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Abstract 

This paper investigates the nature of the design pro- 
cess for parallel operating systems. It proposes a tem- 
poral logic-based formal methodology addressing the 
high-level design of such systems. In  operating sys- 
tems design much use is made of the informal notion 
of resource bindings. A way of improving the high- 
level design of parallel systems is proposed by provid- 
ing a formal language for enumerating the design space 
and thus enabling all high-level design alternatives to 
be represented. A design process to be used with this 
language is given, the aim being to establish the most 
appropriate binding. The process is temporal logic- 
based and permits high-level design of parallel systems 
to be analysed, tested and, in certain cases, formally 
verified before implementation is embarked upon. 

1 Introduction 

Successful industrial applications of formal meth- 
ods, such as the IBM CICS project using Z [7], have 
increased interest in applying formal methods in the 
development cycle of real-life systems. Various uses 
of formal methods have been proposed for different 
stages of the development process. With parallel sys- 
tems, the added complexity and design options have 
resulted in a greater demand for some sort of assis- 
tance. The required assistance is twofold. Firstly, to  
be made more aware of the design alternatives and 
secondly, to obtain some sort of verification or assur- 
ance that the design is viable before embarking on 
the costly task of implementation. Formal techniques 
have been used in a limited way to offer verification in 
real-life parallel systems; see for example [3], [6], [ll] 
and [9]. These rarely address the concern of giving 
guidance as to the design alternatives. Furthermore, 
some only address a fairly low level of design. 
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In this paper, a formal design process for high-level 
design is proposed which enables the high-level design 
space to be enumerated, and which provides limited 
verification of chosen design options. 

In section 2 the experiences of two parallel oper- 
ating systems projects, both collaborative with indus- 
try, are drawn upon to  extract the essential features of 
high-level design. From this, a design space language 
is formulated in section 3. A design process to  be put 
in place at the high-level design phase of system devel- 
opment is given in section 4. Section 5 gives examples 
of use of the design process including use of tempo- 
ral logic to provide partial verification of the design. 
Some conclusions are drawn in section 6. 

2 Operating Systems Design 

The behaviour of an operating systems is described, 
at a high-level by systems architects, in terms of an 
intuitive notion of bindings1; see for example [13], 
[15], [14], [16], [4] and [12]. An operating system 
can be viewed as handling an infinite set of requests. 
These requests take the form of “provide access to  re- 
source(s)”. The system ensures that this request is 
satisfied by providing an “association” between the 
request and the resource(s). In informal design, such 
an association is termed a binding between the request 
and the resource(s). It is the set of such permissible 
associations/bindings that can occur that define the 
behaviour of a system, and indeed that indicate the 
possible design structuring for that system. 

The design phase of the operating systems projects 
that initiated this work was based around what bind- 
ings were appropriate. The designers had little specific 

‘The term binding pervades the computer world and assumes 
a slightly special meaning in each case. This ranges from its 
usage in the purest sense, as in the binding of names to values 
in the A-calculus, to its usage in the present context of operating 
system design. 
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formal methods experience. Consequently the discus- 
sion was informal and assumed an intuitive notion of 
what was meant by binding. 

The Flagship operating system [lo] was decom- 
posed into a four layer model of abstract machines 
(am) such that level am,,, above, depended upon, the 
services of am-1 .  The levelled composition of the ab- 
stract machines was expected to  provide the required 
behaviour of the system. In turn, the abstract ma- 
chines were decomposed informally into subsystems. 
In the kernel am, these subsystems were resource man- 
agers, corresponding to the resources of the machine. 

In the kernel, the building block for the resource 
managers was the Flagship ADT (FADT) which pro- 
vided serialisable operations on its state. A call to an 
operation of an FADT required a binding of five com- 
ponents. The ordering in which these bindings were to 
occur would have an impact on the design and decom- 
position of the resource management components. It 
is precisely this sort of issue that would benefit most 
from early formalisation of design alternatives. This 
example is returned to  in section 5 where a formal de- 
sign language is used to express the intuitive notion of 
the most appropriate binding strategy. 

So far, in the Flagship operating system, the system 
specification had been informal. At the level of the 
subsystems formality was introduced by specifying be- 
haviour in a VDM-like relational model. Whilst such 
specification proved useful it did not involve any for- 
mal correspondence to  higher levels as no formal defi- 
nition of the overall system behaviour was available2. 

