

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

A Formal Approach to Determining Parallel Resource Bindings
Experience Report

John A. Keane,
Centre for Novel Computing,

Department of Computer Science,
The University, Manchester, UK.

Abstract

This paper investigates the nature of the design pro-
cess for parallel operating systems. It proposes a tem-
poral logic-based formal methodology addressing the
high-level design of such systems. In operating sys-
tems design much use is made of the informal notion
of resource bindings. A way of improving the high-
level design of parallel systems is proposed by provid-
ing a formal language for enumerating the design space
and thus enabling all high-level design alternatives to
be represented. A design process to be used with this
language is given, the aim being to establish the most
appropriate binding. The process is temporal logic-
based and permits high-level design of parallel systems
to be analysed, tested and, in certain cases, formally
verified before implementation is embarked upon.

1 Introduction

Successful industrial applications of formal meth-
ods, such as the IBM CICS project using Z [7], have
increased interest in applying formal methods in the
development cycle of real-life systems. Various uses
of formal methods have been proposed for different
stages of the development process. With parallel sys-
tems, the added complexity and design options have
resulted in a greater demand for some sort of assis-
tance. The required assistance is twofold. Firstly, to
be made more aware of the design alternatives and
secondly, to obtain some sort of verification or assur-
ance that the design is viable before embarking on
the costly task of implementation. Formal techniques
have been used in a limited way to offer verification in
real-life parallel systems; see for example [3], [6], [ll]
and [9]. These rarely address the concern of giving
guidance as to the design alternatives. Furthermore,
some only address a fairly low level of design.

Walter Hussak,
Department of Computer Studies,

University of Technology,
Loughborough, UK.

In this paper, a formal design process for high-level
design is proposed which enables the high-level design
space to be enumerated, and which provides limited
verification of chosen design options.

In section 2 the experiences of two parallel oper-
ating systems projects, both collaborative with indus-
try, are drawn upon to extract the essential features of
high-level design. From this, a design space language
is formulated in section 3. A design process to be put
in place at the high-level design phase of system devel-
opment is given in section 4. Section 5 gives examples
of use of the design process including use of tempo-
ral logic to provide partial verification of the design.
Some conclusions are drawn in section 6.

2 Operating Systems Design

The behaviour of an operating systems is described,
at a high-level by systems architects, in terms of an
intuitive notion of bindings1; see for example [13],
[15], [14], [16], [4] and [12]. An operating system
can be viewed as handling an infinite set of requests.
These requests take the form of “provide access to re-
source(s)”. The system ensures that this request is
satisfied by providing an “association” between the
request and the resource(s). In informal design, such
an association is termed a binding between the request
and the resource(s). It is the set of such permissible
associations/bindings that can occur that define the
behaviour of a system, and indeed that indicate the
possible design structuring for that system.

The design phase of the operating systems projects
that initiated this work was based around what bind-
ings were appropriate. The designers had little specific

‘The term binding pervades the computer world and assumes
a slightly special meaning in each case. This ranges from its
usage in the purest sense, as in the binding of names to values
in the A-calculus, to its usage in the present context of operating
system design.

15
0270-5257194 $3.00 Q 1994 IEEE

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:52 from IEEE Xplore. Restrictions apply.

formal methods experience. Consequently the discus-
sion was informal and assumed an intuitive notion of
what was meant by binding.

The Flagship operating system [lo] was decom-
posed into a four layer model of abstract machines
(am) such that level am,,, above, depended upon, the
services of am-1 . The levelled composition of the ab-
stract machines was expected to provide the required
behaviour of the system. In turn, the abstract ma-
chines were decomposed informally into subsystems.
In the kernel am, these subsystems were resource man-
agers, corresponding to the resources of the machine.

In the kernel, the building block for the resource
managers was the Flagship ADT (FADT) which pro-
vided serialisable operations on its state. A call to an
operation of an FADT required a binding of five com-
ponents. The ordering in which these bindings were to
occur would have an impact on the design and decom-
position of the resource management components. It
is precisely this sort of issue that would benefit most
from early formalisation of design alternatives. This
example is returned to in section 5 where a formal de-
sign language is used to express the intuitive notion of
the most appropriate binding strategy.

