealing with the inclusion of terminal-
free E-pattern languages, the examination of the descriptiveness of a pattern re-
quires insights into proper inclusion relations, and therefore we use some further
combinatorial results on morphisms in free monoids to give a more convenient
criterion that can replace the use of Theorem 1.

In accordance with Reidenbach and Schneider [9], we designate a terminal-
free pattern α ∈ X+ as morphically imprimitive if there is a pattern β ∈ X∗

satisfying the following conditions: |β| < |α| and there are morphisms g, h :
X∗ → X∗ such that g(α) = β and h(β) = α. Otherwise, α is morphically
primitive. Let α ∈ X+ be morphically primitive. A morphism h : X∗ → X∗ is



said to be an imprimitivity morphism (for α) provided that |h(α)| > |α| and
there is a morphism g : X∗ → X∗ satisfying g(h(α)) = α. Referring to these
concepts, we now can give a characterisation of certain proper inclusion relations
between terminal-free E-pattern languages:

Lemma 1. Let Σ be an alphabet, |Σ| ≥ 2, α ∈ X+ a morphically primitive
pattern and h : X∗ → X∗ a morphism. Then LE,Σ(h(α)) ⊂ LE,Σ(α) if and only
if h is neither an imprimitivity morphism for, nor a renaming of α.

The proof for Lemma 1 is omitted due to space constraints.
The question of whether a given morphism is an imprimitivity morphism for

a pattern can be easily answered using the following insight:

Theorem 2 (Reidenbach, Schneider [9]). Let α ∈ X+ be a morphically
primitive pattern. Then a morphism h : X∗ → X∗ is an imprimitivity morphism
for α if and only if

1. for every x ∈ var(α), there exists an xh ∈ var(h(x)) such that |h(x)|xh
= 1

and |h(y)|xh
= 0 for every y ∈ var(α) \ {x}, and

2. there exists an x ∈ var(α) with |h(x)| ≥ 2.

Evidently, Lemma 1 can only be applied if there is a tool for checking whether a
terminal-free pattern is morphically primitive. This is provided by the following
characterisation:

Theorem 3 (Reidenbach, Schneider [9]). A pattern α ∈ X+ is morphically
primitive if and only if there is no factorisation α = β0 γ1β1 γ2β2 . . . βn−1 γnβn

with n ≥ 1, βk ∈ X∗ and γk ∈ X+, k ≤ n, such that

1. |γk| ≥ 2 for every k, 1 ≤ k ≤ n,
2. var(β0 . . . βn) ∩ var(γ1 . . . γn) = ∅ and
3. for every k, 1 ≤ k ≤ n, there exists an xk ∈ var(γk) such that |γk|xk

= 1
and, for every k′, 1 ≤ k′ ≤ n, if xk ∈ var(γk′) then γk = γk′ .

Thus, with Lemma 1, Theorem 2 and Theorem 3 we now have an appropriate
tool for deciding on particular proper inclusion relations between terminal-free
E-pattern languages.

3 Descriptive Patterns and Infinite Strictly Decreasing
Chains of Pattern Languages

Before we state and prove the main results of our paper, we discuss some simple
yet enlightening observations that establish a connection between descriptiveness
of patterns and infinite strictly decreasing chains of pattern languages over some
fixed alphabet, i. e. sequences (Li)i∈N of pattern languages satisfying, for every
j ∈ N, Lj ⊃ Lj+1. This aspect is already briefly mentioned by Jiang et al. [5].