The system design of the EDS operating system 
project began to address some of the remaining in- 
adequacies that were present in the Flagship project. 
Temporal logic was introduced to express required 
properties such as liveness. A temporal description of 
a scheduler was produced [8], and an informal proof 
that the implementation of the scheduler satisfied its 
specification was also carried out. 

It was clear that a formal design process had to 
be put in place that would also provide some sort of 
formal test of the viability of the high-level design op- 
tions. The process, described below, is aimed primar- 
ily a t  the high-level design phase of parallel systems. 
Notation that allows the intuitive notions of bindings 
to be placed in a formally enumerated design space 
is introduced and a temporal logic-based process for 
testing the design is proposed. 

3 Binding Strategy Language 

Given identified resource types, a notation is 
needed which will indicate all the relevant ways that 
the resources can be bound, in other words the 
binding strategies. In view of the remarks above, 
a function application style of notation might be ap- 
propriate. Thus, below, 

has the intuitive meaning of RI  being bound to R2 
applicatively. There is to be a distinction between 

R1(R2) and 

With parallel systems, the notion of the order in 
which resources are bound is important. To this end, 

R1; R2 

suggests RI  followed by  R2, and 

R1 llR2 

indicates R1 and R2 an parallel. 
The binding strategies given below are very general. 

The form of the binding strategies are encapsulated in 
the Binding Strategy Language (BSL). The BSL has 
the following additional characteristics: 

1. There is a notion of resource type 

which are sets of instances of the respective re- 
source types. Thus, RI  might be the set of pro- 
cesses, and R2 might be the set of parts of state 
which can be accessed individually. Lower-case 
letters will denote particular instances of resource 
types, such as an instance of a printer resource 
type. Thus, 

Ri = { ~ ; j  : ~ ; j  E R,}. 

2. The bindings should be able to cope with both 
static and dynamic binding of resources. If R j  is 
a resource type then, for each instance r j k  E Rj ,  
there may be many instances of it 

2An attempt at a formal argument for the system's behaviour 
is given in [9]. say. Then, if a request to bind 
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Thus, a typical expression might be 

(‘‘12 ) ( (Rz )  11 (R3 )) 
where R2 and R3 are bound to  dynamically. 

is received, this means that any of 

is acceptable. It is also possible to bind to a dy- 
namic resource type statically, say if in the above 
the user had specifically requested 

The difference between the static and dynamic 
cases is that in the static case the instance of the 
resource type required is known at the outset. 

The formal syntax of the BSL is as follows: 

Syntax 

Symbols 

1. Sequence of symbols denoting resource types: 

2. For each resource type R,, symbols denoting the 

3. Parentheses ( ), serial composition ;, parallel com- 

R I ,  Rz ,  . . .  . 

resource instances: ril , ri2, . . . 

position 11. 

Expressions 

The language BSL comprises applicative bindings, 
bdapp, bindings in serial, bdser and parallel bindings, 
bdpar. It is argued here that a series-parallel language 
of applicative bindings is sufficiently expressive for all 
sound designs of parallel systems. Below, the syntax 
of the language is given in BNF with non-terminals 
enclosed in angled brackets <, >. 

< bd > ::= < bdapp > I < bdser > I 
< bdpar > I < bdatom > 

Design Options Language 

A given design options language corresponds to an in- 
teger n ,  to a finite subset of resource types S 

and, for each such resource type R;, a finite subset 
S; of instances 

T i l ,  Ti27 ..., T i k i  

The Design Options Language, DOLs,s;, is defined 
to be the sublanguage of the overall BSL compris- 
ing expressions which have only one occurrence of the 
symbols belonging to the set of resource types S and 
each of the sets of resource instances Si, no symbols 
from any other resource type and only n resource type 
or resource instance symbols in total. 

Design Options 

A design option is a set of expressions in a given De- 
sign Options Language. A given DOL enables a rep- 
resentation of all the design options to  be listed. Thus 
all the possible high-level designs can be given consid- 
eration at an early stage. The nature of the mean- 
ing attached to ‘binding’ will differ from application 
to application. For each particular application, this 
meaning will be given precisely by a temporal logic 
semantics. The intention of the DOL is not to provide 
such a semantics that applies strictly in all situations, 
but rather to ensure that, in the particular applica- 
tion, all design options are given some denotation and 
thus made apparent at an early stage. It is believed 
that in most cases a temporal semantics will be pos- 
sible, and analysis, testing or even verification will be 
facilitated. This was found to be the case in the de- 
sign of the EDS operating system. At the very least, 
it will provide testing of high-level design before the 
costly process of development is embarked on. 