So far, in the Flagship operating system, the system
specification had been informal. At the level of the
subsystems formality was introduced by specifying be-
haviour in a VDM-like relational model. Whilst such
specification proved useful it did not involve any for-
mal correspondence to higher levels as no formal defi-
nition of the overall system behaviour was available2.

The system design of the EDS operating system
project began to address some of the remaining in-
adequacies that were present in the Flagship project.
Temporal logic was introduced to express required
properties such as liveness. A temporal description of
a scheduler was produced [8], and an informal proof
that the implementation of the scheduler satisfied its
specification was also carried out.

It was clear that a formal design process had to
be put in place that would also provide some sort of
formal test of the viability of the high-level design op-
tions. The process, described below, is aimed primar-
ily a t the high-level design phase of parallel systems.
Notation that allows the intuitive notions of bindings
to be placed in a formally enumerated design space
is introduced and a temporal logic-based process for
testing the design is proposed.

3 Binding Strategy Language

Given identified resource types, a notation is
needed which will indicate all the relevant ways that
the resources can be bound, in other words the
binding strategies. In view of the remarks above,
a function application style of notation might be ap-
propriate. Thus, below,

has the intuitive meaning of RI being bound to R2
applicatively. There is to be a distinction between

R1(R2) and

With parallel systems, the notion of the order in
which resources are bound is important. To this end,

R1; R2

suggests RI followed by R2, and

R1 llR2

indicates R1 and R2 an parallel.
The binding strategies given below are very general.

The form of the binding strategies are encapsulated in
the Binding Strategy Language (BSL). The BSL has
the following additional characteristics:

1. There is a notion of resource type

which are sets of instances of the respective re-
source types. Thus, RI might be the set of pro-
cesses, and R2 might be the set of parts of state
which can be accessed individually. Lower-case
letters will denote particular instances of resource
types, such as an instance of a printer resource
type. Thus,

Ri = { ~ ; j : ~ ; j E R,}.

2. The bindings should be able to cope with both
static and dynamic binding of resources. If R j is
a resource type then, for each instance r j k E Rj ,
there may be many instances of it

2An attempt at a formal argument for the system's behaviour
is given in [9]. say. Then, if a request to bind

16

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:52 from IEEE Xplore. Restrictions apply.

Thus, a typical expression might be

(‘‘12) ((Rz) 11 (R3))
where R2 and R3 are bound to dynamically.

is received, this means that any of

is acceptable. It is also possible to bind to a dy-
namic resource type statically, say if in the above
the user had specifically requested

The difference between the static and dynamic
cases is that in the static case the instance of the
resource type required is known at the outset.

The formal syntax of the BSL is as follows:

Syntax

Symbols

1. Sequence of symbols denoting resource types:

2. For each resource type R,, symbols denoting the

3. Parentheses (), serial composition ;, parallel com-

R I , Rz ,

resource instances: ril , ri2, . . .

position 11.

Expressions

The language BSL comprises applicative bindings,
bdapp, bindings in serial, bdser and parallel bindings,
bdpar. It is argued here that a series-parallel language
of applicative bindings is sufficiently expressive for all
sound designs of parallel systems. Below, the syntax
of the language is given in BNF with non-terminals
enclosed in angled brackets <, >.

< bd > ::= < bdapp > I < bdser > I
< bdpar > I < bdatom >

Design Options Language

A given design options language corresponds to an in-
teger n , to a finite subset of resource types S

and, for each such resource type R;, a finite subset
S; of instances

T i l , Ti27 ..., T i k i

The Design Options Language, DOLs,s;, is defined
to be the sublanguage of the overall BSL compris-
ing expressions which have only one occurrence of the
symbols belonging to the set of resource types S and
each of the sets of resource instances Si, no symbols
from any other resource type and only n resource type
or resource instance symbols in total.