Since, by definition, a descriptive pattern generates a smallest pattern lan-
guage comprising a language S, S does not have a descriptive pattern if and only
if no pattern language L satisfying L ⊇ S is smallest. Hence, the existence of
a descriptive pattern essentially depends on the existence of a pattern language
that is not contained in an infinite strictly decreasing chain:



Observation 1. Let Σ be an alphabet and S ⊆ Σ∗ a language. Then there is
no pattern that is NE-descriptive (or E-descriptive) of S if and only if, for every
pattern α with LNE,Σ(α) ⊇ S (or LE,Σ(α) ⊇ S, respectively) there is

– a sequence of patterns αi ∈ PatΣ, i ∈ N, satisfying, for every j ∈ N,
LNE,Σ(αj) ⊃ LNE,Σ(αj+1) (or LE,Σ(αj) ⊃ LE,Σ(αj+1), respectively) and
LNE,Σ(αj) ⊇ S (or LE,Σ(αj) ⊇ S, respectively), and

– an n ∈ N with LNE,Σ(αn) = LNE,Σ(α) (or LE,Σ(αn) = LE,Σ(α), respec-
tively).

Proof. Directly from the definition of an NE-descriptive (or E-descriptive) pat-
tern. ut

Thus, the question of whether there is a descriptive pattern for a language
S requires insights into the inclusion problem for pattern languages. As partly
stated in Section 2, this problem is undecidable in the general case, but it is
decidable for the class of terminal-free E-pattern languages (though combinato-
rially complex and, according to Ehrenfeucht and Rozenberg [3], NP-complete).

In order to illustrate and substantiate Observation 1 and as a reference for
further considerations in Section 4, we now give some examples of strictly de-
creasing chains of pattern languages. We begin with a sequence of patterns that
has identical properties for both NE- and E-pattern languages:

Example 1. Let Σ be any alphabet. For every i ∈ N, we define αi := x2i

1 , i. e.
α0 = x1, α1 = x2

1, α2 = x4
1, α3 = x8

1 and so on. Evidently, for every j ∈ N, the
morphism h : {x1}+ → {x1}+, defined by h(x1) := x2

1, satisfies h(αj) = αj+1.
Since, for both NE- and E-pattern languages, the existence of such a morphism
is a sufficient condition for an inclusion relation (cf. Theorems 2.2 and 2.3 by
Jiang et al. [5]), LNE,Σ(αj) ⊇ LNE,Σ(αj+1) and LE,Σ(αj) ⊇ LE,Σ(αj+1) are
satisfied. In the given example, it is evident that all inclusions of NE-pattern
languages are strict. The same holds for the inclusion of E-pattern languages;
alternatively, for all but unary alphabets Σ, it is directly proved by Lemma 1
(using Theorem 2 and Theorem 3) given in Section 2. Hence, the sequence of
αi leads to an infinite strictly decreasing chain for NE-pattern languages as well
as for E-pattern languages. Nevertheless, the sequence of patterns is irrelevant
in the context of Observation 1, as the sets SNE :=

⋂∞
i=0 LNE,Σ(αi) and SE :=⋂∞

i=0 LE,Σ(αi), i. e. those languages all patterns are consistent with, are empty.

Our next example looks quite similar to Example 1, but here a difference between
NE- and E-pattern languages can be noted:

Example 2. Let Σ be an alphabet with |Σ| ≥ 2. For every i ∈ N, we de-
fine αi := x2i

1 y
2, i. e. α0 = x1y

2, α1 = x2
1y

2, α2 = x4
1y

2, α3 = x8
1y

2 and so
on. Referring to the same facts as mentioned in Example 1, it can be shown
that the patterns again define one infinite strictly decreasing chain of NE-
pattern languages and another one of E-pattern languages. However, while the
set SNE :=

⋂∞
i=0 LNE,Σ(αi) again is empty, SE :=

⋂∞
i=0 LE,Σ(αi) now equals

LE,Σ(y2). Hence, we have a chain of E-pattern languages that are all consistent



with a nonempty language. Nevertheless, LE,Σ(y2) obviously has a descriptive
pattern, namely δ := y2, and this of course holds for all infinite sequences of
patterns where SE equals an E-pattern language. Consequently, the existence of
a single infinite strictly decreasing chain of E-pattern languages Li satisfying,
for every i ∈ N, Li ⊇ S, does not mean that there is no E-descriptive pattern
for S. Furthermore, it is worth mentioning that we can replace SE with a finite
language and still preserve the above described properties of the αi and δ. For
Σ ⊇ {a, b}, this is demonstrated, e. g., by the language S := {aa, bb}, which
satisfies, for every i ∈ N, S ⊆ LE,Σ(αi) and has the E-descriptive pattern δ.