< bdapp > ::= (< bd >< bd >) 

< bdsef> ::= (< bd >; < bd >) 

< bdpar > ::= (< bd > 11 < bd >) 

< bdatom > ::= (RI ) [  (R2)I . . . I (r11)l ( T I Z ) ~  . . . I 

4 Design Process 

BSL is to be used in the context of the following 
temporal logic-based design process. It is given in 
terms of an eight stage procedure to  be put in place 
at the high-level design phase of parallel system devel- 

(r21)l ( T 2 2 ) I  * * opment. 
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1. Identify the resource types in the system. 

2. For each resource type determine the resource in- 
stances. 

3. List the expressions in the corresponding DOL. 

4. Conduct a preliminary and informal assessment 
of the design options and select a small subset of 
viable options. 

5.  Produce a corresponding temporal semantics 
7 L O p  for each design option op in this subset of 
the design options. 

6. Give a temporal logic formula 7 L p r O p  for the re- 
quired properties of the system. 

7. Express any architectural constraints (e.g. hard- 
ware) as a temporal logic formula 7LCconstr. 

8. Test the design by proving absolutely, or proving 
with chosen finiteness assumptions, the formula: 
7 L o p  A TLCconstr * 7LpTOp 

5 Examples of using the design process 

The following illustrates the use of the design pro- 
cess with real systems. As the temporal logic stages 
of the process are substantial only the first example 
covers these. The rest focus on BSL and how different 
strategic design decisions can be represented initially 
by very simple expressions. 

Monolithic store management 

This example is of a system with a monolithic vir- 
tual store shared by all the processes in the system. 
User processes read and write to virtual store by first 
accessing a store map to  find which real address cor- 
responds to a virtual address, and then to  access the 
physical store at that real address. 

The resource types are user processes U = {u(n) : 
u(n) E U } ,  a single store map sm and a physical store 
ph. The viable designs are, after informal considera- 
tion of the possible BSL  expression^,^: 

~ ~~ 

3The informal idea of ‘binding’ in this case is seen applica- 
tively and hence the BSL expressions given. It is possible to 
see the idea of ‘binding’ here as serial association and hence use 
BSL expressions with ; instead. Whatever scheme is used in 
any particular application does not matter as all possible de- 
signs will be accounted for by s m e  expression. It is a lack of 
awareness of the possibilities that leads to bad designs initially. 
With BSL the options are made apparent early on. 

0 ( ( U ) ( ~ m ) ) ( p h > ~  -users access the store map first 
and then the physical store in two stages, 

0 (U)((sm)(ph)) - users access the store map and 
physical store in one go. 

The temporal semantics of the two designs corre- 
sponding to the two BSL expressions are given by 
specifying each designed system as the sequence of 
events in time that can occur in that system. 

The events that may or may not be occurring at a 
given point in time correspond to the following predi- 
cates: 

0 sm(v,r): r is the real address of the virtual ad- 
dress v in the store map; 

0 ph(r,z): 5 is the value contained at the location 
with address r in physical store; 

0 u-sm(n,v): user n is accessing the store map to 
get the real address of the virtual address v; 

0 uph(n,r): user n is accessing the physical store 
at real address r; 

0 s-sm(v): the system process (possibly hardware) 
accesses the store map at virtual address v for 
store management purposes; 

0 sph(r) :  the system process (possibly hardware) 
accesses the physical store at real address T for 
store management purposes; 

0 u(n): user n is accessing either the store map or 
physical store. 

It is clear that the value of the predicates sm, ph, 
u-sm, uph, s-sm, sph and U are required to change 
over time. For this reason, the temporal language 
to be used is first-order linear discrete time temporal 
logic with equality where the predicates are ‘flexible’ 
in the terminology of [l]; see that reference for the 
full semantics. A pleasant feature of temporal logic is 
that specifications can be appreciated with only the 
following brief description of the temporal operators: 

1. 04  (“always 9”) is true if the formula q5 is true 
now and in every future moment. 

2. 04 (“at the next moment f )  is true now if the 
formula 4 is true at the next instant. 