Design Options

A design option is a set of expressions in a given De-
sign Options Language. A given DOL enables a rep-
resentation of all the design options to be listed. Thus
all the possible high-level designs can be given consid-
eration at an early stage. The nature of the mean-
ing attached to ‘binding’ will differ from application
to application. For each particular application, this
meaning will be given precisely by a temporal logic
semantics. The intention of the DOL is not to provide
such a semantics that applies strictly in all situations,
but rather to ensure that, in the particular applica-
tion, all design options are given some denotation and
thus made apparent at an early stage. It is believed
that in most cases a temporal semantics will be pos-
sible, and analysis, testing or even verification will be
facilitated. This was found to be the case in the de-
sign of the EDS operating system. At the very least,
it will provide testing of high-level design before the
costly process of development is embarked on.

< bdapp > ::= (< bd >< bd >)

< bdsef> ::= (< bd >; < bd >)

< bdpar > ::= (< bd > 11 < bd >)

< bdatom > ::= (RI) [(R2)I . . . I (r11)l (T I Z) ~ . . . I

4 Design Process

BSL is to be used in the context of the following
temporal logic-based design process. It is given in
terms of an eight stage procedure to be put in place
at the high-level design phase of parallel system devel-

(r21)l (T 2 2) I * * opment.

17

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:52 from IEEE Xplore. Restrictions apply.

1. Identify the resource types in the system.

2. For each resource type determine the resource in-
stances.

3. List the expressions in the corresponding DOL.

4. Conduct a preliminary and informal assessment
of the design options and select a small subset of
viable options.

5. Produce a corresponding temporal semantics
7 L O p for each design option op in this subset of
the design options.

6. Give a temporal logic formula 7 L p r O p for the re-
quired properties of the system.

7. Express any architectural constraints (e.g. hard-
ware) as a temporal logic formula 7LCconstr.

8. Test the design by proving absolutely, or proving
with chosen finiteness assumptions, the formula:
7 L o p A TLCconstr * 7LpTOp

5 Examples of using the design process

The following illustrates the use of the design pro-
cess with real systems. As the temporal logic stages
of the process are substantial only the first example
covers these. The rest focus on BSL and how different
strategic design decisions can be represented initially
by very simple expressions.

Monolithic store management

This example is of a system with a monolithic vir-
tual store shared by all the processes in the system.
User processes read and write to virtual store by first
accessing a store map to find which real address cor-
responds to a virtual address, and then to access the
physical store at that real address.

The resource types are user processes U = {u(n) :
u(n) E U } , a single store map sm and a physical store
ph. The viable designs are, after informal considera-
tion of the possible BSL expression^,^:

~ ~~

3The informal idea of ‘binding’ in this case is seen applica-
tively and hence the BSL expressions given. It is possible to
see the idea of ‘binding’ here as serial association and hence use
BSL expressions with ; instead. Whatever scheme is used in
any particular application does not matter as all possible de-
signs will be accounted for by s m e expression. It is a lack of
awareness of the possibilities that leads to bad designs initially.
With BSL the options are made apparent early on.

0 ((U) (~ m)) (p h > ~ -users access the store map first
and then the physical store in two stages,

0 (U)((sm)(ph)) - users access the store map and
physical store in one go.

The temporal semantics of the two designs corre-
sponding to the two BSL expressions are given by
specifying each designed system as the sequence of
events in time that can occur in that system.

The events that may or may not be occurring at a
given point in time correspond to the following predi-
cates:

0 sm(v,r): r is the real address of the virtual ad-
dress v in the store map;

0 ph(r,z): 5 is the value contained at the location
with address r in physical store;

0 u-sm(n,v): user n is accessing the store map to
get the real address of the virtual address v;

0 uph(n,r): user n is accessing the physical store
at real address r;

0 s-sm(v): the system process (possibly hardware)
accesses the store map at virtual address v for
store management purposes;

0 sph(r) : the system process (possibly hardware)
accesses the physical store at real address T for
store management purposes;

0 u(n): user n is accessing either the store map or
physical store.