Our final example presents a special phenomenon of E-pattern languages, namely
the existence bi-infinite strictly decreasing/increasing chains of such languages:

Example 3. Let Σ be an alphabet with |Σ| ≥ 2. For every i ∈ Z, we define

αi :=

{
x2−i

1 if i is negative,
x2

1x
2
2 . . . x

2
i+2 else.

Hence, for example, from i = −3 to i = 2 the patterns read α−3 = x8
1, α−2 = x4

1,
α−1 = x2

1, α0 = x2
1x

2
2, α1 = x2

1x
2
2x

2
3, and α2 = x2

1x
2
2x

2
3x

2
4. Using Theorem 3, it

is easy to show that all patterns are morphically primitive. Theorem 2 demon-
strates that all morphisms mapping an αk onto an αj , j < k, are not imprim-
itivity morphisms. Therefore we can conclude from Lemma 1 that LE,Σ(αj) ⊂
LE,Σ(αk) if and only if j < k. For the given patterns, SE :=

⋂∞
i=−∞ LE,Σ(αi)

is empty, but if we define, for every i ∈ Z, α′i := y2αi, then these α′i generate
a bi-infinite strictly decreasing/increasing chain of E-pattern languages where
SE :=

⋂∞
i=−∞ LE,Σ(α′i) = LE,Σ(y2) is an E-pattern language.

Note that the example patterns given above are terminal-free merely for the sake
of convenience. They can be effortlessly turned into certain patterns containing
terminal symbols and still showing equivalent properties.

4 The Existence of Descriptive Patterns

In the present chapter we study the existence of patterns that are descriptive of
sets S of strings. According to our remarks in Section 1, four main cases can be
considered, depending on whether S is finite or infinite and whether NE- or E-
descriptiveness is examined. We focus on the existence of E-descriptive patterns
for infinite languages since, for the other three cases, answers are absolutely
straightforward or directly or indirectly provided by Angluin [1] and Jiang et
al. [5]. In order to give a comprehensive description and further explain some
of our formal concepts and statements we nevertheless also briefly describe the
known or trivial cases.

Using Observation 1, the question of the existence of NE-descriptive patterns
can be easily answered for all types of languages S. We begin with the case of
a finite S. Here, it is primarily necessary to observe that a word w can only be



covered by a pattern α through nonerasing substitutions if α is not longer than
w. Hence, for any finite alphabet Σ and any word over Σ, there are only finitely
many NE-pattern languages over Σ covering this word; this property of a class
of languages is commonly referred to as finite thickness (cf. Wright [13]). Quite
obviously, the same holds for infinite alphabets Σ, since the number of different
terminal symbols that can occur in patterns covering w is limited by the number
of different terminal symbols in w. With regard to infinite sequences of patterns
(generating languages that all differ from each other) over a fixed alphabet, this
means that none of them can contain infinitely many patterns that cover, e. g.,
the shortest word in a given finite set of strings. This immediately shows that,
for every finite S, there exists an NE-descriptive pattern:

Proposition 1 (Angluin [1]). Let Σ be an alphabet and S ⊆ Σ+ a finite
language. Then there is a pattern δ ∈ PatΣ that is NE-descriptive of S.

Note that Angluin [1] does not explicitly state Proposition 1, but directly stud-
ies more challenging questions by introducing a procedure computing an NE-
descriptive pattern for any finite language S and examining the computational
complexity of the problem of finding such patterns for finite languages.

With regard to NE-descriptive patterns for infinite languages S, the same
reasoning as for finite languages S leads to the analogous result:

Proposition 2. Let Σ be an alphabet and S ⊆ Σ+ an infinite language. Then
there is a pattern δ ∈ PatΣ that is NE-descriptive of S.