4Strictly speaking the corresponding design option is the sin- 
gleton set { ( (Wsm))(&Jh)  }. 
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3. Wll, (‘‘4 until 11,”) is true if 11, becomes true at 
some point in time and until that happens 4 will 
be true. 

The temporal semantics of the two chosen design al- 
ternatives are: 

def 
0 bind((U)(,,))(ph) = VnvvVr. 

0 (u-sm(n, v )  A sm(v, r )  =+- O(-u(n) U uph(n, r ) ) )  

This states that for any user n ,  any virtual address 
w and any real address T ,  it is always the case that if 
user n accesses the store map and finds that the vir- 
tual address v is at real address T ,  then the next access 
that this user performs is to the physical store at that 
real address. The other binding has the temporal ex- 
pression: 

def 
0 bind(u)((.,)(,,h)) = VnVvVr. 

0 (u-sm(n,v) A sm(v, r )  + Ouph(n, r ) )  

A user accesses physical store as soon as (concep- 
tually at the next instant in time) the real address 
of the physical address is obtained. The architectural 
constraints are broken down into constrl, cms t r2  and 
constr3 which, respectively, allow access to  the store 
map and physical store by only one process at a time 
(cons tr l ) ,  do not allow asimultaneous access by a user 
process and the system process to  either the store map 
or physical store (constr2) and which permit changes 
to  the store map by the system process for store man- 
agement purposes (constr3). 

def constrl  = V m V n V v i V v z V r ~ V r ~ .  

( m  # n) * 0 (-(u-sm(m, vi) A u-sm(n, ~ 2 ) )  A 

-(llph(m, ri A uph(n, r z ) ) )  

def constr2 = VnVvlVvzVrlVr2. 

o(-(u-sm(n, “1) A ~ - s m ( v z ) )  A y(uph(n,  T I )  A s p h ( r 2 ) ) )  

def constr3 = VvVr lVrz .  

( ~ i  # ~ z )  * 0 ( ( s m ( v ,  T I )  A O ~ m ( v ,  ~ 2 ) )  * 0 s-sm(v))  

The last constraint reads: “whenever the store map 
changes, the system process must have accessed it”. 
Then, 

def 
0 arch-constr = constrl A constr2 A constr3 

The required property of the system is that the 
store is kept consistent. This means that if a user 
process accesses the store map to  obtain the real ad- 
dress T of a virtual address w ,  then when that user 
accesses physical store at that T it must still be the 
real address of w: 

dcf 
0 prop = VnVvVr. 0 (u-sm(n,v)  A s m ( v , r )  + 

O ( - u ( n )  U (uph(n, r )  A sm(v,  TI)))  
The proof obligations for the two design options 

are: 

0 bind((U)(,,))(ph) A arch-constr + prop 

and 

0 bind(u)((,,)(ph)) A arch-constr + prop 

Unfortunately, proofs are not possible in the tem- 
poral logic used. However, with suitable finiteness re- 
strictions on the set of users, virtual addresses and real 
addresses, the formulae reduce to  formulae in propo- 
sitional temporal logic which certainly admit proofs, 
indeed the logic is decidable and is the focus of much 
active research into efficient theorem provers, e.g. [ 2 ] .  
With the inclusion of additional temporal formula that 
have been omitted here, giving fairly obvious relation- 
ships between the predicates, it is possible to formally 
verify that the second bindings option has the correct 
properties. Although, with the finiteness assumptions, 
this would not be an absolute proof, nevertheless it 
does give some indication of the correctness of the 
high-level design as was sought. 

Distributed Store Management 

The monolithic store example hardly requires a tem- 
poral verification to show that the second binding al- 
ternative is the one to  choose. The following, more in- 
teresting distributed store example can be dealt with 
in exactly the same way though at greater length. 

It comprises virtual storage distributed between 
several processors. The resources in the system are 
user processes P = { p ,  : pn E P } ,  a (global) table 
PE indicating on which processor each p,’s store is 
located, for each process p ,  a store map sm, giving 
the virtual to real address map on the processor that 
p ,  is on and, for each processor pr a physical address 
to value map ph,,. One possible design option for a 
process updating its virtual store, is that the process 
p ,  first accesses PE to find which processor it is on, 
and then accesses sm, to obtain the real address; in 

An alternative binding is if the process first ac- 
cesses the virtual to  real address map sm, and 
then finds which processor this relates to; in BSL: 
( (P,) (smn 1) ( P E ) .  