It is clear that the value of the predicates sm, ph,
u-sm, uph, s-sm, sph and U are required to change
over time. For this reason, the temporal language
to be used is first-order linear discrete time temporal
logic with equality where the predicates are ‘flexible’
in the terminology of [l]; see that reference for the
full semantics. A pleasant feature of temporal logic is
that specifications can be appreciated with only the
following brief description of the temporal operators:

1. 04 (“always 9”) is true if the formula q5 is true
now and in every future moment.

2. 04 (“at the next moment f) is true now if the
formula 4 is true at the next instant.

4Strictly speaking the corresponding design option is the sin-
gleton set { ((Wsm))(&Jh) }.

18

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:52 from IEEE Xplore. Restrictions apply.

3. Wll, (‘‘4 until 11,”) is true if 11, becomes true at
some point in time and until that happens 4 will
be true.

The temporal semantics of the two chosen design al-
ternatives are:

def
0 bind((U)(,,))(ph) = VnvvVr.

0 (u-sm(n, v) A sm(v, r) =+- O(-u(n) U uph(n, r)))

This states that for any user n , any virtual address
w and any real address T , it is always the case that if
user n accesses the store map and finds that the vir-
tual address v is at real address T , then the next access
that this user performs is to the physical store at that
real address. The other binding has the temporal ex-
pression:

def
0 bind(u)((.,)(,,h)) = VnVvVr.

0 (u-sm(n,v) A sm(v, r) + Ouph(n, r))

A user accesses physical store as soon as (concep-
tually at the next instant in time) the real address
of the physical address is obtained. The architectural
constraints are broken down into constrl, cms t r2 and
constr3 which, respectively, allow access to the store
map and physical store by only one process at a time
(cons tr l) , do not allow asimultaneous access by a user
process and the system process to either the store map
or physical store (constr2) and which permit changes
to the store map by the system process for store man-
agement purposes (constr3).

def constrl = V m V n V v i V v z V r ~ V r ~ .

(m # n) * 0 (-(u-sm(m, vi) A u-sm(n, ~ 2)) A

-(llph(m, ri A uph(n, r z)))

def constr2 = VnVvlVvzVrlVr2.

o(-(u-sm(n, “1) A ~ - s m (v z)) A y(uph(n, T I) A s p h (r 2)))

def constr3 = VvVr lVrz .

(~ i # ~ z) * 0 ((s m (v , T I) A O ~ m (v , ~ 2)) * 0 s-sm(v))

The last constraint reads: “whenever the store map
changes, the system process must have accessed it”.
Then,

def
0 arch-constr = constrl A constr2 A constr3

The required property of the system is that the
store is kept consistent. This means that if a user
process accesses the store map to obtain the real ad-
dress T of a virtual address w , then when that user
accesses physical store at that T it must still be the
real address of w:

dcf
0 prop = VnVvVr. 0 (u-sm(n,v) A s m (v , r) +

O (- u (n) U (uph(n, r) A sm(v, TI)))
The proof obligations for the two design options

are:

0 bind((U)(,,))(ph) A arch-constr + prop

and

0 bind(u)((,,)(ph)) A arch-constr + prop

Unfortunately, proofs are not possible in the tem-
poral logic used. However, with suitable finiteness re-
strictions on the set of users, virtual addresses and real
addresses, the formulae reduce to formulae in propo-
sitional temporal logic which certainly admit proofs,
indeed the logic is decidable and is the focus of much
active research into efficient theorem provers, e.g. [2] .
With the inclusion of additional temporal formula that
have been omitted here, giving fairly obvious relation-
ships between the predicates, it is possible to formally
verify that the second bindings option has the correct
properties. Although, with the finiteness assumptions,
this would not be an absolute proof, nevertheless it
does give some indication of the correctness of the
high-level design as was sought.

Distributed Store Management

The monolithic store example hardly requires a tem-
poral verification to show that the second binding al-
ternative is the one to choose. The following, more in-
teresting distributed store example can be dealt with
in exactly the same way though at greater length.