Proof. Directly from Observation 1 and the finite thickness of the class of NE-
pattern languages. ut

A closer look at the underlying reasoning proving Propositions 1 and 2 reveals
that it does not need to consider whether any infinite sequence of patterns
leads to an infinite strictly decreasing chain of NE-pattern languages (as fea-
tured by Observation 1), but can be completely based on the concept of fi-
nite thickness. If we nevertheless wish to examine the properties of such chains,
then we can easily observe that, for every sequence of patterns αi, i ∈ N, with
LNE,Σ(αi) ⊃ LNE,Σ(αi+1), the set SNE :=

⋂∞
i=0 LNE,Σ(αi) necessarily is empty.

Hence, Examples 1 and 2 illustrate the only option possible.
With regard to E-descriptiveness, the situation is more complex. As shown

by Examples 2 and 3, the class of E-pattern languages does not have finite
thickness and there are even finite and infinite languages that are contained in
all E-pattern languages of an infinite strictly decreasing chain. Nevertheless, it
is known that every finite language has an E-descriptive pattern:

Theorem 4 (Jiang et al. [5]). Let Σ be an alphabet and S ⊆ Σ∗ a finite
language. Then there is a pattern δ ∈ PatΣ that is E-descriptive of S.

The proof for Theorem 4 given by Jiang et al. [5] demonstrates that for every
finite language S an upper bound n can be given such that, for every pattern
α consistent with S, there exists a pattern β satisfying |β| ≤ n and LE,Σ(β) ⊆
LE,Σ(α). So if, for any finite S, there is a sequence of patterns αi, i ∈ N, leading



to an infinite strictly decreasing chain of E-pattern languages comprising S –
which implies that there is no upper bound for the length of the αi – then all
but finitely many of these patterns need to have variables that are not required
for generating the words in S. This phenomenon is illustrated by Example 2,
where only the subpattern y2 of all patterns is necessary in order to map the
patterns onto the words in SE.

In the proof for Theorem 4, the upper bound n equals the sum of the lengths
of the words in S. Thus, this method cannot be adopted when investigating
the existence of E-descriptive patterns for infinite sets of words. In fact, as to
be demonstrated below, we here need to consider two subcases depending on
the number of different letters occurring in the words of S. If the underlying
alphabet is unary, then the descriptiveness of a pattern is related to the inclusion
relation of E-pattern languages over this unary alphabet. The structure of such
E-pattern languages, however, is significantly simpler than that of E-pattern
languages over larger alphabets; in particular, the full class of these languages is
a specific subclass of the regular languages (namely the linear unary languages).
Therefore, and just as in the previous cases, it can be shown that, for every
sequence of patterns (αi)i∈N leading to a infinite strictly decreasing chain of E-
pattern languages over a unary alphabet, the language SE :=

⋂∞
i=0 LE,Σ(αi) is

empty. Referring to Observation 1, this directly leads to the following result:

Theorem 5. Let Σ be an alphabet, |Σ| = 1, and S ⊆ Σ∗ an infinite language.
Then there is a pattern δ ∈ PatΣ that is E-descriptive of S.

The proof for Theorem 5 is omitted due to space constraints.
In contrast to this, Example 2 demonstrates that, for alphabets with at least

two letters, there is an infinite strictly decreasing chain of E-pattern languages
such that the intersection of all these languages is nonempty. Since this inter-
section is an E-pattern language, Example 2 can nevertheless not be used to
establish a result that differs from those given for the other cases. In order
to answer the question of whether this holds true for all such chains, we now
consider a more sophisticated infinite sequence of patterns, that is defined as
follows:

Definition 1. We define the pattern α0 := y2z2 and the morphism φ : X∗ →
X∗ (note that we assume X ⊇ {y, z, x0, x1, x2 . . .}) through, for every i ∈ N,

φ(xi) := xi+1, φ(y) := y2x1, φ(z) := x1z
2.