If the hardware moves processes from one processor 
to another so that the virtual to real address map does 
not change, then the second bindings option would be 
the one giving a consistent store. Bindings options 
other than the ones shown are possible. 

BSL: ( (pn)(PE)) (smn) .  
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Flagship ADTs 

In section 2, the Flagship operating system was dis- 
cussed and in particular the FADT components of the 
kernel. It was essential to ensure serialisability of the 
state of these FADTs in the presence of parallelism. 
A call to  an operation of an FADT required a bind- 
ing of five components: a stateholder, sh, which was 
bound to a processor, PE;, and could not be copied 
(but could, conceptually, be moved to another proces- 
sor); a guardian, g, that ensured only one operation of 
the FADT ever has access to the stateholder at any in- 
stant; an operation, op, called by the user, and partial 
parameters to the operation, p p ,  supplied by the user. 
As mentioned earlier, the order in which these bind- 
ings are carried out has an impact on system struc- 
turing. It is precisely the type of intuition involved in 
choosing the best binding order that the BSL attempts 
to make formal. 

The following conditions were considered to be 
needed for serialisability: 

1. the presence of the guardian, that ensures only 
one operation has access to  the stateholder at any 
instant, 

2. the stateholder is bound to  only one processor at 
any instant, which ensures there is only ever one 
copy of the stateholder extant. 

The operation, op, and the partial parameters, pp, 
are only bound to the binding of (PE;, sh, g )  on each 
call. So the major concern is the order of binding of 
the three components, (PE,, sh, 9). 

Two possible bindings seem intuitively to be worthy 
of consideration. The BSL framework allows these 
alternatives to be investigated more formally. 

The stateholder must exhibit serialisable behaviour, 
enforced by the guardian. A single PE must be bound 
in order to achieve this. The two alternatives of inter- 
est are as follows: 

1. The binding of a processor is of secondary impor- 
tance, because, as noted, conceptually, the state- 
holder could be re-bound to another processor at 
some instant and the same abstract behaviour will 
ensue. Thus, the binding of longest duration is 
between the stateholder and the guardian. 

This intuition can be formalised using BSL: a 
stateholder and a guardian are bound in any 
order. The design options are: ( ( ( 9 ) ;  ( s h ) ) ,  
( ( sh) ;  ( 9 ) ) ) .  This binding holds for the lifetime 
of the FADT. 

2. 

A processor, PE,, is then bound, for example, 
(PEi)((g); ( sh) ) .  This binding may be changed 
during the lifetime of the FADT. 

The closest binding is between the processor and 
the stateholder. The guardian, to queue opera- 
tions on the stateholder, is of secondary impor- 
tance and can be bound later. 
This intuition can be formalised using BSL: a 
stateholder and a processor are bound in any 
order. The design options are: {((PE;); ( sh ) ) ,  

A guardian 9,  is then bound, for example, 

The difficulty that can now be seen with this ap- 
proach is that conceptually the stateholder can be 
moved to another processor during it’s lifetime. 
To achieve this type of re-binding dynamically is 
made far more difficult because it also involves 
unbinding the guardian. This becomes far more 
apparent by considering the BSL expression. 

( ( sh) ;  (PE;))}.  

(PEa)((sh); ( 9 ) ) .  

Alternative 1 corresponds more to  a top-down ab- 
stract model of what is to  be achieved. Alternative 
2 corresponds more to a bottom-up view of how the 
behaviour will be achieved. 

Alternative 1 is considered to be the most appro- 
priate binding strategy. This example shows one of 
the benefits of the BSL is allowing such design alter- 
natives to be considered. 

For completeness, the full binding with alternative 
1 is as follows. A user, U, passes the partial parame- 
ters of the call, pp, to the required FADT operation, 
op, thus (u)((pp)(op)), and when the guardian allows 
this operation to proceed, the following binding holds: 

(.)((PP)((op)((PEi ) ( ( 9 ) ;  ( s h ) ) ) ) ) ,  

which is sufficient for the operation to proceed and be 
serialisable. This larger binding only holds for the du- 
ration of an operation call. The corresponding design 
option is a set of such expressions for the various PE’s 
and the g and s h  in possible orders. 