It comprises virtual storage distributed between
several processors. The resources in the system are
user processes P = { p , : pn E P } , a (global) table
PE indicating on which processor each p,’s store is
located, for each process p , a store map sm, giving
the virtual to real address map on the processor that
p , is on and, for each processor pr a physical address
to value map ph,,. One possible design option for a
process updating its virtual store, is that the process
p , first accesses PE to find which processor it is on,
and then accesses sm, to obtain the real address; in

An alternative binding is if the process first ac-
cesses the virtual to real address map sm, and
then finds which processor this relates to; in BSL:
((P,) (smn 1) (P E) .

If the hardware moves processes from one processor
to another so that the virtual to real address map does
not change, then the second bindings option would be
the one giving a consistent store. Bindings options
other than the ones shown are possible.

BSL: ((pn)(PE)) (smn) .

19

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:52 from IEEE Xplore. Restrictions apply.

Flagship ADTs

In section 2, the Flagship operating system was dis-
cussed and in particular the FADT components of the
kernel. It was essential to ensure serialisability of the
state of these FADTs in the presence of parallelism.
A call to an operation of an FADT required a bind-
ing of five components: a stateholder, sh, which was
bound to a processor, PE;, and could not be copied
(but could, conceptually, be moved to another proces-
sor); a guardian, g, that ensured only one operation of
the FADT ever has access to the stateholder at any in-
stant; an operation, op, called by the user, and partial
parameters to the operation, p p , supplied by the user.
As mentioned earlier, the order in which these bind-
ings are carried out has an impact on system struc-
turing. It is precisely the type of intuition involved in
choosing the best binding order that the BSL attempts
to make formal.

The following conditions were considered to be
needed for serialisability:

1. the presence of the guardian, that ensures only
one operation has access to the stateholder at any
instant,

2. the stateholder is bound to only one processor at
any instant, which ensures there is only ever one
copy of the stateholder extant.

The operation, op, and the partial parameters, pp,
are only bound to the binding of (PE;, sh, g) on each
call. So the major concern is the order of binding of
the three components, (PE,, sh, 9).

Two possible bindings seem intuitively to be worthy
of consideration. The BSL framework allows these
alternatives to be investigated more formally.

The stateholder must exhibit serialisable behaviour,
enforced by the guardian. A single PE must be bound
in order to achieve this. The two alternatives of inter-
est are as follows:

1. The binding of a processor is of secondary impor-
tance, because, as noted, conceptually, the state-
holder could be re-bound to another processor at
some instant and the same abstract behaviour will
ensue. Thus, the binding of longest duration is
between the stateholder and the guardian.

This intuition can be formalised using BSL: a
stateholder and a guardian are bound in any
order. The design options are: (((9) ; (s h)) ,
((sh) ; (9))) . This binding holds for the lifetime
of the FADT.

2.

A processor, PE,, is then bound, for example,
(PEi)((g); (sh)) . This binding may be changed
during the lifetime of the FADT.

The closest binding is between the processor and
the stateholder. The guardian, to queue opera-
tions on the stateholder, is of secondary impor-
tance and can be bound later.
This intuition can be formalised using BSL: a
stateholder and a processor are bound in any
order. The design options are: {((PE;); (sh)) ,

A guardian 9, is then bound, for example,

The difficulty that can now be seen with this ap-
proach is that conceptually the stateholder can be
moved to another processor during it’s lifetime.
To achieve this type of re-binding dynamically is
made far more difficult because it also involves
unbinding the guardian. This becomes far more
apparent by considering the BSL expression.

((sh) ; (PE;))}.

(PEa)((sh); (9)) .

Alternative 1 corresponds more to a top-down ab-
stract model of what is to be achieved. Alternative
2 corresponds more to a bottom-up view of how the
behaviour will be achieved.

Alternative 1 is considered to be the most appro-
priate binding strategy. This example shows one of
the benefits of the BSL is allowing such design alter-
natives to be considered.