Then, for every i ∈ N, the pattern αi+1 is given by αi+1 := φ(αi) = φi(α0).

This means that, for example,

α1 = y2x1 y
2x1 x1z

2 x1z
2,

α2 = (y2x1y
2x1x2) (y2x1y

2x1x2) (x2x1 z
2x1z

2) (x2x1z
2x1z

2),
α3 = (y2x1y

2x1x2 y
2x1y

2x1x2 x3) (y2x1y
2x1x2 y

2x1y
2x1x2 x3)

(x3 x2x1z
2x1z

2 x2x1z
2x1z

2) (x3 x2x1z
2x1z

2 x2x1z
2x1z

2).



It can be shown that this sequence (αi)i∈N defines an infinite strictly decreasing
chain of E-pattern languages. Furthermore, if we define the morphism ψ : X∗ →
X∗ through ψ(xi) := xi and ψ(y) := ψ(z) := x0, then, for every alphabet Σ with
|Σ| ≥ 2, LΣ :=

⋃∞
i=0 LE,Σ(ψ(αi)) satisfies LΣ ⊆

⋂∞
i=0 LE,Σ(αi). Finally, it can

be demonstrated that the sequence (αi)i∈N has a very particular property, since
for every pattern γ with LE,Σ(γ) ⊇ LΣ there exists an αi satisfying LE,Σ(γ) ⊇
LE,Σ(αi). Referring to Observation 1, this implies the main result of our paper:

Theorem 6. For every alphabet Σ with |Σ| ≥ 2 there is an infinite language
LΣ ⊂ Σ∗ that has no E-descriptive pattern.

The proof for Theorem 6 is omitted due to space constraints.
Consequently, when searching for descriptive patterns, the case of E-descrip-

tive patterns of infinite languages over alphabets of at least two letters is the
only one where the existence of such patterns is not always guaranteed. This
directly answers a question posed by Jiang et al. [5].

Finally, it can be shown that, while the proof of Theorem 6 is based on the
particular shape of the infinite union LΣ of E-pattern languages described above,
LΣ can be replaced by a language Lt

Σ which, for every pattern ψ(αi), i ≥ 0,
contains just a single word. In order to describe this insight more precisely, we
have to introduce the following concept:

Definition 2. A language L is called properly thin if, for every n ≥ 0, L con-
tains at most one word of length n.

Referring to this definition, we can strengthen Theorem 6 as follows:

Corollary 1. For every alphabet Σ with |Σ| ≥ 2, there is an infinite properly
thin language Lt

Σ ⊂ Σ∗ that has no E-descriptive pattern.

The proof for Corollary 1 is omitted due to space constraints.

5 Conclusions and Further Directions of Research

In the present paper, we have studied the existence and nonexistence of patterns
that are descriptive of a set of strings. We have explained that this question
is related to the existence of infinite strictly decreasing chains of pattern lan-
guages. Our main result has demonstrated that there exist infinite languages
over alphabets of at least two letters that do not have an E-descriptive pattern.

This insight leads to the question of characteristic criteria describing infinite
languages without an E-descriptive pattern. We have referred to one example
of such languages, namely a particular infinite union of E-pattern languages.
Although we have mentioned that an infinite properly thin language can be sub-
stituted for this union, we anticipate that only very special languages (and very
special infinite strictly decreasing chains of E-pattern languages) can be used for
the proof of our main result. Thus, we expect the nonexistence of E-descriptive
patterns to be a rare phenomenon. In addition to the said criteria, we consider it



worthwhile to further investigate the existence of efficient procedures finding de-
scriptive patterns of given languages (for those cases where descriptive patterns
exist). So far, this question has only been answered for NE-descriptive patterns
of finite languages (see Angluin [1]), demonstrating that no such procedure can
have polynomial runtime (provided that P6=NP). We feel that a more pleasant
result might be possible for E-descriptive patterns.
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