File Management 

A traditional view of file management is that a user 
requests access to a named file, implicitly the file is to 
be accessed in some fashion. This access is obtained 
by associating a file manager with the file. To han- 
dle these requests the system recognises the request, 
determines its validity, identifies the physical file from 
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the name provided, and ensure that the file can be ac- 
cessed in the way requested. Following this, a binding 
must occur between three resources: user, file and file 
manager to provide the required behaviour. The issue 
at this stage is how to bring about this binding. 

Given a user U,  a file f, and a file manager fm, (all 
are instances of a resource type as defined earlier), the 
following four bindings occurrences are possible, and 
are denoted using suitable sets of BSL expressions: 

All three resources are bound together at what 
appears to  be the same instant in time; the design 
option is: 

{(U) l l ( f )  Il(fm)). 

The user and file manager are bound together (in 
either order), and, at some subsequent instant, 
the file is bound. The binding of the user and the 
file manager is of the longer duration. This order 
may be required, for example, if the user wishes 
to access all files in the same manner, perhaps 
sequentially so as to print them all; the design 
option is: 

{ ( f ) ( ( U h  (fm)), ( f ) ( ( fm);  (U))) 
The user and file are bound together (in either 
order), and, at some subsequent instant, the file 
manager is bound. The binding of the user and 
the file is of the longer duration. This order may 
be required, for example, if the user wishes to 
access the file in a number of different ways, per- 
haps sequentially for a report of the whole file, 
and then access it randomly for interactive reads 
and updates; the design option is: 

{(f”(u); (f)) ,  (f”(f); ( U ) ) )  

The file and file manager are bound together (in 
either order), and at some subsequent instant the 
user is bound. The binding of the file and the 
file manager is for a longer duration. This order, 
essentially gives the user only one means of ac- 
cessing the file, i.e. via its bound file manager; 
the design option is: 

{ ( U ) ( ( f L  (fm)), (u)((fm); U))) 
Printer Access 

Finally, consider a request from a user U ,  to print a 
file f on a printer. This request could be to print to 
a designated printer p i ,  in which case the binding is 
to a specific instance of a dynamic resource type P 
(the set of all printers). Thus, (pi)((u)(f)) However, 
if all printers have the same capability and are in the 

same location then the request would be to  bind to the 
dynamic resource type P ,  and some printer scheduler 
can determine which printer instance should be used. 
Thus, (PI ((u)(f) 1. 

6 Conclusions and Future Work 

‘The objective of this paper has been to  place the 
informal, but common and useful, notion of resource 
bindings into a formal framework, to improve the high- 
level design of parallel operating systems. It has drawn 
on experiences of high-level design in two parallel op- 
erating systems projects. 

The main benefits of the resulting design process 
(section 4), and from which the process derives its 
uniqueness, was use of the BSL to give a formal rep- 
resentation of the design space. This enabled a better 
analysis of the design alternatives and improved the 
design of, for example, Flagship ADTs where the ad- 
vantage of binding the guardian and stateholder for the 
lifetime of a Flagship ADT thus allowing the processor 
to change during the lifetime was indicated when the 
BSL expressions were written down. Flagship ADTs 
were the building blocks of the Flagship kernel, and 
the BSL analysis presented in section 5 led to various 
re-designs of the prototype kernel. 

The verification parts of the design process - stages 
5 to 8 of section 4 - were based on temporal logic 
mainly because of early success with using the for- 
malism in the EDS project [8]. They required consid- 
erably more input of effort and at best succeeded in 
providing fairly rigorous though informal arguments 
of the viability of certain designs. A lack of availabil- 
ity of appropriate tools was also a drawback of these 
stages. An alternative design process could replace 
these stages by use of other tools such as the Con- 
currency Workbench [5]. So, for example, stages 5 
and 7 might mean providing CCS agents CCS,, and 
CCS,,,,t,, and stage 6 a specification MC,,,, in the 
modal mu-calculus offered by the workbench. The ver- 
ification at stage 8 would then involve running the 
workbench model checker to check that the composi- 
tion of CCS,, and CCS,,,,t, satisfied MC,,,,. It is 
likely that finiteness assumptions needed for provabil- 
ity in the temporal logic case would also be needed 
when using the workbench. However, it would nev- 
ertheless be worth comparing use of verification tools 
such as those offered by the workbench, in the context 
of appropriate stages 5 to  8 in the design process, with 
temporal logic tools used in the context of the design 
process given here. 
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