For completeness, the full binding with alternative
1 is as follows. A user, U, passes the partial parame-
ters of the call, pp, to the required FADT operation,
op, thus (u)((pp)(op)), and when the guardian allows
this operation to proceed, the following binding holds:

(.)((PP)((op)((PEi) ((9) ; (s h))))) ,

which is sufficient for the operation to proceed and be
serialisable. This larger binding only holds for the du-
ration of an operation call. The corresponding design
option is a set of such expressions for the various PE’s
and the g and s h in possible orders.

File Management

A traditional view of file management is that a user
requests access to a named file, implicitly the file is to
be accessed in some fashion. This access is obtained
by associating a file manager with the file. To han-
dle these requests the system recognises the request,
determines its validity, identifies the physical file from

20

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:52 from IEEE Xplore. Restrictions apply.

the name provided, and ensure that the file can be ac-
cessed in the way requested. Following this, a binding
must occur between three resources: user, file and file
manager to provide the required behaviour. The issue
at this stage is how to bring about this binding.

Given a user U, a file f, and a file manager fm, (all
are instances of a resource type as defined earlier), the
following four bindings occurrences are possible, and
are denoted using suitable sets of BSL expressions:

All three resources are bound together at what
appears to be the same instant in time; the design
option is:

{(U) l l (f) Il(fm)).

The user and file manager are bound together (in
either order), and, at some subsequent instant,
the file is bound. The binding of the user and the
file manager is of the longer duration. This order
may be required, for example, if the user wishes
to access all files in the same manner, perhaps
sequentially so as to print them all; the design
option is:

{ (f) ((U h (fm)), (f) ((fm); (U)))
The user and file are bound together (in either
order), and, at some subsequent instant, the file
manager is bound. The binding of the user and
the file is of the longer duration. This order may
be required, for example, if the user wishes to
access the file in a number of different ways, per-
haps sequentially for a report of the whole file,
and then access it randomly for interactive reads
and updates; the design option is:

{(f”(u); (f)) , (f”(f); (U)))

The file and file manager are bound together (in
either order), and at some subsequent instant the
user is bound. The binding of the file and the
file manager is for a longer duration. This order,
essentially gives the user only one means of ac-
cessing the file, i.e. via its bound file manager;
the design option is:

{ (U) ((f L (fm)), (u)((fm); U)))
Printer Access

Finally, consider a request from a user U , to print a
file f on a printer. This request could be to print to
a designated printer p i , in which case the binding is
to a specific instance of a dynamic resource type P
(the set of all printers). Thus, (pi)((u)(f)) However,
if all printers have the same capability and are in the

same location then the request would be to bind to the
dynamic resource type P , and some printer scheduler
can determine which printer instance should be used.
Thus, (PI ((u)(f) 1.

6 Conclusions and Future Work

‘The objective of this paper has been to place the
informal, but common and useful, notion of resource
bindings into a formal framework, to improve the high-
level design of parallel operating systems. It has drawn
on experiences of high-level design in two parallel op-
erating systems projects.

The main benefits of the resulting design process
(section 4), and from which the process derives its
uniqueness, was use of the BSL to give a formal rep-
resentation of the design space. This enabled a better
analysis of the design alternatives and improved the
design of, for example, Flagship ADTs where the ad-
vantage of binding the guardian and stateholder for the
lifetime of a Flagship ADT thus allowing the processor
to change during the lifetime was indicated when the
BSL expressions were written down. Flagship ADTs
were the building blocks of the Flagship kernel, and
the BSL analysis presented in section 5 led to various
re-designs of the prototype kernel.

The verification parts of the design process - stages
5 to 8 of section 4 - were based on temporal logic
mainly because of early success with using the for-
malism in the EDS project [8]. They required consid-
erably more input of effort and at best succeeded in
providing fairly rigorous though informal arguments
of the viability of certain designs. A lack of availabil-
ity of appropriate tools was also a drawback of these
stages. An alternative design process could replace
these stages by use of other tools such as the Con-
currency Workbench [5]. So, for example, stages 5
and 7 might mean providing CCS agents CCS,, and
CCS,,,,t,, and stage 6 a specification MC,,,, in the
modal mu-calculus offered by the workbench. The ver-
ification at stage 8 would then involve running the
workbench model checker to check that the composi-
tion of CCS,, and CCS,,,,t, satisfied MC,,,,. It is
likely that finiteness assumptions needed for provabil-
ity in the temporal logic case would also be needed
when using the workbench. However, it would nev-
ertheless be worth comparing use of verification tools
such as those offered by the workbench, in the context
of appropriate stages 5 to 8 in the design process, with
temporal logic tools used in the context of the design
process given here.

21

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:52 from IEEE Xplore. Restrictions apply.

Acknowledgements

Thanks to the Flagship and EDS groups, particu-
larly Steve Leunig, Ken Mayes and Brian Warboys,
who have contributed to our understanding of the de-
sign of parallel operating systems. Thanks also to the
anonymous referees whose comments have improved
the presentation of the work. This work was partly
supported by UK Alvey project, IKBS 049 SERC
grant GR/E 21070, and by ESPRIT I1 grant, EP2025.

References

Temporal-Logic Theorem Proving, M. Abadi,
PhD Thesis, Stanford University, Report No.
STAN-CS-87-1151,1987.

MetateM: A Framework for Programming in
Temporal Logic, H. Barringer, M. Fisher, D. Gab-
bay, G. Gough and R. Owens, In REX Workshop
on Stepwise Refinement of Distributed Systems,
LNCS-430, Springer-Verlag, 1989.

The Use of VDM within the Alvey Flagship
Project, G.S. Boddy, in VDM - The Way Ahead,
LNCS-328, Springer-Verlag, 1988.

Names and Name Resolution, D.E. Comer and
L.L. Peterson, in Concurrency Control and Re-
liability in Distributed Systems, B.K. Bhargava
(Ed.), van Nostrand Reinhold, 1987.

The Concurrency Workbench: A Semantics-
Based Tool for the Verification of Concurrent Sys-
tems, R. Cleveland, J. Parrow and B. Steffen,
ACM TOPLAS 15(1), 1993.

Specification of an Operating System Kernel: For-
est & VDM compared, S.J Goldsack, in VDM
- The Way Ahead, LNCS-328, Springer-Verlag
1988.

Specification Case Studies, I. Hayes, Prentice-Hall
International, 1987.

Specification of a Distributed Operating System
Environment, W. Hussak, EDS Project Docu-
ment, Dept. of Computer Science, University of
Manchester, 1989.

The Use of Formal Methods in Parallel Operat-
ing Systems, J.A.Keane and W. Hussak, Proc. of
COMPSAC 92, IEEE Press, 1992.

Levels of Atomic Actions in the Flagship Paral-
lel System, K.R. Mayes and J.A. Keane, Concur-
rency: Practice and Experience 5(3), 1993.

Specifying and Refining Concurrent Systems,
R.E. Milne, RAISE/STC/REM/13/V2STC,
RAISE Project Document, 1990.

Names, R.M. Needham, in Distributed Systems,
S. Mullender (Ed.), ACM Press Addison-Wesley,
1989.

Naming and Binding of Objects, J.H. Saltzer, in
Operating Systems: An Advanced Course, LNCS-
60, Springer-Verlag, 1978.

On the Naming and Binding of Network Desti-
nations, J.H. Saltzer, Proc. Int. Symp. on Local
Computer Networks, IFIP/T.C.6, Florence, Italy,
1982.

VME/B A Model for a Realisation of a Total Sys-
tem Concept, B.C. Warboys, ICL Technical Jour-
nal 2 (2), 1980.

VME Nodal Architecture: a Model for the Re-
alisation of a Distributed System Concept, B.C.
Warboys, ICL Technacal Journal 4 (3), 1985.

22

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:52 from IEEE Xplore. Restrictions apply.

